
OS/390 IBM

Language Environment for OS/390 & VM
Debugging Guide and
Run-Time Messages

 SC28-1942-09

OS/390 IBM

Language Environment for OS/390 & VM
Debugging Guide and
Run-Time Messages

 SC28-1942-09

 Note

Before using this information and the product it supports, be sure to read the general information under Appendix B, “Notices”
on page 821.

Tenth Edition, September 2000

This is a major revision of SC28-1942-08.

This edition applies to Language Environment in OS/390 Version 2 Release 10 (5647-A01), and to all subsequent releases and
modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

IBM welcomes your comments. A form for readers' comments may be provided at the back of this publication, or you may address
your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/s390/os390/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

� Title and order number of this book
� Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1991, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

About This Book . xv
Using Your Documentation . xv

Summary of Changes . xvii

Part 1. Introduction to Debugging in Language Environment 1

Chapter 1. Preparing Your Routine for Debugging 3
Setting Compiler Options . 3

C and C++ Compiler Options . 3
COBOL Compiler Options . 6
Fortran Compiler Options . 7
PL/I Compiler Options . 8
VisualAge PL/I Compiler Options . 9

Using Language Environment Run-Time Options 10
Determining Run-Time Options in Effect . 11

Controlling Storage Allocation . 13
Stack Storage Statistics . 19
Heap Storage Statistics . 21
HeapPools Storage Statistics . 22

Modifying Condition Handling Behavior . 22
Language Environment Callable Services . 22
Language Environment Run-Time Options . 23
Customizing Condition Handlers . 25
Invoking the Assembler User Exit . 25
Establishing Enclave Termination Behavior for Unhandled Conditions 26

Using Messages in Your Routine . 27
C/C++ . 27
COBOL . 27
Fortran . 27
PL/I . 28

Using Condition Information . 28
Using the Feedback Code Parameter . 28
Using the Symbolic Feedback Code . 30

Chapter 2. Classifying Errors . 31
Identifying Problems in Routines . 31

Language Environment Module Names . 31
Common Errors in Routines . 31

Interpreting Run-Time Messages . 33
Message Prefix . 33
Message Number . 34
Severity Code . 34
Message Text . 34

Understanding Abend Codes . 34
User Abends . 35
System Abends . 35

Chapter 3. Using Language Environment Debugging Facilities 37

 Copyright IBM Corp. 1991, 2000 iii

Debugging Tool . 37
Language Environment Dump Service, CEE3DMP 37

Generating a Language Environment Dump with CEE3DMP 37
Generating a Language Environment Dump with TERMTHDACT 40
Generating a Language Environment Dump with Language-Specific

Functions . 43
Understanding the Language Environment Dump 44
Debugging with Specific Sections of the Language Environment Dump . . . 61

Multiple Enclave Dumps . 74
Generating a System Dump . 76

Generating a System Dump in a Batch Run-Time Environment 76
Generating a System Dump in an IMS Run-Time Environment 77
Generating a System Dump in a CICS Run-Time Environment 77
Generating a System Dump in an OS/390 UNIX Shell 78

Formatting and Analyzing System Dumps on OS/390 78
Preparing to Use the Language Environment IPCS Verbexit LEDATA 79
Language Environment IPCS Verbexit – LEDATA 79
Format . 79
Parameters . 80
Understanding the Language Environment IPCS Verbexit LEDATA Output . 82
Understanding the HEAP LEDATA Output . 96
Understanding the C/C++-specific LEDATA Output 102
Understanding the COBOL-specific LEDATA Output 108

Requesting a Language Environment Trace for Debugging 111
Locating the Trace Dump . 112
Using the Language Environment Trace Table Format in a Dump Report . . 113
Understanding the Trace Table Entry (TTE) 113
Sample Dump for the Trace Table Entry . 114

Part 2. Debugging Language-Specific Routines . 117

Chapter 4. Debugging C/C++ Routines . 121
Debugging C/C++ Input/Output Programs . 121

Using the __amrc and __amrc2 Structures . 122
__last_op Values . 124
Displaying an Error Message with the perror() Function 127
Using __errno2() to Diagnose Application Problems 128

Using C/C++ Listings . 129
Generating C/C++ Listings and Maps . 129
Finding Variables . 132

Generating a Language Environment Dump of a C/C++ Routine 139
cdump() . 139
csnap() . 140
ctrace() . 140
Sample C Routine that Calls cdump . 140
Sample C++ Routine that Generates a Language Environment Dump 142
Sample Language Environment Dump with C/C++-Specific Information . . . 144
Finding C/C++ Information in a Language Environment Dump 152

| Sample Language Environment Dump with XPLINK-Specific Information . . 157
| Finding XPLINK Information in a Language Environment Dump 162

C/C++ Contents of the Language Environment Trace Tables 163
Debugging Examples of C/C++ Routines . 168

Divide-by-Zero Error . 168

iv OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

| Calling a Nonexistent Non-XPLINK Function 172
| Calling a Nonexistent XPLINK Function . 175

Handling Dumps Written to the OS/390 UNIX File System 179
Multithreading Consideration . 180
Understanding C/C++ Heap Information in Storage Reports 180

Language Environment Storage Report with HeapPools Statistics 181
C Function, __uheapreport, Storage Report 185

Chapter 5. Debugging COBOL Programs . 187
Determining the Source of Error . 187

Tracing Program Logic . 187
Finding Input/Output Errors . 188
Handling Input/Output Errors . 188
Validating Data (Class Test) . 188
Assessing Switch Problems . 188
Generating Information about Procedures . 188

Using COBOL Listings . 190
Generating a Language Environment Dump of a COBOL Program 191

COBOL Program that Calls Another COBOL Program 191
COBOL Program that Calls the Language Environment CEE3DMP Callable

Service . 192
Sample Language Environment Dump with COBOL-Specific Information . . 193
Finding COBOL Information in a Dump . 196

Debugging Example COBOL Programs . 200
Subscript Range Error . 200
Calling a Nonexistent Subroutine . 203
Divide-by-Zero Error . 206

Chapter 6. Debugging Fortran Routines . 211
Determining the Source of Errors in Fortran Routines 211

Identifying Run-Time Errors . 211
Using Fortran Compiler Listings . 213
Generating a Language Environment Dump of a Fortran Routine 214

DUMP/PDUMP Subroutines . 214
CDUMP/CPDUMP Subroutines . 215
SDUMP Subroutine . 216

Finding Fortran Information in a Language Environment Dump 219
Understanding the Language Environment Traceback Table 220

Examples of Debugging Fortran Routines . 221
Calling a Nonexistent Routine . 221
Divide-by-Zero Error . 223

Chapter 7. Debugging PL/I Routines . 227
Determining the Source of Errors in PL/I Routines 227

Logic Errors in the Source Routine . 227
Invalid Use of PL/I . 227
Unforeseen Errors . 228
Invalid Input Data . 228
Compiler or Run-Time Routine Malfunction . 228
System Malfunction . 228
Unidentified Routine Malfunction . 228
Storage Overlay Problems . 229

Using PL/I Compiler Listings . 230
Generating PL/I Listings and Maps . 231

 Contents v

Finding Information in PL/I Listings . 231
Generating a Language Environment Dump of a PL/I Routine 238

PLIDUMP Syntax and Options . 238
PLIDUMP Usage Notes . 240

Finding PL/I Information in a Dump . 240
Traceback . 240
Control Blocks for Active Routines . 242
Control Blocks Associated with the Thread . 244

PL/I Contents of the Language Environment Trace Table 246
Debugging Example of PL/I Routines . 247

Subscript Range Error . 247
Calling a Nonexistent Subroutine . 250
Divide-by-Zero Error . 252

Chapter 8. Debugging under CICS . 257
Accessing Debugging Information . 257

Locating Language Environment Run-Time Messages 257
Locating the Language Environment Traceback 258
Locating the Language Environment Dump 258
Using CICS Transaction Dump . 258
Using CICS Register and Program Status Word Contents 259
Using Language Environment Abend and Reason Codes 259
Using Language Environment Return Codes to CICS 260

Ensuring Transaction Rollback . 260
Finding Data When Language Environment Returns a Nonzero Reason Code . 260
Finding Data When Language Environment Abends Internally 261
Finding Data When Language Environment Abends from an EXEC CICS

Command . 261

Part 3. Run-Time Messages and Codes . 263

Chapter 9. Language Environment Run-Time Messages 265

Chapter 10. C Prelinker and the C Object Library Utility Messages 387
Severe Error Messages . 395

Chapter 11. C Utility Messages . 397
localedef Messages . 397

Return Codes . 397
Messages . 397

iconv Utility Messages . 410
Return Codes . 410
Messages . 411

genxlt Utility Messages . 413

Chapter 12. C/C++ Run-Time Messages . 415

Chapter 13. Fortran Run-Time Messages . 479
Fortran Run-Time Message Number Ranges . 479
Qualifying Data . 480
Permissible Resume Actions . 481
locator-text in the Run-Time Message Texts . 481
List of Run-Time Messages . 482

vi OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Chapter 14. PL/I Run-Time Messages . 647

Chapter 15. COBOL Run-Time Messages . 741

Chapter 16. Language Environment Abend Codes 775

Chapter 17. C Abend and Reason Codes and SPC Messages 789
C System Programming Abend Codes . 789
C System Programming Reason Codes . 791
System Programming C Messages . 791

Chapter 18. Return Codes to CICS . 795
Language Environment Return Codes . 795
C Return Codes . 803
COBOL Return Codes . 804
PL/I Return Codes . 804

Part 4. Appendixes . 807

Appendix A. Diagnosing Problems with Language Environment 809
Diagnosis Checklist . 809

| Locating the Name of the Failing Routine in a System Dump on VM 810
Searching the IBM Software Support Database 816
Preparing Documentation for an Authorized Program Analysis Report (APAR) . 817

Appendix B. Notices . 821
Programming Interface Information . 823
Trademarks . 823

Bibliography . 825
Language Products Publications . 825
Related Publications . 826
Softcopy Publications . 826

Index . 827

 Contents vii

viii OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 Figures

1. Options Report Produced by Language Environment Run-Time Option
RPTOPTS(ON) . 12

| 2. Storage Report Produced by Language Environment Run-Time Options
| RPTSTG(ON) and XPLINK(OFF) . 14

3. Storage Report Produced by Language Environment Run-Time Options
RPTSTG(ON), HEAPPOOLS(ON) and XPLINK(ON) 16

4. Language Environment Condition Token 29
5. The C program CELSAMP . 44
6. The C DLL CELDLL . 48
7. Example Dump Using CEE3DMP . 50

| 8. Upward-Growing (Non-XPLINK) Stack Frame Format 62
| 9. Downward-Growing (XPLINK) Stack Frame Format 63

10. Common Anchor Area . 64
11. Condition Information Block . 71
12. Machine State Information Block . 74
13. Language Environment Dump of Multiple Enclaves 75

| 14. Example of Formatted Output from LEDATA Verbexit 83
15. Example Formatted Detailed Heap Segment Report from LEDATA

Verbexit . 97
16. Example Formatted C/C++ Output from LEDATA Verbexit 103
17. Example Formatted COBOL Output from LEDATA Verbexit 109
18. Trace Table in Dump Output . 114
19. __amrc Structure . 122
20. __amrc2 Structure . 123
21. Example of a Routine Using perror() . 128
22. Example of a Routine Using __errno2() 128
23. Example of a Routine Using _EDC_ADD_ERRNO2 129
24. Sample Output of a Routine Using _EDC_ADD_ERRNO2 129
25. Writable Static Map Produced by Prelinker 133
26. Location of RENT Static Variable in Storage 134
27. Writable Static Map Produced by Prelinker 135
28. Location of NORENT Static Variable in Storage 135
29. Example Code for Parameter Variable 136
30. Example Code for Parameter Variable 136
31. Partial Storage Offset Listing . 137
32. Example Code for Structure Variable . 137
33. Example of Aggregate Map . 137
34. Writable Static Map Produced by Prelinker 138
35. Example C Routine Using cdump to Generate a Dump 141
36. Fetched module for C routine . 142
37. Example C++ Routine with Protection Exception Generating a Dump . 143
38. DLL for C++ routine . 143
39. Header file STACK.H . 144
40. Example Dump from Sample C Routine 144
41. Memory File Control Block . 154
42. Registers on Entry to CEE3DMP . 156
43. Parameters, Registers, and Variables for Active Routines 156
44. Condition Information for Active Routines 157

| 45. Sample XPLINK-compiled Program (tranmain) Which Calls a
| NOXPLINK-compiled Program . 158

 Copyright IBM Corp. 1991, 2000 ix

| 46. Sample NOXPLINK-compiled Program (trandll) Which Calls an
| XPLINK-compiled Program . 159
| 47. Example Dump of Calling Between XPLINK and non-XPLINK Programs 160

48. Trace Table with C/C++ Trace Table Entry Types 1 thru 4 165
49. Trace Table with XPLINK Trace Table Entries 5 and 6. 167
50. C Routine with a Divide-by-Zero Error 168
51. Sections of the Dump from Example C/C++ Routine 169
52. Pseudo Assembly Listing . 170
53. C/C++ CAA Information in Dump . 171
54. Writable Static Map . 171
55. Enclave Storage Section of Dump . 172
56. C/C++ Example of Calling a Nonexistent Subroutine 172
57. Sections of the Dump from Example C Routine 173
58. Pseudo Assembly Listing . 174
59. Writable Static Map . 174
60. Enclave Control Blocks and Storage sections in Dump 174

| 61. C/C++ Example of Calling a Nonexistent Subroutine 175
| 62. Sections of the Dump from Example C Routine 176
| 63. Pseudo Assembly Listing . 178
| 64. Writable Static Map . 178
| 65. Enclave Control Blocks and Storage sections in Dump 179
| 66. Language Environment Storage Report with HeapPools Statistics . . . 181

67. storage report generated by __uheapreport() 185
68. Example of Using the WITH DEBUGGING MODE Clause 189
69. COBOL Program COBDUMP1 Calling COBDUMP2 192
70. COBOL Program COBDUMP2 Calling the Language Environment Dump

Service CEE3DMP . 192
71. Sections of the Language Environment Dump Called from COBDUMP2 194
72. Control Block Information for Active COBOL Routines 197
73. Storage for Active COBOL Programs . 198
74. Enclave-Level Data for COBOL Programs 199
75. Process-Level Control Blocks for COBOL Programs 200
76. COBOL Example of Moving a Value Outside an Array Range 201
77. Sections of Language Environment Dump for COBOLX 201
78. COBOL Listing for COBOLX . 203
79. COBOL Example of Calling a Nonexistent Subroutine 203
80. Sections of Language Environment Dump for COBOLY 204
81. COBOL Listing for COBOLY . 205
82. Parameters, Registers, and Variables for Active Routines Section of

Dump for COBOLY . 206
83. Main COBOL Program, COBOL Subroutine, and Assembler Routine . 206
84. Sections of Language Environment Dump for Program COBOLZ1 . . . 208
85. COBOL Listing for COBOLZ2 . 209
86. Listing for ASSEMZ3 . 209
87. Variables Section of Language Environment Dump for COBOLZ2 . . . 210
88. Listing for COBOLZ2 . 210
89. Variables Section of Language Environment Dump for COBOLZ1 . . . 210
90. Example Program That Calls SDUMP 218
91. Language Environment Dump Generated Using SDUMP 219
92. Sections of the Language Environment Dump 220
93. Example of Calling a Nonexistent Routine 221
94. Sections of the Language Environment Dump Resulting from a Call to a

Nonexistent Routine . 222
95. Fortran Routine with a Divide-by-Zero Error 223

x OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

96. Language Environment Dump from Divide-By-Zero Fortran Example . 224
97. PL/I Routine Compiled with LIST and MAP 232
98. Compiler-Generated Listings from Example PL/I Routine 233
99. Traceback Section of Dump . 241
100. Task Traceback Section . 242
101. Control Blocks for Active Routines Section of the Dump 243
102. Control Blocks Associated with the Thread Section of the Dump 245
103. Example of Moving a Value Outside an Array Range 247
104. Sections of the Language Environment Dump 248
105. Example of Calling a Nonexistent Subroutine 250
106. Sections of the Language Environment Dump 251
107. PL/I Routine with a Divide-by-Zero Error 252
108. Variables from Routine SAMPLE . 252
109. Object Code Listing from Example PL/I Routine 253
110. Language Environment Dump from Example PL/I Routine 253
111. Language Environment Traceback Written to the Transient Data Queue 258
112. Language Environment Non-XPLINK PPA1 and PPA2 812

| 113. Language Environment PPA1 for XPLINK 813
114. PPA2: Compile Unit Block (Non-XPLINK) 814

| 115. PPA2 Compile Unit Block for XPLINK 814
| 116. PPA2 Timestamp and Version Information for XPLINK 815

117. C PPA1 . 815
118. Nonconforming Entry Point Type with Sample Dump 816

 Figures xi

xii OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 Tables

1. How to Use OS/390 Language Environment for OS/390 & VM
Publications . xvi

2. Common Error Symptoms, Possible Causes, and Programmer Responses 32
3. List of CAA Fields . 65
4. __last_op Values and Diagnosis Information 124
5. Contents of Listing and Associated Compiler Options 130
6. OS/390 C Compiler Listings . 131
7. OS/390 C++ Compiler Listings . 131
8. C/C++ IPA Link Step Listings . 131
9. Basic Set of Qualifying Data for I/O Conditions 480

10. File Organization and Conflicting Attributes 669
11. Operations and Conflicting File Organizations 722
12. Problem Resolution Documentation Requirements 817

 Copyright IBM Corp. 1991, 2000 xiii

xiv OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

About This Book

IBM OS/390 Language Environment for OS/390 & VM (also called Language Envi-
ronment) provides common services and language-specific routines in a single run-
time environment for C, C++, COBOL, Fortran (OS/390 only; no support for
VM/ESA, OS/390 UNIX System Services, or CICS), PL/I, and assembler applica-
tions. It offers consistent and predictable results for language applications, inde-
pendent of the language in which they are written.

Language Environment is the prerequisite run-time environment for applications
generated with the following IBM compiler products:

 � OS/390 C/C++
� C for VM/ESA
� C/C++ Compiler for MVS/ESA
� AD/Cycle C/370 Compiler
� VisualAge for Java, Enterprise Edition for OS/390
� COBOL for OS/390 & VM
� COBOL for MVS & VM (formerly COBOL/370)
� VisualAge PL/I for OS/390
� PL/I for MVS & VM (formerly PL/I MVS & VM)
� VS FORTRAN and FORTRAN IV (in compatibility mode)

Language Environment supports, but is not required for, an interactive debug tool
for debugging applications in your native OS/390 environment. The IBM interactive
Debug Tool is available with OS/390, or with the latest releases of the C/C++,
COBOL, PL/I and VisualAge for Java compiler products.

Language Environment supports, but is not required for, VS Fortran Version 2 com-
piled code (OS/390 only).

Language Environment consists of the common execution library (CEL) and the
run-time libraries for C/C++, COBOL, Fortran, and PL/I.

For more information on VisualAge for Java, Enterprise Edition for OS/390,
program number 5655-JAV, see the product documentation.

Using Your Documentation
The publications provided with Language Environment are designed to help you:

� Manage the run-time environment for applications generated with a Language
Environment-conforming compiler.

� Write applications that use the Language Environment callable services.

� Develop interlanguage communication applications.

� Customize Language Environment.

� Debug problems in applications that run with Language Environment.

� Migrate your high-level language applications to Language Environment.

 Copyright IBM Corp. 1991, 2000 xv

Language programming information is provided in the supported high-level lan-
guage programming manuals, which provide language definition, library function
syntax and semantics, and programming guidance information.

Each publication helps you perform different tasks, some of which are listed in
Table 1. All books are available in printed and softcopy formats. For a complete list
of publications that you may need, see “Bibliography” on page 825.

Table 1. How to Use OS/390 Language Environment for OS/390 & VM Publications

To ... Use ...

Evaluate Language Environment OS/390 Language Environment Concepts Guide

Plan for Language Environment OS/390 Language Environment Concepts Guide

OS/390 Language Environment Run-Time Migration Guide

Install Language Environment on OS/390 OS/390 Program Directory

Customize Language Environment on OS/390 OS/390 Language Environment Customization

Plan for, install, customize, and maintain Language
Environment on VM/ESA

VM/ESA Program Directory

Understand Language Environment program
models and concepts

OS/390 Language Environment Concepts Guide

OS/390 Language Environment Programming Guide

Find syntax for Language Environment run-time
options and callable services

OS/390 Language Environment Programming Reference

Develop applications that run with Language Envi-
ronment

OS/390 Language Environment Programming Guide and your
language programming guide

Debug applications that run with Language Envi-
ronment, get details on run-time messages, diag-
nose problems with Language Environment

OS/390 Language Environment Debugging Guide and Run-
Time Messages

Develop interlanguage communication (ILC) appli-
cations

OS/390 Language Environment Writing Interlanguage Applica-
tions and your language programming guide

Migrate applications to Language Environment OS/390 Language Environment Run-Time Migration Guide and
the migration guide for each Language Environment-enabled
language

OS/390 Language Environment Debugging Guide and Run-Time Messages pro-
vides assistance with detecting and locating programming errors that occur during
run time under Language Environment. It can help you establish a debugging
process to analyze data and narrow the scope and location of where an error might
have occurred. You can read about how to prepare a routine for debugging, how to
classify errors, and how to use the debugging facilities Language Environment pro-
vides. Also included are chapters on debugging HLL-specific routines and routines
that run under CICS. At the end of this book is a list of all Language Environment
and HLL messages.

This book is for application programmers interested in techniques for debugging
run-time programs. To use this book, you should be familiar with:

� The Language Environment product
� Appropriate languages that use the compilers listed above
� Program storage concepts

xvi OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Summary of Changes

| Summary of Changes
| for SC28-1942-09
| OS/390 Version 2 Release 10

| This book contains information previously presented in OS/390 Language Environ-
| ment Debugging Guide and Run-Time Messages, SC28-1942-08, which supported
| OS/390 Version 2 Release 9.

| The following summarizes the changes to that information. These changes apply
| only to OS/390 Version 2 Release 10; they do not apply to VM/ESA Version 2
| Release 4.

| New Information

| The chapter Debugging C/C++ Routines has been added.

| New trace table entries for XPLINK have been added. See “C/C++ Contents of the
| Language Environment Trace Tables” on page 163.

| New PPAs for XPLINK have been illustrated in Appendix A.

| The following are new messages:

| � CEE3194E
| � CEE3518S
| � CEE3542S
| � CEE3543S
| � CEE3544E
| � CEE3545E
| � CEE3546E
| � CEE3547E
| � CEE3548E
| � CEE3549S
| � CEE3555S
| � CEE3556S
| � CEE3557S
| � CEE3580S
| � CEE3581S
| � CEE3582S
| � CEE3583S
| � CEE3584S
| � CEE3585S
| � CEE3586S
| � CEE3728S
| � CEE3821I
| � CEE3825I
| � EDC5149I
| � EDC5233S
| � EDC5234S
| � EDC5235S
| � EDC5236S

 Copyright IBM Corp. 1991, 2000 xvii

| � EDC5237S
| � EDC5238E
| � EDC5239S
| � EDC5240S
| � EDC5241S
| � EDC5242S
| � EDC6251C
| � EDC6252C
| � EDC6253C
| � IGZ0179S
| � IGZ0186S
| � IGZ0187S
| � IGZ0188S
| � IGZ0199S
| � IGZ0222S
| � IGZ0223S

| Changed Information

| The following are changed messages:

| � CEE3611I
| � CEE3616I
| � IBM0236S
| � IBM0260S
| � IBM0577I
| � IBM0579I
| � IBM0583S
| � IBM0584S
| � IBM0585S
| � IBM0586S

| The following are changed abend codes:

| � U4036X'FC4'
| � U4081X'FF1'
| � U4088X'FF8'
| � U4091X'FFB'
| � U4093X'FFD'

| Moved Information

| The System Programming C Messages section of Chapter 11 has been moved to
| Chapter 17 with the abend and reason codes.

| Deleted Information

| The following are message was deleted:

| � IBM0578I

Summary of Changes
for SC28-1942-08
OS/390 Version 2 Release 9

xviii OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

This book contains information previously presented in OS/390 Language Environ-
ment Debugging Guide and Run-Time Messages SC28-1942-07, which supported
OS/390 Version 2 Release 8.

The following summarizes the changes to that information, and applies only to
OS/390 Version 2 Release 9.

New Information

� HEAP24 has been added as a Heap Storage Statistics.

The following are new messages:

 � IGZ0174S
 � IGZ0175S
 � IGZ0176S
 � IGZ0177S
 � IGZ0178S
 � IGZ0180S
 � IGZ0181S
 � IGZ0182W
 � IGZ0183W
 � IGZ0184W
 � IGZ0185W

Changed Information

� IBM's recommended default suboption for the run-time option ABTERMENC
has been changed from RETCODE to ABEND.

� Run-time option USRHDLR now has two suboptions. The first suboption speci-
fies a user-written condition handler that gets control at stack frame 0. The
second suboption specifies a user-written condition handler that will get conrtol
first before any other user condition handler.

� The name OpenEdition has been changed to Unix System Services.

� Language Environment Dumps for COBOL have been updated.

The following are changed messages:

 � IGZ0002S
� Language Environment Abend Code U4087
� Language Environment Abend Code U4093

This book includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of Changes
for SC28-1942-07
OS/390 Version 2 Release 8

This book contains information previously presented in OS/390 Language Environ-
ment Debugging Guide and Run-Time Messages SC28-1942-06, which supported
OS/390 Version 2 Release 7.

 Summary of Changes xix

The following summarizes the changes to that information, and applies only to
OS/390 Version 2 Release 8.

New Information

� A new PL/I compiler, VisualAge PL/I for OS/390, is supported with Language
Environment. It incorporates many new features and is a member of the
VisualAge PL/I family of products. Numerous messages were added in support
of this new compiler.

� A new MSGFILE suboption, ENQ was added. The ENQ suoption is specified
when serialization around writes to the MSGFILE ddname is desired.

� A COBOL IPCS exit was added to format specific COBOL control blocks in a
system dump. See “Understanding the COBOL-specific LEDATA Output” on
page 108 for details.

� Language Environment message CEE3648 and abend U4093-AC were added
in support of POSIX(ON) checking in nested enclaves within a Language Envi-
ronment process.

� C run-time messages, EDC5170, EDC5232, and EDC8011 were added.

Changed Information

� The Storage, Run-Time Options, and User-created Heap Storage reports were
updated to include the version, release, and module levels.

� The COBOL examples that demonstrate how to diagnose the error of calling a
nonexistent subroutine were updated.

� Language Environment message CEE3535 was updated.

� C messages EDC5052 and EDC5053 had their error severities changed from
an I (informational) to an S (severe).

� All PL/I messages with a system action of "application is terminated" were
changed to "the ERROR condition is raised".

Summary of Changes
for SC28-1942-06
OS/390 Version 2 Release 7

This book contains information previously presented in OS/390 Language Environ-
ment Debugging Guide and Run-Time Messages SC28-1942-05, which supported
OS/390 Version 2 Release 6.

The following summarizes the changes to that information, and applies only to
OS/390 Version 2 Release 7, not to VM/ESA Version 2 Release 3.

New Information

� Language Environment message CEE0807 was added in support of the Lan-
guage Environment service that allows a C application to create a heap using
storage that is specified by the caller.

� Language Environment messages CEE3646 and CEE3647 were added in
support of the new run-time options module, CEEROPT.

� Language Environment message CEE5234 was added.

xx OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

� Language Environment messages, CEE5721, CEE5722, CEE5724, and
CEE5764—CEE5791 were added in support of mutexes and read/write locks in
shared memory.

� COBOL message IGZ0173 was added to indicate an invalid attempt to start a
sort or merge.

� Three TERMTHDACT suboptions, UATRACE, UAONLY, and UAIMM, were
added to provide greater control over Language Environment dumps and
system dump requests. See “Generating a Language Environment Dump with
TERMTHDACT” on page 40 to understand the level of information that each
suboption provides.

� A user-created storage report was added and described. This new report is
generated by the new C function, __uheapreport(), and is designed to assist in
tuning the application's use of a user-created heap. See “C Function,
__uheapreport, Storage Report” on page 185 for furter details.

� Procedures for generating a system dump in an IMS, CICS, and an OS/390
UNIX shell run-time environment were added. See “Generating a System
Dump” on page 76 for details.

� OS/390 UNIX signal, SIGDUMP, was created to dynamically request a system
dump.

� Twelve new floating-point registers are displayed in the Language Environment
dump (CEEDUMP) if the C/C++ APF suboption of the FLOAT compiler option is
specified and the registers are needed. See “Additional Floating-Point
Registers” on page 155 for information.

Changed Information

� The detailed HeapPools Storage Statistics section of the Language Environ-
ment storage report was moved to Chapter 4, “Debugging C/C++ Routines” on
page 121 since this function only applies to C/C++ applications.

� The Language Environment storage report was updated.

� Language Environment messages CEE3201–CEE3215 were modified to
include the system completion code.

Deleted Information

� Eleven figures from Chapter 4, “Debugging C/C++ Routines” on page 121
were deleted. The figures duplicated information presented in the sample Lan-
guage Environment dump. For easy reference, sections of the sample dump
are now numbered to correspond with the description of each section.

 Summary of Changes xxi

xxii OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Part 1. Introduction to Debugging in Language Environment

This part provides information about options and features you can use to
prepare your routine for debugging. It describes some common errors that
occur in routines and provides methods of generating dumps to help you get
the information you need to debug your routine.

Chapter 1. Preparing Your Routine for Debugging 3
Setting Compiler Options . 3

C and C++ Compiler Options . 3
COBOL Compiler Options . 6
Fortran Compiler Options . 7
PL/I Compiler Options . 8
VisualAge PL/I Compiler Options . 9

Using Language Environment Run-Time Options 10
Determining Run-Time Options in Effect . 11

Controlling Storage Allocation . 13
Stack Storage Statistics . 19
Heap Storage Statistics . 21
HeapPools Storage Statistics . 22

Modifying Condition Handling Behavior . 22
Language Environment Callable Services . 22
Language Environment Run-Time Options . 23
Customizing Condition Handlers . 25
Invoking the Assembler User Exit . 25
Establishing Enclave Termination Behavior for Unhandled Conditions 26

Using Messages in Your Routine . 27
C/C++ . 27
COBOL . 27
Fortran . 27
PL/I . 28

Using Condition Information . 28
Using the Feedback Code Parameter . 28
Using the Symbolic Feedback Code . 30

Chapter 2. Classifying Errors . 31
Identifying Problems in Routines . 31

Language Environment Module Names . 31
Common Errors in Routines . 31

Interpreting Run-Time Messages . 33
Message Prefix . 33
Message Number . 34
Severity Code . 34
Message Text . 34

Understanding Abend Codes . 34
User Abends . 35
System Abends . 35

Chapter 3. Using Language Environment Debugging Facilities 37
Debugging Tool . 37
Language Environment Dump Service, CEE3DMP 37

Generating a Language Environment Dump with CEE3DMP 37

 Copyright IBM Corp. 1991, 2000 1

Generating a Language Environment Dump with TERMTHDACT 40
Generating a Language Environment Dump with Language-Specific

Functions . 43
Understanding the Language Environment Dump 44
Debugging with Specific Sections of the Language Environment Dump . . . 61

Multiple Enclave Dumps . 74
Generating a System Dump . 76

Generating a System Dump in a Batch Run-Time Environment 76
Generating a System Dump in an IMS Run-Time Environment 77
Generating a System Dump in a CICS Run-Time Environment 77
Generating a System Dump in an OS/390 UNIX Shell 78

Formatting and Analyzing System Dumps on OS/390 78
Preparing to Use the Language Environment IPCS Verbexit LEDATA 79
Language Environment IPCS Verbexit – LEDATA 79
Format . 79
Parameters . 80
Understanding the Language Environment IPCS Verbexit LEDATA Output . 82
Understanding the HEAP LEDATA Output . 96
Understanding the C/C++-specific LEDATA Output 102
Understanding the COBOL-specific LEDATA Output 108

Requesting a Language Environment Trace for Debugging 111
Locating the Trace Dump . 112
Using the Language Environment Trace Table Format in a Dump Report . . 113
Understanding the Trace Table Entry (TTE) 113
Sample Dump for the Trace Table Entry . 114

2 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Chapter 1. Preparing Your Routine for Debugging

This chapter describes options and features that you can use to prepare your
routine for debugging. The following topics are covered:

� Compiler options for C, C++, COBOL, Fortran, and PL/I
� Language Environment run-time options
� Use of storage in routines
� Options for modifying condition handling
� Assembler user exits
� Enclave termination behavior

 � User-created messages
� Language Environment feedback codes and condition tokens

Setting Compiler Options
The following sections discuss language-specific compiler options important to
debugging routines in Language Environment. These sections cover only the com-
piler options that are important to debugging. For a complete list of compiler
options, refer to the appropriate HLL publications.

The use of some compiler options (such as TEST) can affect the performance of
your routine. You must set these options before you compile. In some cases, you
might need to remove the option and recompile your routine before delivering your
application.

C and C++ Compiler Options
When using C, set the TEST(ALL) suboption, which is equivalent to
TEST(LINE,BLOCK,PATH,SYM,HOOK). For C++, the option TEST is equivalent to
TEST(HOOK). Following is a list of TEST suboptions that you can use to simplify
run-time debugging.

ALL Sets all of the TEST suboptions.

BLOCK Generates symbol information for nested blocks.

| HOOK| Generates all possible hooks. See OS/390 C/C++ User's Guide for details
| on this suboption.

LINE Generates line number hooks and allows a debugging tool to generate a
symbolic dump.

| PATH| Generates hooks at all path points; for example, hooks are inserted at if-
| then-else points before a function call and after a function call.

SYM Generates symbol table information and enables Language Environment to
generate a dump at run time.

When you specify SYM, you also get the value and type of variables dis-
played in the Local Variables section of the dump. For example, if in block
4 the variable x is a signed integer of 12, and in block 2 the variable x is a
signed integer of 1, the following output appears in the Local Variables
section of the dump:

%BLOCK4:>x signed int 12
%BLOCK2:>x signed int 1

If a nonzero optimization level is used, variables do not appear in the
dump.

 Copyright IBM Corp. 1991, 2000 3

You can use these C/C++ compiler options to make run-time debugging easier:

AGGRE-
GATE (C)

Specifies that a layout for struct and union type variables appear in the
listing.

ATTRIBUTE
(C++)

For C++ compile, cross reference listing with attribute information. If XREF
is specified, the listing also contains reference, definition and modification
information.

CHECKOUT
(C)

Provides informational messages indicating possible programming errors.

| EVENTS| Produces an events file that contains error information and source file sta-
| tistics.

EXPMAC Macro expansions with the original source.

FLAG Specifies the minimum severity level that is tolerated.

GONUMBER Generates line number tables corresponding to the input source file. This
option is turned on when the TEST option is used. This option is needed to
show statement numbers in dump output.

INFO (C++) Indication of possible programming errors.

INLINE (C) Inline Summary and Detailed Call Structure Reports. (Specify with the
REPORT sub-option).

INLRPT Generates a report on status of functions that were inlined. The OPTIMIZE
option must also be specified.

LIST Listing of the pseudo-assembly listing produced by the compiler.

OFFSET Displays the offset addresses relative to the entry point of each function.

| PHASEID| Causes each compiler module (phase) to issue an informational message
| which identifies the compiler phase module name, product identifier, and
| build level.

PPONLY Completely expanded OS/390 C, or OS/390 C++ source code, by acti-
vating the preprocessor (PP) only. The output shows, for example, all the
"#include" and "#define" directives.

| SERVICE| Places a string in the object module, which is displayed in the traceback if
| the application fails abnormally.

SHOWINC All included text in the listing.

SOURCE Includes source input statements and diagnostic messages in the listing.

SRCMSG
(C++)

Adds the corresponding source code lines to the diagnostic messages
written to stderr.

TERMINAL Directs all error messages from the compiler to the terminal. If not speci-
fied, this is the default.

TEST Generates information for debugging interface. This also generates symbol
tables needed for symbolic variables in the dump.

| XPLINK
| (BACK-
| CHAIN)

| Generates a prolog that saves redundant information in the calling func-
| tion's stack frame.

| XPLINK
| (STOREARGS)
| Generates code to store arguments that are normally passed in registers,
| into the argument area.

XREF For C compile, cross reference listing with reference, definition, and modifi-
cation information.

For C++ compile, cross reference listing with reference, definition, and
modification information. If you specify ATTRIBUTE, the listing also con-
tains attribute information.

4 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

See OS/390 C/C++ User's Guide for a detailed explanation of these options.

IPA Compile Step Sub-Options
You can use the following IPA compile sub-options to prepare your program for
run-time debugging:

ATTRIBUTE | NOATTRIBUTE

Indicates whether the compiler generates information in the IPA object file that will
be used in the IPA Link step if you specify the ATTR or XREF option on that step.

The difference between specifying IPA(ATTR) and specifying ATTR, or XREF, is
that IPA(ATTR) does not cause the compiler to generate a Cross Reference listing
section after IPA Compile step source analysis is complete. It also does not cause
the compiler to generate a Storage Offset or External Symbol Cross Reference
listing section during IPA Compile step code generation.

The default is IPA(NOATTRIBUTE). The abbreviations are IPA(ATTR|NOATTR). If
you specify the ATTR or XREF option, it overrides the IPA(NOATTRIBUTE) option.

GONUMBER | NOGONUMBER

Indicates whether the compiler saves information about source file line numbers in
the IPA object file. The difference between specifying IPA(GONUMBER) and
GONUMBER is that IPA(GONUMBER) does not cause GONUMBER tables to be
built during IPA Compile step code generation. If the compiler does not build
GONUMBER tables, the size of the object module is smaller.

The default is IPA(NOGONUMBER). The abbreviations are
IPA(GONUM|NOGONUM). If you specify the GONUMBER or LIST option, it over-
rides the IPA(NOGONUMBER) option.

LIST | NOLIST

Indicates whether the compiler saves information about source line numbers in the
IPA object file. The difference between specifying IPA(LIST) and LIST is that
IPA(LIST) does not cause a Pseudo-Assembly listing to be generated during IPA
Compile step code generation.

The default is IPA(NOLIST). The abbreviations are IPA(LIS|NOLIS). If you specify
the GONUMBER or LIST option, it overrides the IPA(NOLIST) option.

XREF | NOXREF

Indicates whether the compiler generates information in the IPA object file that will
be used in the IPA Link step if you specify ATTR or XREF on that step.

The difference between specifying IPA(XREF) and specifying ATTR or XREF is that
IPA(XREF) does not cause the compiler to generate a Cross Reference listing
section after IPA Compile step source analysis is complete. It also does not cause
the compiler to generate a Storage Offset or External Symbol Cross Reference
listing section during IPA Compile step code generation.

The default is IPA(NOXREF). The abbreviations are IPA(XR|NOXR). If you specify
the ATTR or XREF option, it overrides the IPA(NOXREF) option.

 Chapter 1. Preparing Your Routine for Debugging 5

IPA Link Step Sub-Options
You can use these IPA Link Step sub-options to prepare your program for run-time
debugging:

DUP | NODUP

Indicates whether the IPA Link step writes a message and a list of duplicate
symbols to the console.

The default is IPA(DUP).

ER | NOER

Indicates whether the IPA Link step writes a message and a list of unresolved
symbols to the console.

The default is IPA(NOER).

MAP | NOMAP

Specifies that the IPA Link step will produce a listing. The listing contains a Prolog
and the following sections:

� Object File Map
� Source File Map
� Compiler Options Map
� Global Symbols Map
� Partition Map for each partition

The default is IPA(NOMAP).

Refer to the Inter-procedural Analysis chapter in the OS/390 C/C++ Programming
Guide for an overview and more details about Inter-procedural Analysis.

COBOL Compiler Options
When using COBOL, set the SYM suboption of the TEST compiler option. The
SYM suboption of TEST causes the compiler to add debugging information into the
object program to resolve user names in the routine and to generate a symbolic
dump of the DATA DIVISION. With this suboption specified, statement numbers will
also be used in the dump output along with offset values.

To simplify debugging, use the NOOPTIMIZE compiler option. Program optimization
can change the location of parameters and instructions in the dump output.

You can use the following COBOL compiler options to prepare your program for
run-time debugging:

LIST Produces a listing of the assembler expansion of your source code and
global tables, literal pools, information about working storage, and size of
routine’s working storage.

MAP Produces lists of items in data division including a data division map, global
tables, literal pools, a nested program structure map, and attributes.

6 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

For more detail on these options and functions, see COBOL for OS/390 & VM Pro-
gramming Guide or COBOL for MVS & VM Programming Guide.

OFFSET Produces a condensed PROCEDURE DIVISION listing containing line
numbers, statement references, and location of the first instruction gener-
ated for each statement.

OUTDD Specifies the destination of DISPLAY statement messages.

SOURCE Produces a listing of your source program with any statements embedded
by PROCESS, COPY, or BASIS statements.

TEST Produces object code that can run with a debugging tool, or adds informa-
tion to the object program to produce formatted dumps. With or without any
suboptions, this option forces the OBJECT option. When specified with any
of the hook-location suboption values except NONE, this option forces the
NOOPTIMIZE option. SYM suboption includes statement numbers in the
Language Environment dump and produces a symbolic dump. For interac-
tive debugging only, use TEST with any of the hook-location suboption
values other than NONE.

VBREF Produces a cross-reference of all verb types used in the source program
and a summary of how many times each verb is used.

XREF Creates a sorted cross-reference listing.

Fortran Compiler Options
You can use these Fortran compiler options to prepare your program for run-time
debugging:

FIPS Specifies whether standard language flagging is to be performed. This is
valuable if you want to write a program conforming to FORTRAN 77.

FLAG Specifies the level of diagnostic messages to be written. I (Information), E
(Error), W (Warning), or S (Severe). You can also use FLAG to suppress
messages that are below a specified level. This is useful if you want to
suppress information messages, for example.

GOSTMT Specifies that statement numbers are included in the run-time messages
and in the Language Environment dump.

ICA Specifies whether intercompilation analysis is to be performed, specifies
the files containing intercompilation analysis information to be used or
updated, and controls output from intercompilation analysis. Specify ICA
when you have a group of programs and subprograms that you want to
process together and you need to know if there are any conflicting external
references, mismatched commons, and so on.

LIST Specifies whether the object module list is to be written. The LIST option
lets you see the pseudo-assembly language code that is similar to what is
actually generated.

MAP Specifies whether a table of source program variable names, named con-
stants, and statement labels and their displacements is to be produced.

OPTIMIZE Specifies the optimizing level to be used during compilation. If you are
debugging your program, it is advisable to use NOOPTIMIZE.

SDUMP Specifies whether dump information is to be generated.

SOURCE Specifies whether a source listing is to be produced.

SRCFLG Controls insertion of error messages in the source listing. SRCFLG allows
you to view error messages after the initial line of each source statement
that caused the error, rather than at the end of the listing.

 Chapter 1. Preparing Your Routine for Debugging 7

For more detail on these options and functions, see VS FORTRAN Version 2 Pro-
gramming Guide for CMS and MVS or VS FORTRAN Version 2 Language and
Library Reference.

SXM Formats SREF or MAP listing output to a 72-character width.

SYM Invokes the production of SYM cards in the object text file. SYM cards
contain location information for variables within a Fortran program.

TERMINAL Specifies whether error messages and compiler diagnostics are to be
written on the SYSTERM data set and whether a summary of messages
for all the compilations is to be written at the end of the listing.

TEST Specifies whether to override any optimization level above OPTIMIZE(0).
This option adds run-time overhead.

TRMFLG Specifies whether to display the initial line of source statements in error
and their associated error messages at the terminal.

XREF Creates a cross-reference listing.

VECTOR Specifies whether to invoke the vectorization process. A vectorization
report provides detailed information about the vectorization process.

PL/I Compiler Options
When using PL/I, specify the TEST compiler option to control the level of testing
capability that are generated as part of the object code. Suboptions of the TEST
option such as SYM, BLOCK, STMT, and PATH control the location of test hooks
and specify whether or not a symbol table is generated. For more information about
TEST, its suboptions, and the placement of test hooks, see PL/I for MVS & VM
Programming Guide.

To simplify debugging and decrease compile time, set optimization to NOOPTIMIZE
or OPTIMIZE(0). Higher optimization levels can change the location where parame-
ters and instructions appear in the dump output.

You can use these compiler options to prepare PL/I routines for debugging:

AGGREGATE Specifies that a layout for arrays and major structures appears in the
listing.

ESD Includes the external symbol dictionary in the listing.

GONUMBER /
GOSTMT

Tells the compiler to produce additional information specifying that line
numbers from the source routine can be included in run-time messages
and in the Language Environment dump.

INTERRUPT Specifies that users can establish an ATTENTION ON-unit that gains
control when an attention interrupt occurs.

LIST Produces a listing of the assembler expansion of source code and global
tables, literal pools, information about working storage, and size of
routine’s working storage.

LMESSAGE Tells the compiler to produce run-time messages in a long form. If the
cause of a run-time malfunction is a programmer’s understanding of lan-
guage semantics, specifying LMESSAGE could better explain warnings or
other information generated by the compiler.

8 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

For more detail on PL/I compiler options, see PL/I for MVS & VM Programming
Guide.

MAP Tells the compiler to produce tables showing how the variables are
mapped in the static internal control section and in the stack frames, thus
enabling static internal and automatic variables to be found in the Lan-
guage Environment dump. If LIST is also specified, the MAP option also
produces tables showing constants, control blocks, and INITIAL variable
values.

OFFSET Specifies that the compiler prints a table of statement or line numbers for
each procedure with their offset addresses relative to the primary entry
point of the procedure.

SOURCE Specifies that the compiler includes a listing of the source routine in the
listing.

STORAGE Includes a table of the main storage requirements for the object module in
the listing.

TERMINAL Specifies what parts of the compiler listing produced during compilation
are directed to the terminal.

TEST Specifies the level of testing capability that is generated as part of the
object code. TEST also controls the location of test hooks and whether or
not the symbol table is generated. Because the TEST option increases
the size of the object code and can affect performance, limit the number
and placement of hooks.

XREF and
ATTRIBUTES

Creates a sorted cross-reference listing with attributes.

VisualAge PL/I Compiler Options
The following VisualAge PL/I compiler options can be specified when preparing
your VisualAge PL/I routines for debugging:

AGGREGATE Specifies that a layout for arrays and major structures appears in the
listing.

GONUMBER /
GOSTMT

Tells the compiler to produce additional information specifying that line
numbers from the source routine can be included in run-time messages
and in the Language Environment dump.

INTERRUPT Specifies that users can establish an ATTENTION ON-unit that gains
control when an attention interrupt occurs.

LIST Produces a listing of the assembler expansion of source code and global
tables, literal pools, information about working storage, and size of
routine’s working storage.

OFFSET Displays the offset addresses relative to the entry point of each function.

SOURCE Specifies that the compiler includes a listing of the source routine in the
listing.

STORAGE Includes a table of the main storage requirements for the object module in
the listing.

TEST Specifies the level of testing capability that is generated as part of the
object code. TEST also controls the location of test hooks and whether or
not the symbol table is generated. Because the TEST option increases
the size of the object code and can affect performance, limit the number
and placement of hooks.

 Chapter 1. Preparing Your Routine for Debugging 9

See VisualAge PL/I for OS/390 Programming Guide for further details on the
VisualAge PL/I compiler options.

XREF and
ATTRIBUTES

Creates a sorted cross-reference listing with attributes.

Using Language Environment Run-Time Options
There are several run-time options that affect debugging in Language Environment.
The TEST run-time option, for example, can be used with a debugging tool to
specify the level of control the debugging tool has when the routine being initialized
is started. The ABPERC, CHECK, DEPTHCONDLMT, ERRCOUNT, HEAPCHK,
INTERRUPT, TERMTHDACT, TRACE, TRAP, and USRHDLR options affect condi-
tion handling. The ABTERMENC option affects how an application ends (that is,
with an abend or with a return code and reason code) when an unhandled condi-
tion of severity 2 or greater occurs.

The following Language Environment run-time options affect debugging:

ABPERC Specifies that the indicated abend code bypasses the condition handler.

ABTERMENC Specifies enclave termination behavior for an enclave ending with an
unhandled condition of severity 2 or greater.

CHECK Determines whether run-time checking is performed.

NODEBUG Controls the COBOL USE FOR DEBUGGING declarative.

DEPTHCONDLMT Specifies the limit for the depth of nested synchronous conditions in
user-written condition handlers. (Asynchronous signals do not affect
DEPTHCONDLMT.)

ERRCOUNT Specifies the number of synchronous conditions of severity 2 or greater
tolerated. (Asynchronous signals do not affect ERRCOUNT.)

HEAPCHK Determines whether additional heap check tests are performed.

INFOMSGFILTER Filters user specified informational messages from the MSGFILE.

Note: Affects only those messages generated by Language Environ-
ment and any routine that calls CEEMSG. Other routines that
write to the message file, such as CEEMOUT, do not have a fil-
tering option.

INTERRUPT Causes Language Environment to recognize attention interrupts.

MSGFILE Specifies the ddname of the Language Environment message file.

MSGQ Specifies the number of instance specific information (ISI) blocks that
are allocated on a per-thread basis for use by an application. Located
within the Language Environment condition token is an ISI token. The
ISI contains information used by the condition manager to identify and
react to a specific occurrence of a condition.

PROFILE Controls the use of an optional profiler tool, which collects performance
data for the running application. When this option is in effect, the profiler
is loaded and the debugger cannot be loaded. If the TEST option is in
effect when PROFILE is specified, the profiler tool will not be loaded.

STORAGE Specifies that Language Environment initializes all heap and stack
storage to a user-specified value.

TERMTHDACT Controls response when an enclave terminates due to an unhandled
condition of severity 2 or greater.

10 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

See OS/390 Language Environment Programming Reference for a more detailed
discussion of these run-time options.

TEST Specifies the conditions under which a debugging tool assumes control.

TRACE Activates Language Environment run-time library tracing and controls the
size of the trace table, the type of trace, and whether the trace table
should be dumped unconditionally upon termination of the application.

TRAP When TRAP is set to ON, Language Environment traps routine interrupts
and abends, and optionally prints trace information or invokes a user-
written condition handling routine. With TRAP set to OFF, the operating
system handles all interrupts and abends.

You should generally set TRAP to ON, or your run-time results can be
unpredictable.

USRHDLR Specifies the behavior of two user-written condition handlers. The first
handler specified will be registered at stack frame 0. The second handler
specified will be registered before any other user-written condition han-
dlers, once the handler is enabled by a condition.

XUFLOW Specifies whether or not an exponent underflow causes a routine inter-
rupt.

Determining Run-Time Options in Effect
The run-time options in effect at the time the routine is run can affect routine
behavior. Use RPTOPTS(ON) to generate an options report in the Language Envi-
ronment message file when your routine terminates. The options report lists run-
time options, and indicates where they were set.

 Figure 1 on page 12 shows a sample options report.

 Chapter 1. Preparing Your Routine for Debugging 11

| Options Report for Enclave main #5/24/## 4:16:#5 PM
| Language Environment V#2 R1#.##

LAST WHERE SET OPTION
Installation default ABPERC(NONE)
Installation default ABTERMENC(ABEND)
Installation default NOAIXBLD
Programmer default ALL31(ON)
Assembler user exit ANYHEAP(32768,16384,ANYWHERE,FREE)
Installation default NOAUTOTASK
Assembler user exit BELOWHEAP(8192,8192,FREE)
Installation default CBLOPTS(ON)
Installation default CBLPSHPOP(ON)
Installation default CBLQDA(OFF)
Installation default CHECK(ON)
Installation default COUNTRY(US)
Installation default NODEBUG
Installation default DEPTHCONDLMT(1#)
Installation default ENVAR("")
Installation default ERRCOUNT(#)
Installation default ERRUNIT(6)
Installation default FILEHIST
Default setting NOFLOW
Assembler user exit HEAP(49152,16384,ANYWHERE,KEEP,8192,4#96)
Installation default HEAPCHK(OFF,1,#)
Installation default HEAPPOOLS(OFF,8,1#,32,1#,128,1#,256,1#,1#24,1#,2#48,1#)
Installation default INFOMSGFILTER(OFF,,,,)
Installation default INQPCOPN
Installation default INTERRUPT(OFF)
Installation default LIBRARY(SYSCEE)
Programmer default LIBSTACK(4#96,4#96,FREE)
Installation default MSGFILE(SYSOUT,FBA,121,#,NOENQ)
Installation default MSGQ(15)
Installation default NATLANG(ENU)
Ignored NONIPTSTACK(4#96,4#96,ANYWHERE,KEEP)
Installation default OCSTATUS
Installation default NOPC
Installation default PLITASKCOUNT(2#)
Programmer default POSIX(ON)
Installation default PROFILE(OFF,"")
Installation default PRTUNIT(6)
Installation default PUNUNIT(7)
Installation default RDRUNIT(5)
Installation default RECPAD(OFF)
Invocation command RPTOPTS(ON)
Invocation command RPTSTG(ON)
Installation default NORTEREUS
Installation default RTLS(OFF)
Installation default NOSIMVRD
Programmer default STACK(4#96,4#96,ANYWHERE,FREE,524288,131#72)
Programmer default STORAGE(NONE,NONE,NONE,1#24)
Installation default TERMTHDACT(TRACE)
Installation default NOTEST(ALL,"C","PROMPT","INSPPREF")
Installation default THREADHEAP(4#96,4#96,ANYWHERE,KEEP)
Override THREADSTACK(ON,4#96,4#96,ANYWHERE,KEEP,131#72,131#72)
Installation default TRACE(OFF,4#96,DUMP,LE=#)
Installation default TRAP(ON,SPIE)
Installation default UPSI(########)
Installation default NOUSRHDLR(,)
Installation default VCTRSAVE(OFF)
Installation default VERSION()
Installation default XPLINK(OFF)
Installation default XUFLOW(AUTO)

Figure 1. Options Report Produced by Language Environment Run-Time Option
RPTOPTS(ON)

12 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Controlling Storage Allocation
The following run-time options control storage allocation:

 � STACK
| � THREADSTACK

 � LIBSTACK
 � THREADHEAP
 � HEAP
 � ANYHEAP
 � BELOWHEAP
 � STORAGE
 � HEAPPOOLS

OS/390 Language Environment Programming Guide provides useful tips to assist
with the tuning process. Appropriate tuning is necessary to avoid performance prob-
lems.

To generate a report of the storage a routine (or more specifically, an enclave)
used during its run, specify the RPTSTG(ON) run-time option. The storage report,
generated during enclave termination provides statistics that can help you under-
stand how space is being consumed as the enclave runs. If storage management
tuning is desired, the statistics can help you set the corresponding storage-related
run-time options for future runs. The output is written to the Language Environment
message file.

Neither the storage report nor the corresponding run-time options include the
storage that Language Environment acquires during early initialization, before run-
time options processing, and before the start of space management monitoring.

| Figure 2 on page 14 and Figure 3 on page 16 show sample storage reports. The
| sections that follow these reports describe the contents of the reports.

 Chapter 1. Preparing Your Routine for Debugging 13

| Storage Report for Enclave main #5/24/## 4:16:#5 PM
| Language Environment V#2 R1#.##

| STACK statistics:
| Initial size: 4#96
| Increment size: 4#96
| Maximum used by all concurrent threads: 6312
| Largest used by any thread: 6312
| Number of segments allocated: 2
| Number of segments freed: #
| THREADSTACK statistics:
| Initial size: 4#96
| Increment size: 4#96
| Maximum used by all concurrent threads: 352#
| Largest used by any thread: 352#
| Number of segments allocated: 6
| Number of segments freed: #
| LIBSTACK statistics:
| Initial size: 4#96
| Increment size: 4#96
| Maximum used by all concurrent threads: 816
| Largest used by any thread: 816
| Number of segments allocated: 1
| Number of segments freed: #
| THREADHEAP statistics:
| Initial size: 4#96
| Increment size: 4#96
| Maximum used by all concurrent threads: #
| Largest used by any thread: #
| Successful Get Heap requests: #
| Successful Free Heap requests: #
| Number of segments allocated: #
| Number of segments freed: #
| HEAP statistics:
| Initial size: 49152
| Increment size: 16384
| Total heap storage used (sugg. initial size): 28776
| Successful Get Heap requests: 242
| Successful Free Heap requests: 213
| Number of segments allocated: 1
| Number of segments freed: #
| HEAP24 statistics:
| Initial size: 8192
| Increment size: 4#96
| Total heap storage used (sugg. initial size): #
| Successful Get Heap requests: #
| Successful Free Heap requests: #
| Number of segments allocated: #
| Number of segments freed: #
| ANYHEAP statistics:
| Initial size: 32768
| Increment size: 16384
| Total heap storage used (sugg. initial size): 99576
| Successful Get Heap requests: 39
| Successful Free Heap requests: 21
| Number of segments allocated: 6
| Number of segments freed: 5

| Figure 2 (Part 1 of 2). Storage Report Produced by Language Environment Run-Time
| Options RPTSTG(ON) and XPLINK(OFF)

14 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

| BELOWHEAP statistics:
| Initial size: 8192
| Increment size: 8192
| Total heap storage used (sugg. initial size): 34512
| Successful Get Heap requests: 6
| Successful Free Heap requests: 6
| Number of segments allocated: 6
| Number of segments freed: 5
| Additional Heap statistics:
| Successful Create Heap requests: 1
| Successful Discard Heap requests: 1
| Total heap storage used: 4912
| Successful Get Heap requests: 3
| Successful Free Heap requests: 3
| Number of segments allocated: 2
| Number of segments freed: 2
| Largest number of threads concurrently active: 2
| End of Storage Report

| Figure 2 (Part 2 of 2). Storage Report Produced by Language Environment Run-Time
| Options RPTSTG(ON) and XPLINK(OFF)

 Chapter 1. Preparing Your Routine for Debugging 15

Storage Report for Enclave main #5/24/## 4:16:17 PM
Language Environment V#2 R1#.##

 STACK statistics:
 Initial size: 4#96
 Increment size: 4#96

Maximum used by all concurrent threads: 3#32
Largest used by any thread: 3#32
Number of segments allocated: 1
Number of segments freed: #

 THREADSTACK statistics:
 Initial size: 4#96
 Increment size: 4#96

Maximum used by all concurrent threads: 6688
Largest used by any thread: 2464
Number of segments allocated: 6
Number of segments freed: #

XPLINK STACK statistics:
 Initial size: 524288
 Increment size: 131#72

Largest used by any thread: 4736
Number of segments allocated: 1
Number of segments freed: #

XPLINK THREADSTACK statistics:
 Initial size: 131#72
 Increment size: 131#72

Largest used by any thread: 2976
Number of segments allocated: 6
Number of segments freed: #

 LIBSTACK statistics:
 Initial size: 4#96
 Increment size: 4#96

Maximum used by all concurrent threads: 816
Largest used by any thread: 816
Number of segments allocated: 1
Number of segments freed: #

 THREADHEAP statistics:
 Initial size: 4#96
 Increment size: 4#96

Maximum used by all concurrent threads: #
Largest used by any thread: #
Successful Get Heap requests: #
Successful Free Heap requests: #
Number of segments allocated: #
Number of segments freed: #

 HEAP statistics:
 Initial size: 32768
 Increment size: 32768

Total heap storage used (sugg. initial size): 5#3#4
Successful Get Heap requests: 31
Successful Free Heap requests: 13
Number of segments allocated: 2
Number of segments freed: #

 HEAP24 statistics:
 Initial size: 8192
 Increment size: 4#96

Total heap storage used (sugg. initial size): #
Successful Get Heap requests: #
Successful Free Heap requests: #
Number of segments allocated: #
Number of segments freed: #

Figure 3 (Part 1 of 4). Storage Report Produced by Language Environment Run-Time
Options RPTSTG(ON), HEAPPOOLS(ON) and XPLINK(ON)

16 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 ANYHEAP statistics:
 Initial size: 16384
 Increment size: 8192

Total heap storage used (sugg. initial size): 1#6776
Successful Get Heap requests: 41
Successful Free Heap requests: 2#
Number of segments allocated: 8
Number of segments freed: 7

 BELOWHEAP statistics:
 Initial size: 8192
 Increment size: 4#96

Total heap storage used (sugg. initial size): 34512
Successful Get Heap requests: 6
Successful Free Heap requests: 6
Number of segments allocated: 6
Number of segments freed: 5

Additional Heap statistics:
Successful Create Heap requests: 1
Successful Discard Heap requests: 1
Total heap storage used: 4912
Successful Get Heap requests: 3
Successful Free Heap requests: 3
Number of segments allocated: 2
Number of segments freed: 2

 HeapPools Statistics:
Pool 1 size: 8
Successful Get Heap requests: 1- 8 8

Pool 2 size: 32
Successful Get Heap requests: 9- 16 3
Successful Get Heap requests: 17- 24 5
Successful Get Heap requests: 25- 32 3

Pool 3 size: 128
Successful Get Heap requests: 33- 4# 3
Successful Get Heap requests: 41- 48 3
Successful Get Heap requests: 49- 56 3
Successful Get Heap requests: 57- 64 4
Successful Get Heap requests: 65- 72 3
Successful Get Heap requests: 73- 8# 4
Successful Get Heap requests: 81- 88 5
Successful Get Heap requests: 89- 96 4
Successful Get Heap requests: 97- 1#4 4
Successful Get Heap requests: 113- 12# 5
Successful Get Heap requests: 121- 128 4

Pool 4 size: 256
Successful Get Heap requests: 129- 136 6
Successful Get Heap requests: 137- 144 3
Successful Get Heap requests: 145- 152 4
Successful Get Heap requests: 153- 16# 2
Successful Get Heap requests: 161- 168 8
Successful Get Heap requests: 169- 176 5
Successful Get Heap requests: 177- 184 4
Successful Get Heap requests: 185- 192 6
Successful Get Heap requests: 193- 2## 3
Successful Get Heap requests: 2#1- 2#8 4
Successful Get Heap requests: 2#9- 216 2
Successful Get Heap requests: 217- 224 3
Successful Get Heap requests: 225- 232 4
Successful Get Heap requests: 233- 24# 2
Successful Get Heap requests: 241- 248 2
Successful Get Heap requests: 249- 256 1

Figure 3 (Part 2 of 4). Storage Report Produced by Language Environment Run-Time
Options RPTSTG(ON), HEAPPOOLS(ON) and XPLINK(ON)

 Chapter 1. Preparing Your Routine for Debugging 17

Pool 5 size: 1#24
Successful Get Heap requests: 257- 264 5
Successful Get Heap requests: 265- 272 1
Successful Get Heap requests: 273- 28# 2
Successful Get Heap requests: 281- 288 2
Successful Get Heap requests: 289- 296 2
Successful Get Heap requests: 3#5- 312 6
Successful Get Heap requests: 313- 32# 5
Successful Get Heap requests: 321- 328 4
Successful Get Heap requests: 329- 336 2
Successful Get Heap requests: 337- 344 3
Successful Get Heap requests: 353- 36# 2
Successful Get Heap requests: 361- 368 4
Successful Get Heap requests: 369- 376 5
Successful Get Heap requests: 377- 384 2
Successful Get Heap requests: 385- 392 2
Successful Get Heap requests: 393- 4## 2
Successful Get Heap requests: 4#1- 4#8 5
Successful Get Heap requests: 4#9- 416 3
Successful Get Heap requests: 417- 424 2
Successful Get Heap requests: 425- 432 1
Successful Get Heap requests: 433- 44# 2
Successful Get Heap requests: 441- 448 4
Successful Get Heap requests: 457- 464 1
Successful Get Heap requests: 465- 472 1
Successful Get Heap requests: 473- 48# 2
Successful Get Heap requests: 481- 488 1
Successful Get Heap requests: 489- 496 2
Successful Get Heap requests: 497- 5#4 5
Successful Get Heap requests: 5#5- 512 2
Successful Get Heap requests: 545- 552 1
Successful Get Heap requests: 577- 584 1
Successful Get Heap requests: 641- 648 2
Successful Get Heap requests: 825- 832 1
Successful Get Heap requests: 913- 92# 1

Pool 6 size: 2#48
Successful Get Heap requests: 1169-1176 1
Successful Get Heap requests: 1185-1192 1
Successful Get Heap requests: 1217-1224 2
Successful Get Heap requests: 1257-1264 1
Successful Get Heap requests: 1377-1384 1
Successful Get Heap requests: 14#1-14#8 1
Successful Get Heap requests: 1521-1528 1
Successful Get Heap requests: 1537-1544 1
Successful Get Heap requests: 1545-1552 1
Successful Get Heap requests: 1569-1576 1
Successful Get Heap requests: 1665-1672 1
Successful Get Heap requests: 1761-1768 1
Successful Get Heap requests: 1785-1792 1
Successful Get Heap requests: 1929-1936 1
Successful Get Heap requests: 1937-1944 1
Successful Get Heap requests: 1953-196# 1

Requests greater than the largest cell size: 19

Figure 3 (Part 3 of 4). Storage Report Produced by Language Environment Run-Time
Options RPTSTG(ON), HEAPPOOLS(ON) and XPLINK(ON)

18 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 HeapPools Summary:
 Cell Extent Cells Per Extents Maximum Cells In

Size Percent Extent Allocated Cells Used Use
 --

8 1# 2#4 1 3 #
32 1# 81 1 3 1
128 1# 24 1 7 4

 256 1# 12 1 1# 4
1#24 1# 3 5 13 12
2#48 1# 1 3 3 2

 --
Suggested Percentages for current Cell Sizes:

 HEAPP(ON,8,1,32,1,128,3,256,9,1#24,41,2#48,19)
Suggested Cell Sizes:

 HEAPP(ON,1#4,,2#8,,376,,512,,1264,,196#,)
Largest number of threads concurrently active: 4

End of Storage Report

Figure 3 (Part 4 of 4). Storage Report Produced by Language Environment Run-Time
Options RPTSTG(ON), HEAPPOOLS(ON) and XPLINK(ON)

The statistics for initial and incremental allocations of storage types that have a cor-
responding run-time option differ from the run-time option settings when their values
have been rounded up by the implementation, or when allocations larger than the
amounts specified were required during execution. All of the following are rounded
up to an integral number of double-words:

� Initial STACK allocations
| � Initial allocations of THREADSTACK

� Initial allocations of all types of heap
� Incremental allocations of all types of stack and heap

The run-time options should be tuned appropriately to avoid performance problems.
Refer to OS/390 Language Environment Programming Guide for tips on tuning.

Stack Storage Statistics
Language Environment stack storage is managed at the thread level—each thread
has its own stack-type resources.

| STACK, THREADSTACK, and LIBSTACK Statistics for the
| Upward-Growing Stack

� Initial size — the actual size of the initial segment assigned to each thread. (If a
pthread-attributes-table is provided on the invocation of pthread-create, then the
stack size specified in the pthread-attributes-table will take precedence over the
STACK run-time option.)

� Increment size — the size of each incremental segment acquired, as deter-
mined by the increment portion of the corresponding run-time option.

� Maximum used by all concurrent threads — the maximum amount allocated in
total at any one time by all concurrently executing threads.

� Largest used by any thread — the largest amount allocated ever by any single
thread.

� Number of segments allocated — the number of incremental segments allo-
cated by all threads.

� Number of segments freed — the number of incremental segments freed by all
threads.

 Chapter 1. Preparing Your Routine for Debugging 19

The number of incremental segments freed could be less than the number allo-
cated if any of the segments were not freed individually during the life of the thread,
but rather were freed implicitly in the course of thread termination.

| XPLINK Statistics — XPLINK STACK and XPLINK
| THREADSTACK Statistics for the Downward-Growing Stack
| These sections of the storage report only apply if XPLINK is in effect.

| � Initial size — the actual size of the initial segment assigned to each thread.

| � Increment size — the size of each incremental segment acquired, as deter-
| mined by the increment portion of the corresponding run-time option.

| � Maximum used by all concurrent threads — the maximum amount allocated in
| total at any one time by all concurrently executing threads.

| � Largest used by any thread — the largest amount allocated ever by any single
| thread.

| � Number of segments allocated — the number of incremental segments allo-
| cated by all threads.

| � Number of segments freed — the number of incremental segments freed by all
| threads.

| The number of incremental segments freed could be less than the number allo-
| cated if any of the segments were not freed individually during the life of the thread,
| but rather were freed implicitly in the course of thread termination.

Determining the Applicable Threads
If the application is not a multithreading or PL/I multitasking application, then the
STACK statistics are for the one and only thread that executed, and the

| THREADSTACK statistics are all zero.

If the application is a multithreading or PL/I multitasking application, and
| THREADSTACK(ON) was specified, then the STACK statistics are for the initial
| thread (the IPT), and the THREADSTACK statistics are for the other threads.
| However, if THREADSTACK(OFF) was specified, then the STACK statistics are for

all of the threads, initial and other.

Allocating Stack Storage
Another type of stack, called the reserve stack, is allocated for each thread and
used to handle out-of-storage conditions. Its size is controlled by the 4th subparam-
eter of the STORAGE run-time option, but its usage is neither tracked nor reported
in the storage report.

In a multithreaded environment, including PL/I multitasking applications, the initial
allocations for all types of stack are made from library heap storage. Library stack
and reserve stack are always allocated from BELOWHEAP. User stack is allocated
from BELOWHEAP if STACK(,,BELOW) is specified or if ALL31(OFF) is specified;
otherwise, it is allocated from ANYHEAP.

Language Environment acquires some initial storage, which is neither stack nor
heap, at thread creation time; this storage is allocated from BELOWHEAP if
ALL31(OFF) is in effect, or from ANYHEAP if ALL31(ON) is in effect.

20 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Heap Storage Statistics
Language Environment heap storage, other than what is explicitly defined using
THREADHEAP, is managed at the enclave level—each enclave has its own heap-
type resources, which are shared by the threads that execute within the enclave.
Heap storage defined using THREADHEAP is controlled at the thread level.

HEAP, HEAP24, THREADHEAP, ANYHEAP, and BELOWHEAP
Statistics
� Initial size—the default initial allocation, as specified by the corresponding run-

time option. Please note that for HEAP24, the initial size is the value of the
initsz24 of the HEAP option.

� Increment size—the minimum incremental allocation, as specified by the corre-
sponding run-time option. Please note that for HEAP24, the increment size is
the value of the incrsz24 of the HEAP option.

 THREADHEAP Statistics
� Maximum used by all concurrent threads—the maximum total amount used by

all concurrent threads at any one time.

� Largest used by any thread—the largest amount used by any single thread.

HEAP, HEAP24, ANYHEAP, BELOWHEAP, and Additional Heap
Statistics
� Total heap storage used—the largest total amount used by the enclave at any

one time.

HEAP, HEAP24, THREADHEAP, ANYHEAP, BELOWHEAP, and
Additional Heap Statistics
� Successful Get Heap requests—the number of Get Heap requests.

� Successful Free Heap requests—the number of Free Heap requests.

� Number of segments allocated—the number of incremental segments allocated.

� Number of segments freed—the number of incremental segments individually
freed.

The number of Free Heap requests could be less than the number of Get Heap
requests if the pieces of heap storage acquired by individual Get Heap requests
were not freed individually, but rather were freed implicitly in the course of enclave
termination.

The number of incremental segments individually freed could be less than the
number allocated if the segments were not freed individually, but rather were freed
implicitly in the course of enclave termination.

These statistics, in all cases, specify totals for the whole enclave. For
THREADHEAP, they indicate the total across all threads in the enclave.

 Chapter 1. Preparing Your Routine for Debugging 21

Additional Heap Statistics
Besides the fixed types of heap, additional types of heap can be created, each with
its own heap ID. You can create and discard these additional types of heap by
using the CEECRHP

� Successful Create Heap requests—the number of successful Create Heap
requests.

� Successful Discard Heap requests—the number of successful Discard Heap
requests.

The number of Discard Heap requests could be less than the number of Create
Heap requests if the special heaps allocated by individual Create Heap requests
were not freed individually, but rather were freed implicitly in the course of enclave
termination.

HeapPools Storage Statistics
The HEAPPOOLS run-time option (for C/C++ applications only) controls usage of
the heap pools storage algorithm at the enclave level. The heap pools algorithm
allows for the definition of one to six heap pools, each consisting of a number of
storage cells of a specified length. See “HeapPools Storage Statistics” on page 183
for further details regarding HeapPools storage statistics in the storage report.

Modifying Condition Handling Behavior
Setting the condition handling behavior of your routine affects the response that
occurs when the routine encounters an error.

You can modify condition handling behavior in the following ways:

 � Callable services
 � Run-time options
� User-written condition handlers
� POSIX functions (used to specifically set signal actions and signal masks)

Language Environment Callable Services
You can use these callable services to modify condition handling:

CEE3ABD Terminates an enclave using an abend.

CEEMRCE Moves the resume cursor to an explicit location where resumption is to
occur after a condition has been handled.

CEEMRCR Moves the resume cursor relative to the current position of the handle
cursor.

CEE3CIB Returns a pointer to a condition information block (CIB) associated with a
given condition token. The CIB contains detailed information about the con-
dition.

CEE3GRO Returns the offset of the location within the most current Language
Environment-conforming routine where a condition occurred.

22 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Fortran programs cannot directly call Language Environment callable services. See
OS/390 Language Environment Programming Reference for more information about
callable services. See also Language Environment Fortran Run-Time Migration
Guide for more information about how to invoke callable services from Fortran.

CEE3SPM Specifies the settings of the routine mask. The routine mask controls:

 � Fixed overflow
 � Decimal overflow
 � Exponent underflow
 � Significance

You can use CEE3SPM to modify Language Environment hardware condi-
tions. Because such modifications can affect the behavior of your routine,
however, you should be careful when doing so.

CEE3SRP Sets a resume point within user application code to resume from a Lan-
guage Environment user condition handler.

Language Environment Run-Time Options
These Language Environment run-time options can affect your routine's condition
handling behavior:

ABPERC Specifies a system- or user-specified abend code that percolates
without further action while the Language Environment condition
handler is enabled. Normal condition handling activities are performed
for everything except the specified abend code. System abends are
specified as Shhh, where hhh is a hexadecimal system abend code.

User abends are specified as Udddd, where dddd is a decimal user
abend code. Any other 4-character EBCDIC string, such as NONE,
that is not of the form Shhh can also be specified as a user-specified
abend code. You can specify only one abend code with this option.
This option assumes the use of TRAP(ON). ABPERC is not supported
in CICS.

Language Environment ignores ABPERC(0Cx). No abend is
percolated and Language Environment condition handling semantics
are in effect.

CHECK Specifies that checking errors within an application are detected. The
Language Environment-conforming languages can define error
checking differently.

DEPTHCONDLMT Limits the extent to which synchronous conditions can be nested in a
user-written condition handler. (Asynchronous signals do not affect
DEPTHCONDLMT.) For example, if you specify 5, the initial condition
and four nested conditions are processed. If the limit is exceeded, the
application terminates with abend code 4091 and reason code 21
(X'15').

ERRCOUNT Specifies the number of synchronous conditions of severity 2, 3, and 4
that are tolerated before the enclave terminates abnormally. (Asyn-
chronous signals do not affect ERRCOUNT.) If you specify 0 an unlim-
ited number of conditions is tolerated.

INTERRUPT Causes attentions recognized by the host operating system to be
passed to and recognized by Language Environment after the environ-
ment has been initialized.

 Chapter 1. Preparing Your Routine for Debugging 23

TERMTHDACT Sets the level of information that is produced when a condition of
severity 2 or greater remains unhandled within the enclave. There are
five possible parameter settings for different levels of information:

� QUIET for no information
� MSG for message only
� TRACE for message and a traceback
� DUMP for message, traceback, and Language Environment dump
� UAONLY for message and a system dump of the user address

space
� UATRACE for message, Language Environment dump with

traceback information only, and a system dump of the user
address space

� UADUMP for message, traceback, Language Environment dump,
and system dump

� UAIMM for a system dump of the user address space of the ori-
ginal abend or program interrupt prior to the Language Environ-
ment condition manager processing the condition.

TRAP(ON) Fully enables the Language Environment condition handler. This
causes the Language Environment condition handler to intercept error
conditions and routine interrupts.

When TRAP(ON, NOSPIE) is specified, Language Environment
handles all program interrupts and abends through an ESTAE. Use
this feature when you do not want Language Environment to issue an
ESPIE macro.

During normal operation, you should use TRAP(ON) when running
your applications.

TRAP(OFF) Disables the Language Environment condition handler from handling
abends and program checks/interrupts. ESPIE is not issued with
TRAP(OFF), it is still possible to invoke the condition handler through
the CEESGL callable service and pass conditions to registered user-
written condition handlers.

Specify TRAP(OFF) when you do not want Language Environment to
issue an ESTAE or an ESPIE.

When TRAP(OFF), TRAP(OFF,SPIE), or TRAP(OFF,NOSPIE) is spec-
ified and either a program interrupt or abend occurs, the user exit for
termination is ignored.

TRAP(OFF) can cause several unexpected side effects. See the
TRAP run-time option in OS/390 Language Environment Programming
Reference for further information.

USRHDLR Specifies the behavior of two user-written condition handlers. The first
handler specified will be registered at stack frame 0. The second
handler specified will be registered before any other user-written con-
dition handlers, once the handler is enabled by a condition.

When you specify USRHDLR(lastname,supername), lastname gets
control at stack frame 0. Supername will get get control first, before
any user-written condition handlers but after supername has gone
through the enablement phase, when a condition occurs.

XUFLOW Specifies whether an exponent underflow causes a routine interrupt.

24 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Customizing Condition Handlers
User-written condition handlers permit you to customize condition handling for
certain conditions. You can register a user-written condition handler for the current
stack frame by using the CEEHDLR callable service. You can use the Language
Environment USRHDLR run-time option to register a user-written condition handler
for stack frame 0. You can also use USRHDLR to register a user-written condition
handler before any other user condition handlers.

When the Language Environment condition manager encounters the condition, it
requests that the condition handler associated with the current stack frame handle
the condition. If the condition is not handled, the Language Environment condition
manager percolates the condition to the next (earlier) stack frame, and so forth to
earlier stack frames until the condition has been handled. Conditions that remain
unhandled after the first (earliest) stack frame has been reached are presented to
the Language Environment condition handler. One of the following Language Envi-
ronment default actions is then taken, depending on the severity of the condition:

 � Resume
 � Percolate
 � Promote
� Fix-up and resume

See OS/390 Language Environment Programming Guide for more information
about user-written condition handlers and the Language Environment condition
manager.

Invoking the Assembler User Exit
For debugging purposes, the CEEBXITA assembler user exit can be invoked
during:

 � Enclave initialization
 � Enclave termination
 � Process termination

The functions of the CEEBXITA user exit depend on when the user exit is invoked
and whether it is application-specific or installation-wide. Application-specific user
exits must be linked with the application load module and run only when that appli-
cation runs. Installation-wide user exits must be linked with the Language Environ-
ment initialization/termination library routines and run with all Language
Environment library routines. Because an application-specific user exit has priority
over any installation-wide user exit, you can customize a user exit for a particular
application without affecting the user exit for any other applications.

At enclave initialization, the CEEBXITA user exit runs prior to the enclave establish-
ment. Thus you can modify the environment in which your application runs in the
following ways:

� Specify run-time options
� Allocate data sets/files in the user exit
� List abend codes to be passed to the operating system
� Check the values of routine arguments

At enclave termination, the CEEBXITA user exit runs prior to the termination
activity. Thus, you can request an abend and perform specified actions based on

 Chapter 1. Preparing Your Routine for Debugging 25

received return and reason codes. (This does not apply when Language Environ-
ment terminates with an abend.)

At process termination, the CEEBXITA user exit runs after the enclave termination
activity completes. Thus you can request an abend and deallocate files.

The assembler user exit must have an entry point of CEEBXITA, must be reentrant,
and must be capable of running in AMODE(ANY) and RMODE(ANY).

You can use the assembler user exit to establish enclave termination behavior for
an enclave ending with an unhandled condition of severity 2 or greater in the fol-
lowing ways:

� If you do not request an abend in the assembler user exit for the enclave termi-
nation call, Language Environment honors the setting of the ABTERMENC
option to determine how to end the enclave.

� If you request an abend in the assembler user exit for the enclave termination
call, Language Environment issues an abend to end the enclave.

See OS/390 Language Environment Programming Guide for more information on
the assembler user exit.

Establishing Enclave Termination Behavior for Unhandled Conditions
To establish enclave termination behavior when an unhandled condition of severity
2 or greater occurs, use one of the following methods:

� The assembler user exit (see “Invoking the Assembler User Exit” on page 25
and OS/390 Language Environment Programming Guide)

� POSIX signal default action (see OS/390 Language Environment Programming
Guide)

� The ABTERMENC run-time option (discussed below)

The ABTERMENC run-time option sets the enclave termination behavior for an
enclave ending with an unhandled condition of severity 2 or greater.

If you specify the IBM-supplied default suboption ABEND, Language Environment
issues an abend to end the enclave regardless of the setting of the
CEEAUE_ABND flag. Additionally, the assembler user exit can alter the abend
code, abend reason code, abend dump attribute, and on OS/390, the abend
task/step attribute. See OS/390 Language Environment Programming Reference for
more information on using ABTERMENC and OS/390 Language Environment Pro-
gramming Guide for more information on the assembler user exit.

If you specify the RETCODE suboption, Language Environment uses the
CEEAUE_ABND flag value set by the assembler user exit (which is called for
enclave termination) to determine whether or not to issue an abend to end the
enclave when an unhandled condition of severity 2 or greater occurs.

26 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Using Messages in Your Routine
You can create messages and use them in your routine to indicate the status and
progress of the routine during run time, and to display variable values. The
process of creating messages and using them requires that you create a message
source file, and convert the source file into loadable code for use in your routine.

You can use the Language Environment callable service CEEMOUT to direct user-
created message output to the Language Environment message file. To direct the
message output to another destination, use the Language Environment MSGFILE
run-time option to specify the ddname of the file.

When multiple Language Environment environments are running in the same
address space and the same MSGFILE ddname is specified, writing contention can
occur. To avoid contention, use the MSGFILE suboption ENQ. ENQ tells Language
Environment to perform serialization around writes to the MSGFILE ddname speci-
fied which eliminates writing contention. Writing contention can also be eliminated
by specifying unique MSGFILE ddnames.

Each Language Environment-conforming language also provides ways to display
both user-created and run-time messages. (See “Interpreting Run-Time Messages”
on page 33 for an explanation of Language Environment run-time messages.)

The following sections discuss how to create messages in each of the HLLs. For a
more detailed explanation of how to create messages and use them in C, C++,
COBOL, Fortran, or PL/I routines, see OS/390 Language Environment Program-
ming Guide.

 C/C++
For C/C++ routines, output from the printf function is directed to stdout, which is
associated with SYSPRINT. All C/C++ run-time messages and perror() messages are
directed to stderr. stderr corresponds to the ddname associated with the Lan-
guage Environment MSGFILE run-time option. The destination of the printf func-
tion output can be changed by using the redirection 1>&2 at routine invocation to
redirect stdout to the stderr destination. Both streams can be controlled by the
MSGFILE run-time option.

 COBOL
For COBOL programs, you can use the DISPLAY statement to display messages.
Output from the DISPLAY statement is directed to SYSOUT. SYSOUT is the
IBM-supplied default for the Language Environment message file. The OUTDD
compiler option can be used to change the destination of the DISPLAY messages.

 Fortran
For Fortran programs, run-time messages, output written to the print unit, and other
output (such as output from the SDUMP callable service) are directed to the file
specified by the MSGFILE run-time option. If the print unit is different than the error
message unit (PRTUNIT and ERRUNIT run-time options have different values),
however, output from the PRINT statement won't be directed to the Language Envi-
ronment message file.

 Chapter 1. Preparing Your Routine for Debugging 27

 PL/I
Under PL/I, run-time messages are directed to the file specified in the Language
Environment MSGFILE run-time option, instead of the PL/I SYSPRINT STREAM
PRINT file. User-specified output is still directed to the PL/I SYSPRINT STREAM
PRINT file. To direct this output to the Language Environment MSGFILE file,
specify the run-time option MSGFILE(SYSPRINT).

Using Condition Information
If a condition that might require attention occurs while an application is running,
Language Environment builds a condition token. The condition token contains 12
bytes (96 bits) of information about the condition that Language Environment or
your routines can use to respond appropriately. Each condition is associated with a
single Language Environment run-time message.

You can use this condition information in two primary ways:

� To specify the feedback code parameter when calling Language Environment
services (see “Using the Feedback Code Parameter”).

� To code a symbolic feedback code in a user-written condition handler (see
“Using the Symbolic Feedback Code” on page 30).

Using the Feedback Code Parameter
The feedback code is an optional parameter of the Language Environment callable
services. (For COBOL/370 programs, you must provide the fc parameter in each
call to a Language Environment callable service. For C/C++, COBOL for OS/390 &
VM, COBOL for MVS & VM, and PL/I routines, this parameter is optional. See
OS/390 Language Environment Programming Guide for more information about fc
and condition tokens.)

When you provide the feedback code (fc) parameter, the callable service in which
the condition occurs sets the feedback code to a specific value called a condition
token.

The condition token does not apply to asynchronous signals. For a discussion of
the distinctions between synchronous signals and asynchronous signals with
POSIX(ON), see OS/390 Language Environment Programming Guide.

When you do not provide the fc parameter, any nonzero condition is signaled and
processed by Language Environment condition handling routines. If you have regis-
tered a user-written condition handler, Language Environment passes control to the
handler, which determines the next action to take. If the condition remains unhan-
dled, Language Environment writes a message to the Language Environment
message file. The message is the translation of the condition token into English (or
another supported national language).

Language Environment provides callable services that can be used to convert con-
dition tokens to routine variables, messages, or signaled conditions. The following
table lists these callable services and their functions.

28 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

There are two types of condition tokens. Case 1 condition tokens contain condition
information, including the Language Environment message number. All Language
Environment callable services and most application routines use case 1 condition
tokens. Case 2 condition tokens contain condition information and a user-specified
class and cause code. Application routines, user-written condition handlers, assem-
bler user exits, and some operating systems can use case 2 condition tokens.

CEEMSG Transforms the condition token into a message and writes the message to the
message file.

CEEMGET Transforms the condition token into a message and stores the message in a
buffer.

CEEDCOD Decodes the condition token; that is, separates it into distinct user-supplied
variables. Also, if a language does not support structures, CEEDCOD pro-
vides direct access to the token.

CEESGL Signals the condition. This passes control to any registered user-written condi-
tion handlers. If a user-written condition handler does not exist, or the condi-
tion is not handled, Language Environment by default writes the
corresponding message to the message file and terminates the routine for
severity 2 or higher. For severity 0 and 1, Language Environment continues
without writing a message. COBOL, however, issues severity 1 messages
before continuing. CEESGL can signal a POSIX condition. For details, see
OS/390 Language Environment Programming Guide.

A symbolic feedback code represents the first 8 bytes of a condition
token. It contains the Condition_ID, Case Number, Severity Number,
Control Code, and Facility_ID, whose bit offsets are indicated.

16 - 31
Cause
Code

0 - 15
Class
Code

For Case 2 condition tokens,
Condition_ID is:

16 - 31
Message
Number

0 - 15
Severity
Number

For Case 1 condition tokens,
Condition_ID is:

64 - 95

ISI

40 - 63

Facility_ID

37 - 39

Control
Code

34 - 36

Severity
Number

32 - 33

Case
Number

0 - 31

Condition_ID

Figure 4. Language Environment Condition Token

 For example, in the condition token: X'0003032D 59C3C5C5 00000000'

� X'0003' is severity.

� X'032D' is message number 813.

� X'59' are hexadecimal flags for case, severity, and control.

� X'C3C5C5' is the CEE facility ID.

� X'00000000' is the ISI. (In this case, no ISI was provided.)

If a Language Environment traceback or dump is generated while a condition token
is being processed or when a condition exists, Language Environment writes the
run-time message to the condition section of the traceback or dump.

If a condition is detected when a callable service is invoked without a feedback
code, the condition token is passed to the Language Environment condition

 Chapter 1. Preparing Your Routine for Debugging 29

manager. The condition manager polls active condition handlers for a response. If a
condition of severity 0 or 1 remains unhandled, Language Environment resumes
without issuing a message. Language Environment does issue messages, however,
for COBOL severity 1 conditions. For unhandled conditions of severity 2 or greater,
Language Environment issues a message and terminates. See Part 3, “Run-Time
Messages and Codes” on page 263 for a list of Language Environment run-time
messages and corrective information.

If a second condition is raised while Language Environment is attempting to handle
a condition, the message CEE#374C CONDITION = <message no.> is displayed using
a write-to-operator (WTO). The message number in the CEE0374C message indi-
cates the original condition that was being handled when the second condition was
raised. This can happen when a critical error is signaled (for example, when
internal control blocks are damaged).

If the output for this error message appears several times in sequence, the condi-
tions appear in order of occurrence. Correcting the earliest condition can cause
your application to run successfully.

Using the Symbolic Feedback Code
The symbolic feedback code represents the first 8 bytes of a 12-byte condition
token. You can think of the symbolic feedback code as the nickname for a condi-
tion. As such, the symbolic feedback code can be used in user-written condition
handlers to screen for a given condition, even if it occurs at different locations in an
application.

See OS/390 Language Environment Programming Guide for more details on sym-
bolic feedback codes.

30 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 Chapter 2. Classifying Errors

This chapter describes errors that commonly occur in Language Environment rou-
tines. It also explains how to use run-time messages and abend codes to obtain
information about errors in your routine.

Identifying Problems in Routines
The following sections describe how you can identify errors in Language Environ-
ment routines. Included are common error symptoms and solutions.

Language Environment Module Names
You can identify Language Environment-supplied OS/390 module elements and VM
text files by any of the following three-character prefixes:

� CEE (Language Environment)
 � EDC (C/C++)
 � FOR (Fortran)
 � IBM (PL/I)
 � IGZ (COBOL)

Module elements or text files with other prefixes are not part of the Language Envi-
ronment product.

Common Errors in Routines
These common errors have simple solutions:

� If you do not have enough virtual storage, increase your region size or
decrease your storage usage (stack size) by using the storage-related run-time
options and callable services. (See “Controlling Storage Allocation” on page 13
for information about using storage in routines.)

� If you do not have enough disk space, increase your disk allocation.

� If executable files are not available, check your executable library to ensure
that they are defined. For example, check your STEPLIB or JOBLIB definitions.

If your error is not caused by any of the items listed above, examine your routine or
routines for changes since the last successful run. If there have been changes,
review these changes for errors that might be causing the problem. One way to
isolate the problem is to branch around or comment out recent changes and rerun
the routine. If the run is successful, the error can be narrowed to the scope of the
changes.

Duplicate names shared between Fortran routines and C library routines can
produce unexpected results. Language Environment provides several cataloged
procedures to properly resolve duplicate names. For more information on how to
avoid name conflicts, see OS/390 Language Environment Programming Guide.

Changes in optimization levels, addressing modes, and input/output file formats can
also cause unanticipated problems in your routine.

 Copyright IBM Corp. 1991, 2000 31

In most cases, generated condition tokens or run-time messages point to the nature
of the error. The run-time messages offer the most efficient corrective action. To
help you analyze errors and determine the most useful method to fix the problem,
Table 2 on page 32 lists common error symptoms, possible causes, and pro-
grammer responses.

Table 2 (Page 1 of 2). Common Error Symptoms, Possible Causes, and Programmer Responses

Error Symptom Possible Cause Programmer Response

Numbered run-time message
appears

Condition raised in routine For any messages you receive, read the
Programmer Response. For information
about message structure, see “Interpreting
Run-Time Messages” on page 33.

User abend code < 4000 a) A non-Language Environment
abend occurred

b) The assembler user exit
requested an abend for an unhan-
dled condition of severity ≥2

See Chapter 16, “Language Environment
Abend Codes” on page 775. Check for a
subsystem-generated abend or a user-
specified abend.

User abend code ≥ 4000 a) Language Environment detected
an error and could not proceed

b) An unhandled software-raised
condition occurred and
ABTERMENC(ABEND) was in
effect

c) The assembler user exit
requested an abend for an unhan-
dled condition of severity 4

For any abends you receive, read the appro-
priate Explanation listed in Chapter 16, “Lan-
guage Environment Abend Codes” on
page 775.

System abend with
TRAP(OFF)

Cause depends on type of mal-
function

Respond appropriately. Refer to the mes-
sages and codes book of the operating
system.

System abend with
TRAP(ON)

System-detected error Refer to the messages and codes book of
the operating system.

No response (wait/loop) Application logic failure Check routine logic. Ensure ERRCOUNT
and DEPTHCONDLMT run-time options are
set to a nonzero value.

Unexpected message
(message received was not
from most recent service)

Condition caused by something
related to current service

Generate a traceback using CEE3DMP.

Incorrect output Incorrect file definitions, storage
overlay, incorrect routine mask
setting, references to uninitialized
variables, data input errors, or
application routine logic error

Correct the appropriate parameters.

No output Check ddname, file definitions, and
message file setting

Correct the appropriate parameters.

Nonzero return code from
enclave

Unhandled condition of severity 2,
3, or 4, or the return code was
issued by the application routine

Check the Language Environment message
file for run-time message. Under CMS, if only
the last five zeros (00000) of the severity
code appear, a REXX macro can be created
to print the entire code.

32 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Table 2 (Page 2 of 2). Common Error Symptoms, Possible Causes, and Programmer Responses

Error Symptom Possible Cause Programmer Response

Unexpected output Conflicting library module names Refer to the name conflict resolution steps
outlined in OS/390 Language Environment
Programming Guide.

Interpreting Run-Time Messages
The first step in debugging your routine is to look up any run-time messages. To
find run-time messages, check the message file:

� On OS/390, run-time messages are written by default to ddname SYSOUT. If
SYSOUT is not specified, then the messages are written to SYSOUT=*.

� On CICS, the run-time messages are written to the CESE transient data
QUEUE.

� On CMS, run-time messages are written by default to ddname SYSOUT. If
SYSOUT is not specified, then the messages are written to the console.

The default message file ddname can be changed by using the MSGFILE run-time
option. For information about displaying run-time messages for C/C++, COBOL,
Fortran, or PL/I routines, see OS/390 Language Environment Programming Guide.

Run-time messages provide users with additional information about a condition, and
possible solutions for any errors that occurred. They can be issued by Language
Environment common routines or language-specific run-time routines and contain a
message prefix, message number, severity code, and descriptive text.

In the following example Language Environment message:

CEE32#6S The system detected a specification exception.

� The message prefix is CEE.
� The message number is 3206.
� The severity code is S.
� The message text is “The system detected a specification exception.”

Language Environment messages can appear even though you made no explicit
calls to Language Environment services. C/C++, COBOL, and PL/I run-time library
routines commonly use the Language Environment services. This is why you can
see Language Environment messages even when the application routine does not
directly call common run-time services.

 Message Prefix
The message prefix indicates the Language Environment component that gener-
ated the message. The message prefix is the first three characters of the message
number and is also the facility ID in the condition token. See the following table for
more information about Language Environment run-time messages.

 Chapter 2. Classifying Errors 33

Message
Prefix

Language Environment Compo-
nent For a list of messages, see:

CEE Common run time Chapter 9

EDC C/C++ run time Chapter 12

FOR Fortran run time Chapter 13

IBM PL/I run time Chapter 14

IGZ COBOL run time Chapter 15

 Message Number
The message number is the 4-digit number following the message prefix. Leading
zeros are inserted if the message number is less than four digits. It identifies the
condition raised and references additional condition and programmer response
information.

 Severity Code
The severity code is the letter following the message number and indicates the
level of attention called for by the condition. Messages with severity of I are infor-
mational messages and do not usually require any corrective action. In general, if
more than one run-time message appears, the first noninformational message indi-
cates the problem. For a complete list of severity codes, severity values, condition
information, and default actions, see OS/390 Language Environment Programming
Guide.

 Message Text
The message text provides a brief explanation of the condition.

Understanding Abend Codes
Under Language Environment, abnormal terminations generate abend codes.
There are two types of abend codes: 1) user (Language Environment and user-
specified) abends and 2) system abends. User abends follow the format of Udddd,
where dddd is a decimal user abend code. System abends follow the format of
Shhh, where hhh is a hexadecimal abend code. Language Environment abend
codes are usually in the range of 4000 to 4095. However, some subsystem abend
codes can also fall in this range. User-specified abends use the range of 0 to
3999.

Example abend codes are:

User (Language Environment) abend code:U4#41
User-specified abend code:U###5
System abend code:S8#A

The Language Environment callable service CEE3ABD terminates your application
with an abend. You can set the clean-up parameter value to determine how the
abend is processed and how Language Environment handles the raised condition.
For more information about CEE3ABD and clean-up, see OS/390 Language Envi-
ronment Programming Reference.

34 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

You can specify the ABTERMENC run-time option to determine what action is
taken when an unhandled condition of severity 2 or greater occurs. For more infor-
mation on ABTERMENC, see “Establishing Enclave Termination Behavior for
Unhandled Conditions” on page 26, as well as OS/390 Language Environment Pro-
gramming Reference.

 User Abends
If you receive a Language Environment abend code, see Chapter 16, “Language
Environment Abend Codes” on page 775 for a list of abend codes, error
descriptions, and programmer responses.

User abends, such as Language Environment 4xxx abends or abends raised by a
call to the CEE3ABD service, can cause the generation of a system dump.
Although system dumps are sometimes required for debugging complex error situ-
ations, it is usually better to generate a Language Environment-formatted dump. To
request a Language Environment dump whenever an unhandled condition is raised,
specify both TRAP(ON) and TERMTHDACT(DUMP) run-time options.

Your routine can also produce a Language Environment dump at any time by
calling the CEE3DMP callable service (see “Generating a Language Environment
Dump with CEE3DMP” on page 37). The TRAP(ON) run-time option causes the
Language Environment condition handler to attempt to handle the system abend.
For a detailed explanation of the run-time options and callable services discussed
in this section, see OS/390 Language Environment Programming Reference.

 System Abends
If you receive a system abend code, look up the code and the corresponding infor-
mation in the publications for the system you are using.

When a system abend occurs, the operating system can generate a system dump.
On OS/390, system dumps are written to ddname SYSMDUMP, SYSABEND, or
SYSUDUMP. On VM, system dumps are sent to the user's virtual reader. System
dumps show the memory state at the time of the condition. See “Generating a
System Dump” on page 76 for more information about system dumps.

 Chapter 2. Classifying Errors 35

36 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Chapter 3. Using Language Environment Debugging
Facilities

This chapter describes methods of debugging routines in Language Environment.
Currently, most problems in Language Environment and member language routines
can be determined through the use of a debugging tool or through information pro-
vided in the Language Environment dump.

 Debugging Tool
Debugging tools are designed to help you detect errors early in your routine. IBM
offers Debug Tool, a comprehensive compile, edit, and debugging product that is
provided with the C/C++, COBOL for OS/390 & VM, COBOL for MVS & VM, PL/I
for MVS & VM, VisualAge PL/I, and VisualAge for Java compiler products.

You can use the IBM Debug Tool to examine, monitor, and control how your rou-
tines run, and debug your routines interactively or in batch mode. Debug Tool also
provides facilities for setting breakpoints and altering the contents and values of
variables. Language Environment run-time options can be used with Debug Tool to
debug or analyze your routine. Refer to the Debug Tool publications for a detailed
explanation of how to invoke and run Debug Tool.

You can also use dbx to debug Language Environment applications, including
C/C++ programs. OS/390 UNIX System Services Command Reference has infor-
mation on dbx subcommands, while OS/390 UNIX System Services Programming
Tools contains usage information.

Language Environment Dump Service, CEE3DMP
The following sections provide information about using the Language Environment
dump service, and describe the contents of the Language Environment dump.

There are three ways to invoke the Language Environment dump service:

� CEE3DMP callable service
� TERMTHDACT run-time option

 � HLL-specific functions

Generating a Language Environment Dump with CEE3DMP
The CEE3DMP callable service generates a dump of the run-time environment for
Language Environment and the member language libraries at the point of the
CEE3DMP call. You can call CEE3DMP directly from an application routine.

Depending on the CEE3DMP options you specify, the dump can contain informa-
tion about conditions, tracebacks, variables, control blocks, stack and heap storage,
file status and attributes, and language-specific information.

On OS/390, all output from CEE3DMP is written to the default ddname CEEDUMP.
CEEDUMP, by default, sends the output to the SDSF output queue. You can direct
the output from the CEEDUMP to a specific sysout class by using the environment
variable, _CEE_DMPTARG=SYSOUT(x), where x is the output class.

 Copyright IBM Corp. 1991, 2000 37

On CMS, output from the dump service is sent by default to the virtual printer. You
can use the FNAME option to specify another ddname.

Under OS/390 UNIX System Services if the application is running in an address-
space created as a result of a fork(), spawn(), spawnp(), vfork(), or one of the
exec family of functions, then the CEEDUMP is placed in the HFS (or BFS on VM)
in one of the following directories in the specified order:

1. the directory found in environment variable _CEE_DMPTARG, if found

2. the current working directory, if this is not the root directory (/), and the direc-
tory is writeable

3. the directory found in environment variable TMPDIR (an environment variable
that indicates the location of a temporary directory if it is not /tmp)

4. the /tmp directory.

The syntax for CEE3DMP is:

 Syntax

JJ─ ─CEE3DMP──(──title──,──options──,──fc──)───────────────────────────────────JL

title
An 80-byte fixed-length character string that contains a title that is printed at the
top of each page of the dump.

options
A 255-byte fixed-length character string that contains options describing the
type, format, and destination of dump information. The options are declared as
a string of keywords separated by blanks or commas. Some options also have
suboptions that follow the option keyword, and are contained in parentheses.
The last option declaration is honored if there is a conflict between it and any
preceding options.

fc (output)
A 12-byte feedback token code that indicates the result of a call to CEE3DMP.
If specified as an argument, feedback information, in the form of a condition
token, is returned to the calling routine. If not specified, and the requested
operation was not successfully completed, the condition is signaled to the con-
dition manager.

Following is a list of CEE3DMP options and related information:

Dump Options Abbreviation Action Taken

ENCLAVE(ALL) ENCL Dumps all enclaves associated with the
current process. (In ILC applications in
which a C/C++ routine calls another
member language routine, and that
routine in turn calls CEE3DMP,
traceback information for the C/C++
routine is not provided in the dump.)
This is the default setting for ENCLAVE.

38 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Dump Options Abbreviation Action Taken

ENCLAVE(CURRENT) ENCL(CUR) Dumps the current enclave. (On VM,
only (CURRENT) and (1) values are
supported for host services SVC LINK
and CMSCALL, and PL/I FETCH/CALL
of a fetchable main.)

ENCLAVE(n) ENCL(n) Dumps a fixed number of enclaves,
indicated by n.

THREAD(ALL) THR(ALL) Dumps all threads in this enclave
(including in a PL/I multitasking environ-
ment).

THREAD(CURRENT) THR(CUR) Dumps the current thread in this
enclave.

TRACEBACK TRACE Includes a traceback of all active rou-
tines. The traceback shows transfer of
control from either calls or exceptions.
Calls include PL/I transfers of control
from BEGIN-END blocks or ON-units.

NOTRACEBACK NOTRACE Does not include a traceback of all
active routines.

FILES FILE Includes attributes of all open files. File
control blocks are included when the
BLOCKS option is also specified. File
buffers are included when the
STORAGE option is specified.

NOFILES NOFILE Does not include file attributes.

VARIABLES VAR Includes a symbolic dump of all vari-
ables, arguments, and registers.

NOVARIABLES NOVAR Does not include variables, arguments,
and registers.

BLOCKS BLOCK Dumps control blocks from Language
Environment and member language
libraries. BLOCKS also dumps the Lan-
guage Environment trace table if the
TRACE run-time option is set to ON.

NOBLOCKS NOBLOCK Does not include control blocks.

STORAGE STOR Dumps the storage used by the routine.
The number of routines dumped is con-
trolled by the STACKFRAME option.

NOSTORAGE NOSTOR Suppresses storage dumps.

STACKFRAME(ALL) SF(ALL) Dumps all stack frames from the call
chain. This is the default setting for
STACKFRAME.

 Chapter 3. Using Language Environment Debugging Facilities 39

The IBM-supplied default settings for CEE3DMP are:

TRACEBACK THREAD(CURRENT) FILES VARIABLES NOBLOCKS
NOSTORAGE STACKFRAME(ALL) PAGESIZE(6#) FNAME(CEEDUMP)
CONDITION ENTRY

For additional information about the CEE3DMP callable service and dump options,
see OS/390 Language Environment Programming Reference. For an example of a
Language Environment dump, see “Understanding the Language Environment
Dump” on page 44.

Dump Options Abbreviation Action Taken

STACKFRAME(n) SF(n) Dumps a fixed number of stack frames,
indicated by n, from the call chain. The
specific information dumped for each
stack frame depends on the VARI-
ABLES, BLOCK, and STORAGE
options declarations. The first stack
frame dumped is the caller of
CEE3DMP, followed by its caller, and
proceeding backward up the call chain.

PAGESIZE(n) PAGE(n) Specifies the number of lines on each
page of the dump.

FNAME(s) FNAME(s) Specifies the ddname of the file to
which the dump is written.

CONDITION COND Dumps condition information for each
condition active on the call chain.

NOCONDITION NOCOND For each condition active on the call
chain, does not dump condition informa-
tion.

ENTRY ENT Includes a description of the program
unit that called CEE3DMP and the reg-
isters on entry to CEE3DMP.

NOENTRY NOENT Does not include a description of the
program unit that called CEE3DMP or
registers on entry to CEE3DMP.

Note: On CICS, only (CURRENT) and (1) settings are supported.

Generating a Language Environment Dump with TERMTHDACT
The TERMTHDACT run-time option produces a dump during program checks,
abnormal terminations, or calls to the CEESGL service. You must use
TERMTHDACT(DUMP) in conjunction with TRAP(ON) to generate a Language
Environment dump.

You can use TERMTHDACT to produce a traceback, Language Environment dump,
or user address space when a thread ends abnormally because of an unhandled
condition of severity 2 or greater. If this is the last thread in the process, the
enclave goes away. A thread terminating in a non-POSIX environment is analogous
to an enclave terminating because Language Environment Version 1 supports only
single threads. See OS/390 Language Environment Programming Guide for infor-
mation on enclave termination.

40 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

The TERMTHDACT suboptions QUIET, MSG, TRACE, DUMP,UAONLY,
UATRACE, UADUMP, and UAIMM control the level of information available. Fol-
lowing are the suboptions, the levels of information produced, and the destination of
each.

Sub-
option Level of Information Destination

QUIET No information No destination.

MSG Message Terminal or ddname specified in
MSGFILE run-time option.

TRACE Message and Language Environ-
ment dump containing only a
traceback

Message goes to terminal or ddname
specified in MSGFILE run-time
option. Traceback goes to
CEEDUMP file.

DUMP Message and complete Language
Environment dump

Message goes to terminal or ddname
specified in MSGFILE run-time
option. Language Environment dump
goes to CEEDUMP file.

UAONLY SYSMDUMP, SYSABEND dump, or
SYSUDUMP depending on the DD
card used in the JCL in OS/390. In
CICS, a transaction dump is
created. In non-CICS you will get a
system dump of your user address
space if the appropriate DD state-
ment is used. Note: A Language
Environment dump is not gener-
ated.

Language Environment generates a
U4039 abend which allows a system
dump of the user address space to
be generated. For OS/390, the
system dump is written to the
ddname specified, for CMS it is
written to FILEDEF, and for CICS the
transaction dump goes to DFHDMPA
or the DFHDMPB data set.

UATRACE Message, Language Environment
dump containing only a traceback,
and a system dump of the user
address space

Message goes to terminal or ddname
specified in MSGFILE run-time
option. Traceback goes to
CEEDUMP file. Language Environ-
ment generates a U4039 abend
which allows a system dump of the
user address space to be generated.
For OS/390 the system dump is
written to the ddname specified, for
CMS it is written to FILEDEF, and for
CICS the transaction dump goes to
DFHDMPA or the DFHDMPB data
set.

UADUMP Message, Language Environment
dump, and SYSMDUMP,
SYSABEND dump, or SYSUDUMP
depending on the DD card used in
the JCL in OS/390. In CICS, a
transaction dump is created. In
CMS, the VMDUMP facility is
called.

Message goes to terminal or ddname
specified in MSGFILE run-time
option. Language Environment dump
goes to CEEDUMP file. Language
Environment generates a U4039
abend which allows a system dump
of the user address space to be gen-
erated. For OS/390 the system dump
is written to the ddname specified, for
CMS it is written to FILEDEF, and for
CICS the transaction dump goes to
DFHDMPA or the DFHDMPB data
set.

 Chapter 3. Using Language Environment Debugging Facilities 41

The TRACE and UATRACE suboptions of TERMTHDACT use these dump options:

 � ENCLAVE(ALL)
 � NOENTRY
 � CONDITION
 � TRACEBACK
 � THREAD(ALL)
 � NOBLOCKS
 � NOSTORAGE
 � VARIABLES
 � FILES
 � STACKFRAME(ALL)
 � PAGESIZE(60)
 � FNAME(CEEDUMP)

The DUMP and UADUMP suboptions of TERMTHDACT use these dump options:

 � ENCLAVE(ALL)
 � NOENTRY
 � CONDITION
 � TRACEBACK
 � THREAD(CURRENT)
 � BLOCKS
 � STORAGE
 � VARIABLES
 � FILES
 � STACKFRAME(ALL)
 � PAGESIZE(60)
 � FNAME(CEEDUMP)

Although you can modify CEE3DMP options, you cannot change options for a
traceback or dump produced by TERMTHDACT.

Sub-
option Level of Information Destination

UAIMM Language Environment generates a
system dump of the original
abend/program interrupt of the user
address space. In CICS, a trans-
action dump is created. In
non-CICS you will get a system
dump of your user address space if
the appropriate DD statement is
used. After the dump is taken by
the operating system, Language
Environment condition manager
continues processing. Note: Under
CICS, UAIMM yields UAONLY
behavior. Under non-CICS,
TRAP(ON,NOSPIE) must be in
effect. When TRAP(ON,SPIE) is in
effect, UAIMM yields UAONLY
behavior. For software raised condi-
tions or signals, UAIMM behaves
the same as UAONLY.

Message goes to terminal or ddname
specified in MSGFILE run-time
option. User address space dump
goes to ddname specified for
OS/390, FILEDEF for CMS, or CICS
transaction dump goes to DFHDMPA
or DFHDMPB data set.

42 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Considerations for Setting TERMTHDACT Options
The output of TERMTHDACT may vary depending upon which languages and sub-
systems are processing the request. This section describes the considerations
associated with issuing the TERMTHDACT suboptions.

 � COBOL Considerations

– The following TERMTHDACT suboptions for COBOL are recommended,
UAONLY, UATRACE, and UADUMP. A system dump will always be gener-
ated when one of these suboptions is specified.

 � PL/I Considerations

– After a normal return from a PL/I ERROR ON-unit, or from a PL/I FINISH
ON-unit, Language Environment considers the condition unhandled. If a
GOTO is not performed and the resume cursor is not moved, then the
thread terminates. The TERMTHDACT setting guides the amount of infor-
mation that is produced, so the message is not presented twice.

� PL/I MTF Considerations

– TERMTHDACT applies to a task that terminates abnormally due to an
unhandled condition of severity 2 or higher that is percolated beyond the
initial routine's stack frame. All active subtasks that were created from the
incurring task will terminate abnormally, but the enclave will continue to run.

 � CICS Considerations

– All TERMTHDACT output is written to a transient data queue named
CESE. Since Language Environment does not own the ESTAE, the sub-
option UAIMM will be treated as UAONLY.

– All associated Language Environment dumps will be suppressed if termi-
nation processing is the result of an EXEC CICS ABEND with NODUMP.

� OS/390 UNIX Considerations

– The TERMTHDACT option applies when a thread terminates abnormally.
Abnormal termination of a single thread causes termination of the entire
enclave. If an unhandled condition of severity 2 or higher percolates
beyond the first routine's stack frame the enclave terminates abnormally.

– If an enclave terminates due to a POSIX default signal action, then
TERMTHDACT applies to conditions that result from software signals,
program checks, or abends.

– If running under a shell and Language Environment generates a system
dump, then a core dump is generated to a file based on the kernel environ-
ment variable, _BPXK_MDUMP.

See OS/390 Language Environment Programming Reference for more information
about the TERMTHDACT run-time option.

Generating a Language Environment Dump with Language-Specific
Functions

In addition to the CEE3DMP callable service and the TERMTHDACT run-time
option, you can use language-specific routines such as C functions, the Fortran
SDUMP service, and the PL/I PLIDUMP service to generate a dump.

 Chapter 3. Using Language Environment Debugging Facilities 43

C/C++ routines can use the functions cdump(), csnap(), and ctrace() to produce
a Language Environment dump. All three functions call the CEE3DMP callable
service, and each function includes an options string consisting of different
CEE3DMP options that you can use to control the information contained in the
dump. For more information on these functions, see “Generating a Language Envi-
ronment Dump of a C/C++ Routine” on page 139.

Fortran programs can call SDUMP, DUMP/PDUMP, or CDUMP/CPDUMP to gen-
erate a Language Environment dump. CEE3DMP cannot be called directly from a
Fortran program. For more information on these functions, see “Generating a Lan-
guage Environment Dump of a Fortran Routine” on page 214.

PL/I routines can call PLIDUMP instead of CEE3DMP to produce a dump.
PLIDUMP includes options that you can specify to obtain a variety of information in
the dump. For a detailed explanation about PLIDUMP, see “Generating a Language
Environment Dump of a PL/I Routine” on page 238.

Understanding the Language Environment Dump
The Language Environment dump service generates output of data and storage
from the Language Environment run-time environment on an enclave basis. This
output contains the information needed to debug most basic routine errors.

Figure 7 on page 50 illustrates a dump for enclave main. The example assumes
full use of the CEE3DMP dump options. Ellipses are used to summarize some
sections of the dump and information regarding unhandled conditions may not be
present at all. Sections of the dump are numbered to correspond with the
descriptions given in “Sections of the Language Environment Dump” on page 56.

The CEE3DMP was generated by the C program CELSAMP shown in Figure 5.
CELSAMP uses the DLL CELDLL shown in Figure 6 on page 48.

#pragma options(SERVICE("1.1.c"),NOOPT,TEST,GONUMBER)
#pragma runopts(TERMTHDACT(UADUMP),POSIX(ON))
#define _OPEN_THREADS
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <dll.h>
#include <signal.h>
#include <leawi.h>
#include <ceeedcct.h>

pthread_mutex_t mut;
pthread_t thread[2];
int threads_joined = #;
char C t1 = "Thread 1";
char C t2 = "Thread 2";

Figure 5 (Part 1 of 5). The C program CELSAMP

44 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

/CCC/
/C thread_cleanup: condition handler to clean up threads C/
/CCC/
void thread_cleanup(_FEEDBACK Ccond,_INT4 Cinput_token,

_INT4 Cresult, _FEEDBACK Cnew_cond) {

/C values for handling the conditions C/
 #define percolate 2#
printf(">>> Thread_CleanUp: Msg # is %d\n",cond->tok_msgno);
if (!threads_joined) {
printf(">>> Thread_CleanUp: Unlocking mutex\n");

 pthread_mutex_unlock(&mut);
printf(">>> Thread_CleanUp: Joining threads\n");
if (pthread_join(thread[#],NULL) == -1)
perror("Join of Thread #1 failed");

if (pthread_join(thread[1],NULL) == -1)
perror("Join of Thread #2 failed");

threads_joined = 1;
 }
Cresult = percolate;
printf(">>> Thread_CleanUp: Percolating condition\n");

}

Figure 5 (Part 2 of 5). The C program CELSAMP

 Chapter 3. Using Language Environment Debugging Facilities 45

/CCC/
/C thread_func: Invoked via pthread_create. C/
/CCC/
void Cthread_func(void Cparm)
{
printf(">>> Thread_func: %s locking mutex\n",parm);

 pthread_mutex_lock(&mut);
 pthread_mutex_unlock(&mut);
printf(">>> Thread_func: %s exitting\n",parm);

 pthread_exit(NULL);
}
/CCC/
/C Start of Main function. C/
/CCC/
main()
{
 dllhandle C handle;
int i = #;

 FILEC fp1;
 FILEC fp2;
 _FEEDBACK fc;
 _INT4 token;
 _ENTRY pgmptr;

 printf("Init MUTEX...\n");
if (pthread_mutex_init(&mut, NULL) == -1) {
perror("Init of mut failed");

 exit(1#1);
 }

printf("Lock Mutex Lock...\n");
if (pthread_mutex_lock(&mut) == -1) {
perror("Lock of mut failed");

 exit(1#2);
 }

Figure 5 (Part 3 of 5). The C program CELSAMP

46 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

printf("Create 1st thread...\n");
if (pthread_create(&thread[#],NULL,thread_func,(void C)t1) == -1) {
perror("Could not create thread #1");

 exit(1#3);
 }
printf("Create 2nd thread...\n");
if (pthread_create(&thread[1],NULL,thread_func,(void C)t2) == -1) {
perror("Could not create thread #2");

 exit(1#4);
 }
printf("Register thread cleanup condition handler...\n");
pgmptr.address = (_POINTER)thread_cleanup;
pgmptr.nesting = NULL;
token = 1;
CEEHDLR (&pgmptr, &token, &fc);
if (_FBCHECK (fc , CEE###) != #) {
printf("CEEHDLR failed with message number %d\n",fc.tok_msgno);

 exit(1#5);
 }
 printf("Load DLL...\n");
handle = dllload("CELDLL");
if (handle == NULL) {
perror("Could not load DLL CELDLL");

 exit(1#6);
 }

 printf("Query DLL...\n");
pgmptr.address = (_POINTER)dllqueryfn(handle,"dump_n_perc");
if (pgmptr.address == NULL) {
perror("Could not find dump_n_perc");

 exit(1#7);
 }

printf("Register condition handler...\n");
pgmptr.nesting = NULL;
token = 2;
CEEHDLR (&pgmptr, &token, &fc);
if (_FBCHECK (fc , CEE###) != #) {
printf("CEEHDLR failed with message number %d\n",fc.tok_msgno);

 exit(1#8);
 }

Figure 5 (Part 4 of 5). The C program CELSAMP

 Chapter 3. Using Language Environment Debugging Facilities 47

printf("Write to some files...\n");
fp1 = fopen("myfile.data", "w");
if (!fp1) {
perror("Could not open myfile.data for write");

 exit(1#9);
 }

fprintf(fp1, "record 1\n");
fprintf(fp1, "record 2\n");
fprintf(fp1, "record 3\n");

fp2 = fopen("memory.data", "wb,type=memory");
if (!fp2) {
perror("Could not open memory.data for write");

 exit(112);
 }

fprintf(fp2, "some data");
fprintf(fp2, "some more data");
fprintf(fp2, "even more data");

printf("Divide by zero...\n");
i = 1/i;
printf("Error -- Should not get here\n");

 exit(11#);
}

Figure 5 (Part 5 of 5). The C program CELSAMP

/C DLL containing Condition Handler that takes dump and percolates C/
#pragma options(SERVICE("1.3.a"),GONUMBER,TEST,NOOPT)
#include <stdio.h>
#include <leawi.h>
#include <stdlib.h>
#include <string.h>
#include <ceeedcct.h>
char wsa_array[1#] = { 'C','E','L','D','L','L',' ','W','S','A'};
#define OPT_STR "THREAD(ALL) BLOCKS STORAGE"
#define TITLE_STR "Sample dump produced by calling CEE3DMP"

void dump_n_perc(_FEEDBACK Ccond,_INT4 Cinput_token,
_INT4 Cresult, _FEEDBACK Cnew_cond) {

/C values for handling the conditions C/
 #define percolate 2#

 _CHAR8# title;
 _CHAR255 options;
 _FEEDBACK fc;

printf(">>> dump_n_perc: Msg # is %d\n",cond->tok_msgno);

Figure 6 (Part 1 of 2). The C DLL CELDLL

48 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

/C check if the DIVIDE-BY-ZERO message (#C9) C/
if (cond->tok_msgno == 32#9) {

 memset(options,' ',sizeof(options));
 memcpy(options,OPT_STR,sizeof(OPT_STR)-1);

 memset(title,' ',sizeof(title));
 memcpy(title,TITLE_STR,sizeof(TITLE_STR)-1);

printf(">>> dump_n_perc: Taking dump\n");
 CEE3DMP(title,options,&fc);

if (_FBCHECK (fc , CEE###) != #) {
printf("CEE3DMP failed with msgno %d\n",fc.tok_msgno);

 exit(299);
 }
 }
Cresult = percolate;
printf(">>> dump_n_perc: Percolating condition\n");

}

Figure 6 (Part 2 of 2). The C DLL CELDLL

For easy reference, the sections of the dump are numbered to correspond with the
description of each section that follows.

 Chapter 3. Using Language Environment Debugging Facilities 49

[1]CEE3DMP V1 R9.#: Sample dump produced by calling CEE3DMP #5/#9/98 1:#5:29 PM Page: 1
[2]CEE3DMP called by program unit POSIX.CRTL.C(CELDLL) (entry point dump_n_perc) at statement 33 (offset +#####1#C).

[3]Registers on Entry to CEE3DMP:

 PM....... #1##
 GPR#..... 2471CEB# GPR1..... ###24A## GPR2..... 2471CEB# GPR3..... A47##B#6
 GPR4..... ###24A## GPR5..... ######1# GPR6..... ######F# GPR7..... ###A2794
 GPR8..... 2471CEC# GPR9..... 2471CFA# GPR1#.... ###A26C2 GPR11.... 2479A6E8
 GPR12.... ###1592# GPR13.... ###248## GPR14.... 8##18#E2 GPR15.... A4759658
 FPR#..... 4DB#35F6 D8F87B96 FPR2..... ######## ########
 FPR4..... ######## ######## FPR6..... ######## ########
 GPREG STORAGE:

Storage around GPR# (2471CEB#)
-##2# 2471CE9# ######## ######## ######## ######## ######## ######## ######## ########
+#### 2471CEB# C3C5D3C4 D3D34#E6 E2C1#### ######## 6E6E6E4# 84A49497 6D956D97 8599837A CELDLL WSA......>>> dump_n_perc:
+##2# 2471CED# 4#D4A287 4#7B4#89 A24#6C84 15###### E3C8D9C5 C1C44DC1 D3D35D4# C2D3D6C3 Msg # is %d....THREAD(ALL) BLOC

Storage around GPR1 (###24A##)
-##2# ###249E# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#54 .
+#### ###24A## ###248B# ###249## ###248A# ###24A4# ####4A48 ###248## ###24E7# A475A51C+.u.v.
+##2# ###24A2# 2475C48# #4###### ###24A9C 259B1#28 ######## ###4E544 ###4EF94 2478E6D8 ..D...................V....m..WQ

...

Storage around GPR15(24759658)
-##2# 24759638 F1F9F9F8 F#F3F#F9 F1F1F4F# F#F#F#F1 F#F9F#F# ###1F### #####75# ######## 1998#3#9114####1#9##..#....&....
+#### 24759658 47F#F#14 ##C3C5C5 #####46# ####2DC8 47F#F##1 9#ECD##C 18BF41A# BFFF419# .##..CEE...-...H.##.............
+##2# 24759678 AFFF58## 9E22581# D#4C1E#1 55##C##C 47D#B#3C 58F#C2BC #5EF181F 5###1#4C<...........#B.....&..<

 [4]Information for enclave main

[5]Information for thread 24ABED8#########

Registers on Entry to CEE3DMP:
 PM....... #1##
 GPR#..... 2471CEB# GPR1..... ###24A## GPR2..... 2471CEB# GPR3..... A47##B#6
 GPR4..... ###24A## GPR5..... ######1# GPR6..... ######F# GPR7..... ###A2794
 GPR8..... 2471CEC# GPR9..... 2471CFA# GPR1#.... ###A26C2 GPR11.... 2479A6E8
 GPR12.... ###1592# GPR13.... ###248## GPR14.... 8##18#E2 GPR15.... A4759658
 FPR#..... 4DB#35F6 D8F87B96 FPR2..... ######## ########
 FPR4..... ######## ######## FPR6..... ######## ########
 GPREG STORAGE:

Storage around GPR# (2471CEB#)
-##2# 2471CE9# ######## ######## ######## ######## ######## ######## ######## ########
+#### 2471CEB# C3C5D3C4 D3D34#E6 E2C1#### ######## 6E6E6E4# 84A49497 6D956D97 8599837A CELDLL WSA......>>> dump_n_perc:
+##2# 2471CED# 4#D4A287 4#7B4#89 A24#6C84 15###### E3C8D9C5 C1C44DC1 D3D35D4# C2D3D6C3 Msg # is %d....THREAD(ALL) BLOC

...

[6]Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status

 ###248## POSIX.CRTL.C(CELDLL)
247##AB8 +#####1#C dump_n_perc 247##AB8 +#####1#C 33 CELDLL 1.3.a Call

###24748 2479A848 -#####1#6 CEEPGTFN 2479A6E8 +######5A CEEPLPKA Call
###A2#98 CEEHDSP 247469A8 +####146# CEEHDSP 247469A8 +####146# CEEPLPKA Call

 ###241E# POSIX.CRTL.C(CELSAMP)
247#2178 +#####88E main 247#2178 +#####88E 141 CELSAMP 1.1.c Exception

###24#C8 2491595E -248D16F6 EDCZMINV 2491595E -248D16F6 CEEEV##3 Call
###24#18 CEEBBEXT ####7D2# +#####13C CEEBBEXT ####7D2# +#####13C CEEBINIT Call

...

Figure 7 (Part 1 of 7). Example Dump Using CEE3DMP

50 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

[7]Condition Information for Active Routines
Condition Information for POSIX.CRTL.C(CELSAMP) (DSA address ###241E#)
CIB Address: ###A26A8

 Current Condition:
CEE32#9S The system detected a fixed-point divide exception.

 Location:
Program Unit: POSIX.CRTL.C(CELSAMP)
Program Unit:Entry: main Statement: 141 Offset: +#####88E

 Machine State:
ILC..... ###4 Interruption Code..... ###9
PSW..... #78D24## A47#2A#A

 GPR#..... ###242B8 GPR1..... ###242A8 GPR2..... A4915A12 GPR3..... A47#21C6
 GPR4..... 8###7E#4 GPR5..... 2599387# GPR6..... 259938E8 GPR7..... 25993CC8
 GPR8..... ######## GPR9..... #######1 GPR1#.... A4915952 GPR11.... 8###7D2#
 GPR12.... ###1592# GPR13.... ###241E# GPR14.... A47#29F6 GPR15.... ######12

Storage dump near condition, beginning at location: 247#29F6
+###### 247#29F6 44##C1C4 44##C1AC 418####1 8E8###2# 5D8#D#9C 5#9#D#9C 44##C1AC 417#63F8 ..AD..A.........)...&.....A....8

 [8]Parameters, Registers, and Variables for Active Routines:
dump_n_perc (DSA address ###248##):

 Saved Registers:
 GPR#..... 2471CEB# GPR1..... ###24A## GPR2..... 2471CEB# GPR3..... A47##B#6
 GPR4..... ###24A## GPR5..... ######1# GPR6..... ######F# GPR7..... ###A2794
 GPR8..... 2471CEC# GPR9..... 2471CFA# GPR1#.... ###A26C2 GPR11.... 2479A6E8
 GPR12.... ###1592# GPR13.... ###248## GPR14.... 8##18#E2 GPR15.... A4759658
 GPREG STORAGE:

Storage around GPR# (2471CEB#)
-##2# 2471CE9# ######## ######## ######## ######## ######## ######## ######## ########

...

main (DSA address ###241E#):
 Saved Registers:
 GPR#..... ###242B8 GPR1..... ###242A8 GPR2..... A4915A12 GPR3..... A47#21C6
 GPR4..... 8###7E#4 GPR5..... 2599387# GPR6..... 259938E8 GPR7..... 25993CC8
 GPR8..... ######## GPR9..... #######1 GPR1#.... A4915952 GPR11.... 8###7D2#
 GPR12.... ###1592# GPR13.... ###241E# GPR14.... A47#29F6 GPR15.... ######12
 GPREG STORAGE:

Storage around GPR# (###242B8)
-##2# ###24298 259ADB9# ######## ######## ######## 25993CC8 25993CB8 #######3 259938F1r.H.r.......r.1

...
 Local Variables:

...

 [9]Control Blocks for Active Routines:
DSA for dump_n_perc: ###248##

 +###### FLAGS.... 1##4 member... FFF# BKC...... ###24748 FWC...... ###24A1# R14...... 8##18#E2
 +####1# R15...... A4759658 R#....... 2471CEB# R1....... ###24A## R2....... 2471CEB# R3....... A47##B#6
 +####24 R4....... ###24A## R5....... ######1# R6....... ######F# R7....... ###A2794 R8....... 2471CEC#
 +####38 R9....... 2471CFA# R1#...... ###A26C2 R11...... 2479A6E8 R12...... ###1592# reserved. ###163D#

+####4C NAB...... ###24A1# PNAB..... 2474D3FF reserved. 2474C4## ###1592# ###248B4 ###248A#
 +####64 reserved. 24717AE4 reserved. ###248DC MODE..... A47##BC6 reserved. ###2489# ###A24C#
 +####78 reserved. 24717AE8 reserved. ###2489#

DSA for CEEPGTFN: ###24748
 +###### FLAGS.... 1### member... 3B4# BKC...... ###A2#98 FWC...... ###24928 R14...... A479A744
 +####1# R15...... 247##AB8 R#....... 2471CEB# R1....... 247178F8 R2....... ###4422# R3....... 259ADB9#
 +####24 R4....... ###A26A8 R5....... #######2 R6....... 247178D# R7....... ###A3#97 R8....... 247499A5
 +####38 R9....... 2599387# R1#...... 247479A7 R11...... A474EAC# R12...... ###1592# reserved. ###163D#

+####4C NAB...... ###248## PNAB..... 8##118E# reserved. ######## ######## 259A#4#8 #######9
 +####64 reserved. 25993C9D reserved. 259A#4#8 MODE..... A474C756 reserved. 259A#3F# 24719C7C
 +####78 reserved. 2471A1B# reserved. A4A81C38

DSA for CEEHDSP: ###A2#98
 +###### FLAGS.... #8#8 member... CEE1 BKC...... ###241E# FWC...... ###24748 R14...... A4747E#A
 +####1# R15...... 2479A6E8 R#....... 259ADB9# R1....... 247178F8 R2....... ###4422# R3....... ###14558
 +####24 R4....... ###A26A8 R5....... #######2 R6....... 247178D# R7....... ###A3#97 R8....... 247499A5
 +####38 R9....... 247489A6 R1#...... 247479A7 R11...... A47469A8 R12...... ###1592# reserved. ###163D#

+####4C NAB...... ###24748 PNAB..... ###A2#98 reserved. ######## ######## ######## ########
 +####64 reserved. ######## reserved. ######## MODE..... A4746F9A reserved. ######## ########
 +####78 reserved. ######## reserved. ########

Figure 7 (Part 2 of 7). Example Dump Using CEE3DMP

 Chapter 3. Using Language Environment Debugging Facilities 51

DSA for main: ###241E#
 +###### FLAGS.... 1### member... #### BKC...... ###24#C8 FWC...... ###242B8 R14...... A47#29F6
 +####1# R15...... 2489F3D8 R#....... ###242B8 R1....... ###242A8 R2....... A4915A12 R3....... A47#21C6
 +####24 R4....... 8###7E#4 R5....... 2599387# R6....... 259938E8 R7....... 25993CC8 R8....... #######1
 +####38 R9....... 8####### R1#...... A4915952 R11...... 8###7D2# R12...... ###1592# reserved. ###163D#

+####4C NAB...... ###242B8 PNAB..... ###17#38 reserved. ###14D3# 247C16F# ###1592# ########
 +####64 reserved. ###24328 reserved. #1###### MODE..... A47#271C reserved. ######## ########
 +####78 reserved. ######## reserved. ########

CIB for main: ###A26A8
+###### ###A26A8 C3C9C24# ######## ######## #1#C###4 ######## ######## ###3#C89 59C3C5C5 CIBi.CEE
+####2# ###A26C8 #######1 ###A27B4 ###3#C89 59C3C5C5 #######1 ######## ###241E# A47ECFC8i.CEE............u=.H
+####4# ###A26E8 ######## ###241E# 247#2A#A 24717D5# #######3 ######## ######## ########'&................
+####6# ###A27#8 ######## ######## ######## ######## ######## ######## ######## ########
+####8# ###A2728 - +####9F ###A2747 same as above
+####A# ###A2748 ######## ######## ######## ######## 4#25#### 94#C9### #######9 ########m...........
+####C# ###A2768 ######## 247#31E# ###241E# ###241E# 247#2A#6 ######## ######## #######1
+####E# ###A2788 #######2 #######3 #######2 ######14 #######2 ######## ######## 4#4#4#4#
+###1## ###A27A8 #######8 24717E9C ######## E9D4C3C8 ######## ###242B8 ###242A8 A4915A12=.....ZMCH...........yuj!.

...

[1�]Storage for Active Routines:
DSA frame: ###248##
+###### ###248## 1##4FFF# ###24748 ###24A1# 8##18#E2 A4759658 2471CEB# ###24A## 2471CEB# ...#...........Su.o.............
+####2# ###2482# A47##B#6 ###24A## ######1# ######F# ###A2794 2471CEC# 2471CFA# ###A26C2 u..............#...m...........B
+####4# ###2484# 2479A6E8 ###1592# ###163D# ###24A1# 2474D3FF 2474C4## ###1592# ###248B4 ..wY..............L...D.........
+####6# ###2486# ###248A# 24717AE4 ###248DC A47##BC6 ###2489# ###A24C# 24717AE8 ###2489#:U....u..F..........:Y....
+####8# ###2488# ###248B4 ###248DC #######1 A4A8DCF6 ###A343# ###A3421 247178D# #####88Euy.6................
+####A# ###248A# #######3 ###1592# ###A26A8 ######## E2819497 93854#84 A494974# 97999684y....Sample dump prod
+####C# ###248C# A4838584 4#82A84# 83819393 8995874# C3C5C5F3 C4D4D74# 4#4#4#4# 4#4#4#4# uced by calling CEE3DMP
+####E# ###248E# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4#
+###1## ###249## E3C8D9C5 C1C44DC1 D3D35D4# C2D3D6C3 D2E24#E2 E3D6D9C1 C7C54#4# 4#4#4#4# THREAD(ALL) BLOCKS STORAGE
+###12# ###2492# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4#
+###14# ###2494# - +###1DF ###249DF same as above
+###1E# ###249E# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#54 .
+###2## ###24A## ###248B# ###249## ###248A# ###24A4# ####4A48 ###248## ###24E7# A475A51C+.u.v.

DSA frame: ###24748
+###### ###24748 1###3B4# ###A2#98 ###24928 A479A744 247##AB8 2471CEB# 247178F8 ###4422#q....u.x............8....
+####2# ###24768 259ADB9# ###A26A8 #######2 247178D# ###A3#97 247499A5 2599387# 247479A7y...........p..rv.r.....x
+####4# ###24788 A474EAC# ###1592# ###163D# ###248## 8##118E# ######## ######## 259A#4#8 u...............................
+####6# ###247A8 #######9 25993C9D 259A#4#8 A474C756 259A#3F# 24719C7C 2471A1B# A4A81C38r......u.G....#...@....uy..
+####8# ###247C8 ###247F# ###248#2 ###248## ###247FC ###247F8 ###248#2 ###247F# ###248#2 ...#...............8.......#....
+####A# ###247E8 ###248## ###A311# 2491595E ######## ###24#18 ###24#18 1##4FFF# ###24748j.;......#....

DSA frame: ###241E#
+###### ###241E# 1####### ###24#C8 ###242B8 A47#29F6 2489F3D8 ###242B8 ###242A8 A4915A12 H....u..6.i3Q.......yuj!.
+####2# ###242## A47#21C6 8###7E#4 2599387# 259938E8 25993CC8 #######1 8####### A4915952 u..F..=..r...r.Y.r.H........uj..
+####4# ###2422# 8###7D2# ###1592# ###163D# ###242B8 ###17#38 ###14D3# 247C16F# ###1592# ..'...................(..@.#....
+####6# ###2424# ######## ###24328 #1###### A47#271C ######## ######## ######## ########u...................
+####8# ###2426# ######## A47C1792 #4###### F97FC14F #######1 F97FC14F 259AD3DE ########u@.k....9"A9"A ..L.....
+####A# ###2428# 2599F1EC 259A#3F4 ######## ######## ######## #######2 259ADB9# ######## .r1....4........................
+####C# ###242A# ######## ######## 25993CC8 25993CB8 #######3 259938F1 #####1## 24716FB#r.H.r.......r.1......?.

...

[11]Control Blocks Associated with the Thread:
 CAA: ###1592#

+###### ###1592# #####8## ######## ###24### ###44### ######## ######## ######## ########
+####2# ###1594# ######## ######## ###1661# ######## ######## ######## ######## ########
+####4# ###1596# ######## ######## ######## ######## ######## ######## ######## ########
+####6# ###1598# ######## ######## ######## ######## ######## 8##1269# ######## ########
+####8# ###159A# ######## ######## ######## ######## ######## ######## ######## ########
+####A# ###159C# - +###11F ###15A3F same as above
+###12# ###15A4# 24716B4# ######## ######## ######## ######## ######## ######## ######## ..,
+###14# ###15A6# ######## ######## ######## ######## ######## ######## ######## ########
+###16# ###15A8# - +###17F ###15A9F same as above
+###18# ###15AA# ######## ######## ######## ######## ######## ######## 5#C#D#64 #5C#58C#&.......
+###1A# ###15AC# C##6#5CC ####8546 #7##C198 #7##C198 #7##C198 #7##C198 #7##C198 #7##C198e...Aq..Aq..Aq..Aq..Aq..Aq
+###1C# ###15AE# #7##C198 #7##C198 #7##C198 #7##C198 #7##C198 #7##C198 #7##C198 #7##C198 ..Aq..Aq..Aq..Aq..Aq..Aq..Aq..Aq

...

Figure 7 (Part 3 of 7). Example Dump Using CEE3DMP

52 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Thread Synchronization Queue Element (SQEL): 247181F8
+###### 247181F8 ######## ######## ######## ######## 2599EF9# #######7 ###4E5F8 ########r........V8....
+####2# 24718218 ###1592# ######## ######## ######## ######## ######## ######## ########

DUMMY DSA: ###161C8
 +###### FLAGS.... #### member... #### BKC...... ####5F8# FWC...... ###24#18 R14...... A47#48C8
 +####1# R15...... 8###7D2# R#....... 7D####2B R1....... 25993D#8 R2....... ######## R3....... ########
 +####24 R4....... ######## R5....... ######## R6....... ######## R7....... ###17#38 R8....... 247#3F6#
 +####38 R9....... ##9DB428 R1#...... ######## R11...... A47#47F2 R12...... ###1592# reserved. ###163D#

+####4C NAB...... ###24#18 PNAB..... ###24#18 reserved. ######## ######## ######## ########
 +####64 reserved. ######## reserved. ######## MODE..... ######## reserved. ######## ########
 +####78 reserved. ######## reserved. ########

...

[5]Information for thread 24ABF69########1

Registers on Entry to CEE3DMP:
 PM....... #1##
 GPR#..... 247181F8 GPR1..... ###569FC GPR2..... ###4E164 GPR3..... ###54958
 GPR4..... 24A84D8# GPR5..... 2599EF9A GPR6..... 259938BC GPR7..... 2599EF9#
...

[6]Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
###56978 CEEOPML2 24A84558 +#####4BE CEEOPML2 24A84558 +#####4BE CEEOLVD Call
###56728 2489A658 +####16#A EDCOWRP2 2489B31C +#####946 CEEEV##3 Call

 ###5668# POSIX.CRTL.C(CELSAMP)
247#1F## +######A4 thread_func 247#1F## +######A4 45 CELSAMP 1.1.c Call

 7F83E5F# POSIX.CRTL.C(CELSAMP)
247#2178 -246F57F6 main 247#2178 -246F57F6 CELSAMP 1.1.c Call

[8]Parameters, Registers, and Variables for Active Routines:
CEEOPML2 (DSA address ###56978):

 Saved Registers:
 GPR#..... 247181F8 GPR1..... ###569FC GPR2..... ###4E164 GPR3..... ###54958
 GPR4..... 24A84D8# GPR5..... 2599EF9A GPR6..... 259938BC GPR7..... 2599EF9#
...

thread_func (DSA address ###5668#):
 Parameters:
 parm void C #x259938E8
 Saved Registers:
 GPR#..... ###56728 GPR1..... ###5671C GPR2..... 24A92528 GPR3..... A47#1F4E
 GPR4..... ######## GPR5..... 2599387# GPR6..... 259938E8 GPR7..... 259938BC
...

[9]Control Blocks for Active Routines:
DSA for CEEOPML2: ###56978

 +###### FLAGS.... #### member... ###7 BKC...... ###56728 FWC...... ###56A78 R14...... A4A84A18
 +####1# R15...... A4A85B18 R#....... 247181F8 R1....... ###569FC R2....... ###4E164 R3....... ###54958
 +####24 R4....... 24A84D8# R5....... 2599EF9A R6....... 259938BC R7....... 2599EF9# R8....... 25991#27
...

[1�]Storage for Active Routines:
DSA frame: ###56728
+###### ###56728 1####### ###5668# ###56978 8##1E862 A4A84558 247181F8 ###7B958 24A92528Y.uy....a8.....z..
+####2# ###56748 A47#1F4E ######## 2599387# 259938E8 259938BC 25991#27 ###5621# 8###D#A7 u..+.....r...r.Y.r...r.........x

...

[11]Control Blocks Associated with the Thread:
 CAA: ###55748

+###### ###55748 #####8## ######## ###56668 ###76668 ######## ######## ######## ########
+####2# ###55768 ######## ######## ######## ######## ######## ######## ######## ########

...

Figure 7 (Part 4 of 7). Example Dump Using CEE3DMP

 Chapter 3. Using Language Environment Debugging Facilities 53

[12]Enclave Control Blocks:
 EDB: ###148B#

+###### ###148B# C3C5C5C5 C4C24#4# C7#####1 ###157E# ###14F## ######## ######## ######## CEEEDB G.........
+####2# ###148D# ###14D78 ###14DA8 ###17#38 ###14558 ######## 8##138#8 ###149D# ####8### ..(...(y........................
+####4# ###148F# ######## ######## ####5F8# ######## ######## ###1E#38 24716738 259938B8¬..................r..
+####6# ###1491# ####CF## ###4E### 2471C#2C ######## ###166E# ######## 247E71A# ###1592#=......
+####8# ###1493# 8####### ####CFC4 ######## ######## #######3 ######## ####5FD# ##9DB#38D..................¬.....

+####A# ###1495# #######1 ######## ######## ######## ######## ######## ######## #######3
 MEML: ###157E#

+###### ###157E# ######## ######## 247288A8 ######## ######## ######## 247288A8 ########hy..............hy....
+####2# ###158## ######## ######## 247288A8 ######## 2471A5A4 ######## A47ECFC8 ########hy......vu....u=.H....
+####4# ###1582# ######## ######## 247288A8 ######## ######## ######## 247288A8 ########hy..............hy....
+####6# ###1584# - +###11F ###158FF same as above

Mutex and Condition Variable Blocks (MCVB+MHT+CHT): ###4E#18
+###### ###4E#18 ####8F5# ###4E#44 #####3F8 ####1FC# ######## 25994#C# ###4E444 ######F8 ...&.......8.........r ...U....8
+####2# ###4E#38 #####7C# ######## 25994#D8 ######## 25994#2# ######## 25993FF8 ########r Q.....rr.8....
+####4# ###4E#58 25993FB8 ######## 25993F78 ######## ######## ######## ######## ######## .r.......r......................
+####6# ###4E#78 25994#7# ######## ######## ######## ######## ######## ######## ######## .r

...

Thread Synchronization Enclave Latch Table (EPALT): ###4E544
+###### ###4E544 ######## ######## ######## ######## ######## ######## ######## ########
+####2# ###4E564 - +####9F ###4E5E3 same as above
+####A# ###4E5E4 ######## ######## ######## ######## ######## DB8E7E#8 247181F8 ###4E85#=...a8..Y&
+####C# ###4E6#4 ######## ######## ######## ######## ######## ######## ######## ########
+####E# ###4E624 - +###29F ###4E7E3 same as above

...

Thread Synchronization Trace Block (OTRB): ###4E###
+###### ###4E### ###46### #######4 #####7FF ###46### 3E##8### BE##8### ####8F5# ###4E#44 ..-...........-............&....

Thread Synchronization Trace Table (OTRTBL): ###46###
+###### ###46### ####D4E7 4#C9D54# 259938BC ######## ###1D4E7 4#C14#4# 259938BC ######## ..MX IN .r........MX A .r......
+####2# ###46#2# ###2D4E7 4#E64#4# 259938BC #######2 ###3D4E7 4#E64#4# 259938BC #######1 ..MX W .r........MX W .r......
+####4# ###46#4# ######## ######## ######## ######## ######## ######## ######## ########
+####6# ###46#6# - +##3FFF ###49FFF same as above

 DLL Information:
 WSA Addr Module Addr Thread ID Use Count Name
 2471CEB# 247##6F# 24ABED8######### #######1 CELDLL

HEAPCHK Option Control Block (HCOP): 25993#28
+###### 25993#28 C8C3D6D7 ######24 #######1 ######## ######## 259BD#28 25993#4C ######## HCOP.....................r.<....
+####2# 25993#48 ######## C8C3C6E3 #####2## ######## ######## ######## ######## ########HCFT........................

HEAPCHK Element Table (HCEL) for Heapid 259B24B4 :
 Header: 259BD#28

+###### 259BD#28 C8C3C5D3 259AF#28 ######## 259B24B4 #####1F4 #######7 #######7 ######## HCEL..#............4............
Address Seg Addr Length Address Seg Addr Length

 Table: 259BD#48
+###### 259BD#48 259BC#2# 259BC### ######5# ######## 259BC#7# 259BC### ######2# ########&....................
+####2# 259BD#68 259BC#9# 259BC### ######18 ######## 259BC#A8 259BC### ######88 ########y.......h....
+####4# 259BD#88 259BC13# 259BC### ######5# ######## 259BC18# 259BC### ######2# ######## ..A........&......A.............
+####6# 259BD#A8 259BF#2# 259BF### #####3C8 ######## ######## ######## ######## ######## ..#...#....H....................

HEAPCHK Element Table (HCEL) for Heapid 259ADC14 :
 Header: 259AF#28

+###### 259AF#28 C8C3C5D3 2599D#28 259BD#28 259ADC14 #####1F4 #######1 #######1 ######## HCEL.r.............4............
Address Seg Addr Length Address Seg Addr Length

 Table: 259AF#48
+###### 259AF#48 259AE#2# 259AE### #####1C8 ######## ######## ######## ######## ########H....................

HEAPCHK Element Table (HCEL) for Heapid ######## :
 Header: 2599D#28

+###### 2599D#28 C8C3C5D3 ######## 259AF#28 ######## #####1F4 #######4 #######4 ######## HCEL......#........4............
Address Seg Addr Length Address Seg Addr Length

 Table: 2599D#48
+###### 2599D#48 25995#2# 25995### ######38 ######## 25995#58 25995### ######38 ######## .r&..r&..........r&..r&.........
+####2# 2599D#68 25995#9# 25995### ######1# ######## 25995#A# 25995### ######1# ######## .r&..r&..........r&..r&.........

Figure 7 (Part 5 of 7). Example Dump Using CEE3DMP

54 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Language Environment Trace Table:

Most recent trace entry is at displacement: ##298#

Displacement Trace Entry in Hexadecimal Trace Entry in EBCDIC
 ------------ -- --------------------------------

+###### Time 2#.32.18.43#976 Date 1998.#3.26 Thread ID... 24ABED8#########
+####1# Member ID.... #3 Flags..... ####4B Entry Type..... #######1
+####18 94818995 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# main
+####38 6#6#6E4D F#F8F55D 4#979989 95A3864D 5D4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# -->(#85) printf()
+####58 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4#

 +####78 4#4#4#4# 4#4#4#4#

+####8# Time 2#.32.18.4484#4 Date 1998.#3.26 Thread ID... 24ABED8#########
+####9# Member ID.... #3 Flags..... ####4B Entry Type..... #######2
+####98 4C6#6#4D F#F8F55D 4#D9F1F5 7EF#F#F# F#F#F#F# C54#C5D9 D9D5D67E F#F#F#F# <--(#85) R15=#######E ERRNO=####
+####B8 F#F#F#F# ######## ######## ######## ######## ######## ######## ######## ####............................
+####D8 ######## ######## ######## ######## ######## ######## ######## ########

 +####F8 ######## ########
...

+##29## Time 2#.32.18.71826# Date 1998.#3.26 Thread ID... 24ABED8#########
+##291# Member ID.... #3 Flags..... ####4B Entry Type..... #######1
+##2918 84A49497 6D956D97 8599834# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# dump_n_perc
+##2938 6#6#6E4D F#F8F55D 4#979989 95A3864D 5D4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# -->(#85) printf()
+##2958 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4#

 +##2978 4#4#4#4# 4#4#4#4#

+##298# Time 2#.32.18.718278 Date 1998.#3.26 Thread ID... 24ABED8#########
+##299# Member ID.... #3 Flags..... ####4B Entry Type..... #######2
+##2998 4C6#6#4D F#F8F55D 4#D9F1F5 7EF#F#F# F#F#F#F# F#4#C5D9 D9D5D67E F#F#F#F# <--(#85) R15=######## ERRNO=####
+##29B8 F#F#F#F# ######## ######## ######## ######## ######## ######## ######## ####............................
+##29D8 ######## ######## ######## ######## ######## ######## ######## ########

 +##29F8 ######## ########

[13]Enclave Storage:
Initial (User) Heap : 25995###
+###### 25995### C8C1D5C3 ###14D48 ###14D48 ######## 25995### 25995#B# ####8### ####7F5# HANC..(...(......r&..r&......."&
+####2# 25995#2# 25995### ######38 C3C4D3D3 ######## 4####### ######## 247##F98 247#3F7# .r&.....CDLL....q....
+####4# 25995#4# 2599387# #####49# ######## ######## ######## ######## 25995### ######38 .r.......................r&.....
+####6# 25995#6# C3C4D3D3 25995#28 8####### ######## 247##6F# 247##77# 2471CEB# #####15# CDLL.r&............#...........&
+####8# 25995#8# ######## ######## ######## ######## 25995### ######1# 259ADBB8 ########r&.............
+####A# 25995#A# 25995### ######1# 259ADBE# ######## ######## ######## ######## ######## .r&.............................
+####C# 25995#C# ######## ######## ######## ######## ######## ######## ######## ########
+####E# 25995#E# - +##7FFF 2599CFFF same as above

LE/37# Anywhere Heap : 24A91###
+###### 24A91### C8C1D5C3 25993### ###14D78 ###14D78 24A91### ######## ##F###28 ######## HANC.r....(...(..z.......#......
+####2# 24A91#2# 24A91### ##F####8 B#35F6D8 B2C###81 24ABED8# ######## #3###### #######1 .z...#....6Q...a................
+####4# 24A91#4# 94818995 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# main
+####6# 24A91#6# 6#6#6E4D F#F8F55D 4#979989 95A3864D 5D4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# -->(#85) printf()

...

LE/37# Below Heap : ###44###
+###### ###44### C8C1D5C3 ###54### ###14DA8 ###14DA8 8##44### ###44388 ####2### ####1C78 HANC.. ...(y..(y..h........
+####2# ###44#2# ###44### ######48 C8C4D3E2 ######## ###4422# ######4# ###1#### #######1HDLS...........
+####4# ###44#4# ###241E# 247#1#38 ######## ######## ######## ######## ######## ########
+####6# ###44#6# ######## ######## ###44### #####128 #7###7## #5E#9##F E#A641DE ##2258C#w......

...

Additional Heap, heapid = 259B24B4 : 259BC###
+###### 259BC### C8C1D5C3 259BF### 259B24B4 259B24B4 259BC### 259BC1A# #####3E8 #####248 HANC..#...............A....Y....
+####2# 259BC#2# 259BC### ######5# ######## 247##C8C 247##AB8 259BC#B# 2471ABD4 4E8#1###&...................M+...
+####4# 259BC#4# #######3 259BC#98 ###2#### 259BC#78 ######## 4BC34DC3 C5D3C4D3 ########q.............C(CELDL....
+####6# 259BC#6# ######## 247##CA# ######## ######## 259BC### ######2# ##14D7D6 E2C9E74BPOSIX.
+####8# 259BC#8# C3D9E3D3 4BC34DC3 C5D3C4D3 D35D#### 259BC### ######18 #######3 #####13# CRTL.C(CELDLL)..................

...

Figure 7 (Part 6 of 7). Example Dump Using CEE3DMP

 Chapter 3. Using Language Environment Debugging Facilities 55

WSA for Program Object(s)
 WSA: 2471CEB#

+###### 2471CEB# C3C5D3C4 D3D34#E6 E2C1#### ######## 6E6E6E4# 84A49497 6D956D97 8599837A CELDLL WSA......>>> dump_n_perc:
+####2# 2471CED# 4#D4A287 4#7B4#89 A24#6C84 15###### E3C8D9C5 C1C44DC1 D3D35D4# C2D3D6C3 Msg # is %d....THREAD(ALL) BLOC
+####4# 2471CEF# D2E24#E2 E3D6D9C1 C7C5#### ######## E2819497 93854#84 A494974# 97999684 KS STORAGE......Sample dump prod
+####6# 2471CF1# A4838584 4#82A84# 83819393 8995874# C3C5C5F3 C4D4D7## 6E6E6E4# 84A49497 uced by calling CEE3DMP.>>> dump
+####8# 2471CF3# 6D956D97 8599837A 4#E38192 8995874# 84A49497 15###### ######## ######## _n_perc: Taking dump............
+####A# 2471CF5# ######## ######## C3C5C5F3 C4D4D74# 86818993 85844#A6 89A3884# 94A28795CEE3DMP failed with msgn
+####C# 2471CF7# 964#6C84 15###### 6E6E6E4# 84A49497 6D956D97 8599837A 4#D78599 83969381 o %d....>>> dump_n_perc: Percola
+####E# 2471CF9# A3899587 4#839695 8489A389 969515## 18#F58F# F#1##7FF 247##A7# 2471CEB# ting condition.....##...........
+###1## 2471CFB# 247##A8# ######## 247##6F# 2471CEB# 18#F58F# F#1##7FF 247##8A8 2471CEB##.......##......y....
+###12# 2471CFD# 247##A8# ######## 247##6F# 2471CEB# 18#F58F# F#1##7FF 247##898 2471CEB##.......##......q....
+###14# 2471CFF# 247##A8# ######## 247##6F# 2471CEB# ######## ######## ######## #########....................

...

[14]Process Control Blocks:

 PCB: ###14558
+###### ###14558 C3C5C5D7 C3C24#4# #3#3#298 ######## ######## ######## ###14788 247E8CD8 CEEPCB ...q...............h.=.Q
+####2# ###14578 247E2D68 247E754# 247E7#68 247#A938 ###13918 ######## ######## ###148B# .=...=. .=....z.................
+####4# ###14598 247E739# 7E###### ######## ###122D4 ######## ######## ######## ######## .=..=..........M................

 MEML: ###14788
+###### ###14788 ######## ######## 247288A8 ######## ######## ######## 247288A8 ########hy..............hy....

+####2# ###147A8 ######## ######## 247288A8 ######## 24719##4 ######## A47ECFC8 ########hy............u=.H....
+####4# ###147C8 ######## ######## 247288A8 ######## ######## ######## 247288A8 ########hy..............hy....
+####6# ###147E8 - +###11F ###148A7 same as above

Thread Synchronization Process Latch Table (PPALT): ###4EF44
+###### ###4EF44 DB8E7E#8 247181F8 ###4E9E# ######## ######## ######## ######## ######## ..=...a8..Z.....................
+####2# ###4EF64 ######## ######## ######## ######## ######## ######## ######## ########
+####4# ###4EF84 ######## ######## ######## ######## DB8E7E#8 247181F8 ###4EA44 ########=...a8........
+####6# ###4EFA4 ######## ######## ######## ######## ######## ######## ######## ########
+####8# ###4EFC4 - +###9FF ###4F943 same as above

...

Figure 7 (Part 7 of 7). Example Dump Using CEE3DMP

Sections of the Language Environment Dump
The sections of the dump listed here appear independently of the Language
Environment-conforming languages used. Each conforming language adds
language-specific storage and file information to the dump.

For a detailed explanation of language-specific dump output:

� For C/C++ routines, see “Finding C/C++ Information in a Language Environ-
ment Dump” on page 152.

� For COBOL routines, see “Finding COBOL Information in a Dump” on
page 196.

� For Fortran routines, see “Finding Fortran Information in a Language Environ-
ment Dump” on page 219.

� For PL/I routines, see “Finding PL/I Information in a Dump” on page 240.

[1] Page Heading

The page heading section appears on the top of each page of the dump and
contains:

 � CEE3DMP identifier
 � Title

For dumps generated as a result of an unhandled condition, the title is “Condi-
tion processing resulted in the Unhandled condition.”

56 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

� Product abbreviation of Language Environment
 � Version number
 � Release number
 � Date
 � Time
 � Page number

[2] Caller Program Unit and Offset

This information identifies the routine name and offset in the calling routine of the
call to the dump service.

[3] Registers on Entry to CEE3DMP

This section of the dump shows data at the time of the call to the dump service.

 � Program mask

The program mask contains the bits for the fixed-point overflow mask, decimal
overflow mask, exponent underflow mask, and significance mask.

� General purpose registers (GPRs) 0–15

On entry to CEE3DMP, the GPRs contain:

GPR 0 Working register
GPR 1 Pointer to the argument list
GPR 2–11 Working registers
GPR 12 Address of CAA
GPR 13 Pointer to caller's stack frame
GPR 14 Address of next instruction to run if the ALL31 run-time option

is set to ON
GPR 15 Entry point of CEE3DMP

� Floating point registers (FPRs) 0, 2, 4, 6

� Storage pointed to by General Purpose Registers

Treating the contents of each register as an address, 32 bytes before and 64
bytes after the address are shown.

[4]-[14] Enclave Information

These sections show information that is specific to an enclave. When multiple
enclaves are dumped, these sections will appear for each enclave.

[4] Enclave Identifier

This statement names the enclave for which information in the dump is provided. If
multiple enclaves exist, the dump service generates data and storage information
for the most current enclave, followed by previous enclaves in a last-in-first-out
(LIFO) order. For more information about dumps for multiple enclaves, see “Multiple
Enclave Dumps” on page 74.

[5]-[11] Thread Information

These sections show information that is specific to a thread. When multiple threads
are dumped, these sections will appear for each thread.

[5] Information for thread

 Chapter 3. Using Language Environment Debugging Facilities 57

This section shows the system identifier for the thread. Each thread has a unique
identifier.

[6] Traceback

In a multithread case, the traceback reflects only the current thread. For all active
routines, the traceback section shows:

� Stack frame (DSA) address

 � Program unit

The primary entry point of the external procedure. For COBOL programs, this is
the PROGRAM-ID name. For C, Fortran, and PL/I routines, this is the compile
unit name. For Language Environment-conforming assemblers, this is either the
EPNAME = value on the CEEPPA macro, or a fully qualified path name.

� Program unit address

� Program unit offset

The offset of the last instruction to run in the routine. If the offset is a negative
number, zero, or a very large positive number, the routine associated with the
offset probably did not allocate a save area or the routine could have been
called using SVC-assisted linkage. Adding the program unit address to the
offset gives you the location of the current instruction in the routine. This offset
is from the starting address of the routine.

 � Entry

For COBOL, Fortran, PL/I, and VisualAge PL/I routines, this is the entry point
name. For C/C++ routines, this is the function name. If a function name or entry
point was not specified for a particular routine, then the string '** NoName **'
will appear.

� Entry point address

� Entry point offset

 � Load module

 � Service level

The latest service level applied to the compile unit (for example, for IBM pro-
ducts, it would be the PTF number).

 � Statement number

The last statement to run in the routine. The statement number appears only if
your routine was compiled with the options required to generate statement
numbers.

 � Status

The reason Language Environment left the program or routine. The status can
be either call or exception.

[7] Condition Information for Active Routines

This section displays the following information for all conditions currently active on
the call chain:

� Statement showing failing routine and stack frame address of routine

58 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

� Condition information block (CIB) address

� Current condition, in the form of a Language Environment message for the con-
dition raised or a Language Environment abend code, if the condition was
caused by an abend

 � Location

For the failing routine, this is the program unit, entry routine, statement number,
and offset.

� Machine state, which shows:

– Instruction length counter (ILC)
 – Interruption code
– Program status word (PSW)
– Contents of GPRs 0–15
– Storage dump near condition (2 hex-bytes of storage near the PSW)

These values are the current values at the time the condition was raised.

[8] Arguments, Registers, and Variables for Active Routines

For each active routine, this section shows:

� Routine name and stack frame address

 � Arguments

For C/C++ and Fortran, arguments are shown here rather than with the local
variables. For COBOL, arguments are shown as part of local variables. PL/I
arguments are not displayed in the Language Environment dump.

 � Saved registers

This lists the contents of GPRs 0–15 at the time the routine transferred control.

� Storage pointed to by the saved registers

Treating the saved contents of each register as an address, 32 bytes before
and 64 bytes after the address shown.

 � Local variables

This section displays the local variables and arguments for the routine. This
section also shows the variable type. Variables are displayed only if the symbol
tables are available. To generate a symbol table and display variables, use the
following compile options:

– For C, use TEST(SYM).
– For C++, use TEST.
– For VS COBOL II, use FDUMP.
– For COBOL/370, use TEST(SYM).
– For COBOL for OS/390 & VM, use TEST(SYM).
– For Fortran, use SDUMP.
– For PL/I arguments and variables are not displayed.

[9] Control Blocks for Active Routines

For each active routine controlled by the STACKFRAME option, this section lists
contents of related control blocks. The Language Environment-conforming language
determines which language-specific control blocks appear. The possible control
blocks are:

 Chapter 3. Using Language Environment Debugging Facilities 59

 � Stack frame
� Condition information block
� Language-specific control blocks

[10] Storage for Active Routines

This displays local storage for each active routine. The storage is dumped in
hexadecimal, with EBCDIC translations on the right side of the page. There can be
other information, depending on the language used. For C/C++ routines, this is the
stack frame storage. For COBOL programs, this is language-specific information,
WORKING-STORAGE, and LOCAL-STORAGE.

[11] Control Blocks Associated with the Thread

This section lists the contents of the Language Environment common anchor area
(CAA), thread synchronization queue element (SQEL) and dummy stack frame.
Other language-specific control blocks can appear in this section.

[12] Enclave Control Blocks

This section lists the contents of the Language Environment enclave data block
(EDB) and enclave member list (MEML). The information presented may vary
depending on which run-time options are set.

� C If the POSIX run-time option is set to ON, this section lists the contents of
the mutex and condition variable control blocks, the enclave level latch table,
and the thread synchronization trace block and trace table.

� If DLLs have been loaded, this section shows information for each DLL
including the DLL name, load address, use count, writeable static area (WSA)
address, and the thread id of the thread that loaded the DLL.

� If the TRACE run-time option is set to ON, this section shows the contents of
the Language Environment trace table.

� If the HEAPCHK run-time option is set to ON, this section shows the contents
of the HEAPCHK options control block (HCOP) and the HEAPCHK element
tables (HCEL). A HEAPCHK element table contains the location and length of
all allocated storage elements for a heap in the order that they were allocated.

Other language-specific control blocks can appear in this section.

[13] Enclave Storage

This section shows the Language Environment heap storage. For C/C++ and PL/I
routines, heap storage is the dynamically allocated storage. For COBOL programs,
it is the storage used for WORKING-STORAGE data items. This section also
shows the writeable static area (WSA) storage for program objects. Other
language-specific storage can appear in this section.

[14] Process Control Blocks

This section lists the contents for the Language Environment process control block
(PCB), process member list (MEML), and if the POSIX run-time option is set to ON,
the process level latch table. Other language-specific control blocks can appear in
this section.

60 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Debugging with Specific Sections of the Language Environment Dump
The following sections describe how you can use particular blocks of the dump to
help you debug errors.

The Tracebacks, Condition Information, and Data Values Section
The CEE3DMP call with dump options TRACEBACK, CONDITION, and VARI-
ABLES generates output that contains a traceback, information about any condi-
tions, and a list of arguments, registers, and variables.

The traceback, condition, and variable information provided in the Language Envi-
ronment dump can help you determine the location and context of the error without
any additional information. The traceback section includes a sequential list for all
active routines and the routine name, statement number, and offset where the
exception occurred. The condition information section displays a message
describing the condition and the address of the condition information block. The
arguments, registers, and variables section shows the values of your arrays, struc-
tures, arguments, and data during the sequence of calls in your application. Static
data values do not appear. Single quotes indicate character fields.

These sections of the dump are shown in Figure 7 on page 50.

| The Upward-Growing (Non-XPLINK) Stack Frame Section
The stack frame, also called dynamic save area (DSA), for each active routine is
listed in the full dump.

A stack frame chain is associated with each thread in the run-time environment and
is acquired every time a separately compiled procedure or block is entered. A stack
frame is also allocated for each call to a Language Environment service. All stack
frames are back-chained with a stopping stack frame (also called a dummy DSA)
as the first stack frame on the stack. Register 13 addresses the recently active
stack frame or a standard register save area (RSA). The standard save area back
chain must be initialized, and it holds the address of the previous save area. Not all
Language Environment-conforming compilers set the forward chain; thus, it cannot
be guaranteed in all instances. Calling routines establish the member-defined fields.

When a routine makes a call, registers 0–15 contain the following values:

� R1 is a pointer to parameter list or 0 if no parameter list passed.
� R0, R2–R11 is unreferenced by Language Environment. Caller’s values are

passed transparently.
� R12 is the pointer to the CAA if entry to an external routine.
� R13 is the pointer to caller’s stack frame.
� R14 is the return address.
� R15 is the address of the called entry point.

With an optimization level other than 0, C/C++ routines save only the registers used
during the running of the current routine. Non-Language Environment RSAs can be
in the save area chain. The length of the save area and the saved register contents
do not always conform to Language Environment conventions. For a detailed
description of stack frames Language Environment storage management, see
OS/390 Language Environment Programming Guide. Figure 8 on page 62 shows
the format of the upward-growing stack frame.

Note: The Member-defined fields are reserved for the specific higher level lan-
guage.

 Chapter 3. Using Language Environment Debugging Facilities 61

Member-defined

Member-defined

Reserved for Future Condition Handling

Reserved for Future Use

CEESAMODE - Return Address of the Module That Caused
the Last Mode Switch

Member-defined

CEEDSANAB - Current Next Available Byte (NAB) in Stack

CEEDSAPNAB - End of Prolog NAB

Member-defined

Member-defined

Member-defined

Member-defined

Reserved for Debugging

Member-defined

48

4C

50

54

58

5C

60

64

68

6C

70

74

78

7C

Member-definedFlags

CEEDSABACK - Standard Save Area Back Chain

CEEDSAFWD - Standard Save Area Forward Chain

CEEDSASAVE - GPRs 14, 15, 0-12

00

04

08

0C

~~ ~~

| Figure 8. Upward-Growing (Non-XPLINK) Stack Frame Format

| The Downward-Growing (XPLINK) Stack Frame Section
| Figure 9 on page 63 shows the format of the downward-growing stack frame.

62 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Guard Page (4 KB)

Stack Frames for called functions

Backchain
Environment
Entry Point

Return Address
R8
R9

R10
R11
R12
R13
R14
R15

Reserved (8 bytes)

Debug Area (4 bytes)

Arg Area Prefix (4 Bytes)
Argument Area:

Parm 1
Parm 2

Local (automatic) Storage

Savearea
(48 bytes)

Saved FPRs Saved ARs

High
Addresses

Low
Addresses

Stack
Pointer (R4)

+2048

+2096

+2104
+2108

+2112

| Figure 9. Downward-Growing (XPLINK) Stack Frame Format

| For detailed information about the downward-growing stack, register conventions
| and parameter passing conventions, see OS/390 Language Environment Program-
| ming Guide.

The Common Anchor Area
Each thread is represented by a common anchor area (CAA), which is the central
communication area for Language Environment. All thread- and enclave-related
resources are anchored, provided for, or can be obtained through the CAA. The
CAA is generated during thread initialization and deleted during thread termination.
When calling Language Environment-conforming routines, register 12 points to the
address of the CAA.

Use CAA fields as described. Do not modify fields and do not use routine
addresses as entry points, except as specified. Fields marked ‘Reserved’ exist for
migration of specific languages, or internal use by Language Environment. Lan-
guage Environment defines their location in the CAA, but not their use. Do not use
or reference them except as specified by the language that defines them.

Figure 10 on page 64 shows the format of the Language Environment CAA.

 Chapter 3. Using Language Environment Debugging Facilities 63

CEECAAGETSX

CEECAADDSA

CEECAASECTSIZ

0002DC

0002E0

0002E4

- Addr of CEL Stack Stg Extender

- Addr of the Dummy DSA

- Vector Section Size

CEECAAGETLS

CEECAACELV

CEECAAGETS

CEECAALBOS

CEECAALEOS

CEECAALNAB

- Addr of CEL Library Stack Mgr

- Addr of CEL LIBVEC

- Addr of CEL Get Stack Stg Rtn

- Start of Library Stack Stg Seg

- End of Library Stack Stg Seg

- Next Available Byte of Lib Stg

ReservedCEECAA_PMCEECAALEVEL
CAA Level ID

- Start of Current Storage Segment

- End of Current Storage Segment

- 10 thru 43

- POSIX Thread-Level Return Code

CEECAAEYE CL8’CEECAA ’

Reserved

CEECAAFLAG0 Reserved CEECAALANGP Reserved

Reserved

CEECAABOS

CEECAAEOS

Reserved

CEECAATORC

~~

-18

-0C - -01

000000

000004

000008

00000C

000010

000044

Reserved

CEECAATOVF

Reserved

CEECAAATTN

Reserved

CEECAAHLLEXIT

CEECAATHOOKS

000074

000120

000124

00015C

0001A8

- 48 thru 73

- Addr of Stack Overflow Routine

- 78 thru 11F

- Addr of CEL Attention Handler

- 124 thru 15B

- Flag for User Hook Exit

- Execute Hooks - 18 4-Byte Hooks

CEECAASYSTM CEECAAHRDWR CEECAASBSYS CEECAAFLAG2

0001F0

0002AC

0002B0

Reserved

0002B4

0002B8

0002BC

0002C0

0002C4

0002C8

CEECAADMC

CEECAAACD

CEECAAARS

CEECAAERR

00024C

0002D0

0002D4

0002D8

- Addr of ESPIE Shunt Routine

- Reserved

- Reserved

- Addr of the Current
Condition Information Block

- 1F0 thru 2AB

~~

~~

~~

Figure 10 (Part 1 of 2). Common Anchor Area

64 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

CEECAA_DCRENT

CEECAA_DANCHOR

- Reserved

- Reserved Reserved

- Addr of OpenEdition MVS Library Vector

CEECAAPICICB - Addr of the Preinit Compatibility
Control Block

CEECAA_SIGNAL-STATUS00035C - of Terminating Thread

CEECAATHDID

- SIGSAFE Counter

- SIGSAFE Flags

- Thread ID

- Reserved

- Reserved

- Vector Partial Sum Number

- Log of Vector Section Size

- Addr of the EDB

- Addr of the PCB

- Addr of the CAA Eyecatcher

- Addr of this CAA

- Stack Overflow for Non-DSA Save Area

CEECAAPARTSUM

CEECAASSEXPNT

CEECAAEDB

CEECAAPCB

CEECAAEYEPTR

CEECAAPTR

CEECAAGETS1

0002E8

0002EC

0002F0

0002F4

0002F8

0002FC

000300

CEECAASHAB

CEECAAPRGCK

CEECAAFLAG1

CEECAAURC

CEECAAESS

CEECAALESS

CEECAAOGETS

CEECAAOGETLS

000304

000308

00030C

000310

000314

000318

00031C

000320

000324

- Reserved

- Program Interrupt Code for CAADMC

Reserved

- Thread Level Return Code

- End of Current User Stack

- End of Current Library Stack

- Overflow from User Stack

000328

00032C

000330

CEECAARSRV2

CEECAAGOSMR

CEECAALEOV

000334

000338

00033C

000344

000348

CEECAA_CTOC

CEECAACICSRSN

CEECAAMEMBR

00034C

000354

000358

- Reserved

- CICS Reason Code

- Addr of Thread Member List

- Overflow from Library Stack

CEECAA_SIGSCTR

CEECAA_SIGSFLG

~~ ~~

~~ ~~

Figure 10 (Part 2 of 2). Common Anchor Area

Table 3 contains a list of CAA fields:

Table 3 (Page 1 of 6). List of CAA Fields

CAA Field Explanation

CEECAAFLAG0 CAA flag bits. The bits are defined as follows:

Bit Description

0–5 Reserved.

6 CEECAAXHDL. A flag used by the condition
handler. If the flag is set to 1, the application
requires immediate return/percolation to the
system on any interrupt or condition handler
event.

7 Reserved.

 Chapter 3. Using Language Environment Debugging Facilities 65

Table 3 (Page 2 of 6). List of CAA Fields

CAA Field Explanation

CEECAALANGP PL/I language compatibility flags external to Language
Environment. The bits are defined as follows:

Bit Description

0–3 Reserved.

4 CEECAATHFN. A flag set by PL/I to indicate a
PL/I FINISH ON-unit is active. If the flag is set
to 1, no PL/I FINISH ON-unit is active. If the
flag is set to 0, a PL/I FINISH ON-unit could be
active.

5–7 Reserved.

CEECAABOS Start of the current storage segment.

This field is initially set during thread initialization. It indi-
cates the start of the current stack storage segment. It is
altered when the current stack storage segment is
changed.

CEECAAEOS End of the current storage segment. This field is initially
set during thread initialization. It indicates the end of the
current stack storage segment. It is altered when the
current stack storage segment is changed.

CEECAATORC Thread level return code. The thread level return code set
by CEESRC callable service.

CEECAATOVF Address of stack overflow routine.

CEECAAATTN Address of the Language Environment attention handling
routine. The address of the Language Environment atten-
tion handling routine supports common run-time
environment’s polling code convention for attention proc-
essing.

CEECAAHLLEXIT Address of the Exit List Control Block set by the HLL user
exit CEEBINT.

CEECAAHOOKS Hook area. This is the start of 18 fullword execute hooks.
Language Environment initializes each fullword to
X'07000000'. The hooks can be altered to support
various debugging hook mechanisms.

CEECAASYSTM Underlying operating system. The value indicates the
operating system supporting the active environment.

Value Operating System

0 Undefined. This value should not appear after
Language Environment is initialized.

1 Unsupported.

2 VM.

3 OS/390.

66 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Table 3 (Page 3 of 6). List of CAA Fields

CAA Field Explanation

CEECAAHRDWR Underlying hardware. This value indicates the type of
hardware on which the routine is running.

Value Hardware

0 Undefined. This value should not appear after
Language Environment is initialized.

1 Unsupported.

2 System/370, non-XA.

3 System/370, XA.

4 System/370, ESA.

CEECAASBSYS Underlying subsystem. This value indicates the sub-
system (if any) on which the routine is running.

Value Subsystem

0 Undefined. This value should not occur after
Language Environment is initialized.

1 Unsupported.

2 None. The routine is not running under a Lan-
guage Environment-recognized subsystem.

3 TSO.

4 IMS.

5 CICS.

CEECAAFLAG2 CAA Flag 2.

Bit Description

0 Bimodal addressing is available.

1 Vector hardware is available.

2 Thread terminating.

3 Initial thread.

4 Library trace is active. The TRACE run-time
option was set.

5 Reserved.

6 CEECAA_ENQ_Wait_Interruptible. Thread is in
an enqueue wait.

7 Reserved.

CEECAALEVEL Language Environment level identifier. This contains a
unique value that identifies each release of Language
Environment. This number is incremented for each new
release of Language Environment.

CEECAA_PM Image of current program mask.

CEECAAGETLS Address of stack overflow for library routines.

CEECAACELV Address of the Language Environment library vector. This
field is used to locate dynamically loaded Language Envi-
ronment routines.

 Chapter 3. Using Language Environment Debugging Facilities 67

Table 3 (Page 4 of 6). List of CAA Fields

CAA Field Explanation

CEECAAGETS Address of the Language Environment prolog stack over-
flow routine. The address of the Language Environment
get stack storage routine is included in prolog code for
fast reference.

CEECAALBOS Start of the library stack storage segment. This field is ini-
tially set during thread initialization. It indicates the start
of the library stack storage segment. It is altered when
the library stack storage segment is changed.

CEECAALEOS End of the library stack storage segment. This field is ini-
tially set during thread initialization. It indicates the end of
the library stack storage segment. It is altered when the
library stack storage segment is changed.

CEECAALNAB Next available library stack storage byte. This contains
the address of the next available byte of storage on the
library stack. It is modified when library stack storage is
obtained or released.

CEECAADMC Language Environment shunt routine address. Its value is
initially set to 0 during thread initialization. If it is nonzero,
this is the address of a routine used in specialized excep-
tion processing.

CEECAAACD Most recent CAASHAB abend code.

CEEAAABCODE Most recent abend completion code.

CEECAAARS Most recent CAASHAB reason code.

CEECAAARSNCODE Most recent abend reason code.

CEECAAERR Address of the current condition information block. After
completion of initialization, this always points to a condi-
tion information block. During exception processing, the
current condition information block contains information
about the current exception being processed. Otherwise,
it indicates no exception being processed.

CEECAAGETSX Address of the user stack extender routine. This routine
is called to extend the current stack frame in the user
stack. Its address is in the CEECAA for performance
reasons.

CEECAADDSA Address of the Language Environment dummy DSA. This
address determines whether a stack frame is the dummy
DSA, also known as the zeroth DSA.

CEECAASECTSIZ Vector section size. This field is used by the vector math
services.

CEECAAPARTSUM Vector partial sum number. This field is used by the
vector math services.

CEECAASSEXPNT Log of the vector section size. This field is used by the
vector math services.

CEECAAEDB Address of the Language Environment EDB. This field
points to the encompassing EDB.

CEECAAPCB Address of the Language Environment PCB. This field
points to the encompassing PCB.

68 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Table 3 (Page 5 of 6). List of CAA Fields

CAA Field Explanation

CEECAAEYEPTR Address of the CAA eye catcher. The CAA eye catcher is
CEECAA. This field can be used for validation of the
CAA.

CEECAAPTR Address of the CAA. This field points to the CAA itself
and can be used in validation of the CAA.

CEECAAGETS1 Non-DSA stack overflow. This field is the address of a
stack overflow routine, which cannot guarantee that the
current register 13 is pointing at a stack frame. Register
13 must point, at a minimum, to a save area.

CEECAASHAB ABEND shunt routine. Its value is initially set to zero
during thread initialization. If it is nonzero, this is the
address of a routine used in specialized exception proc-
essing for ABENDs that are intercepted in the ESTAE
exit.

CEECAAPRGCK Routine interrupt code for CEECAADMC. If
CEECAADMC is nonzero, and a routine interrupt occurs,
this field is set to the routine interrupt code and control is
passed to the address in CEECAAMDC.

CEECAAFLAG1 CAA flag bits. The bits are defined as follows:

Bit Description
0 CEECAASORT. A call to DFSORT is active.
1–7 Reserved.

CEECAAURC Thread level return code. This is the common place for
members to set the return codes for subroutine-to-
subroutine return code processing.

CEECAAESS End of current user stack.

CEECAALESS End of current library stack.

CEECAAOGETS Overflow from user stack allocations.

CEECAAOGETLS Overflow from library stack allocations.

CEECAARSRV1 Reserved.

CEECAAPICICB Address of the preinitialization compatibility control block.

CEECAAOGETSX User DSA exit from OPLINK.

CEECAARSRV2 Reserved.

CEECAAGOSMR Go some more—Used CEEHTRAV multiple.

CEECAALEOV This field is the address of the Language Environment
library vector for OS/390 UNIX support.

CEECAA_SIGSCTR SIGSAFE counter.

 Chapter 3. Using Language Environment Debugging Facilities 69

Table 3 (Page 6 of 6). List of CAA Fields

CAA Field Explanation

CEECAA_SIGSFLG SIGSAFE flags. SIGSAFE flags indicate the signal safety
of the library.

Bit Description

0 CEECAA_SIGPUTBACK. The signal cannot be
delivered, therefore the signal is put back to the
kernel.

| 1 CEECAA_SA_RESTART. Indicates that a
| signal registered with the SA_RESTART flag
| interrupted the last kernel call, and the signal
| catcher returned.

2 Reserved.

3 CEECAA_SIGSAFE. It is safe to deliver the
signal, while in library code.

4 CEECAA_CANCELSAFE. It is safe to deliver
the cancel signal, while in library code.

CEECAATHDID Thread id. This field is the thread identifier.

CEECAA_DCRENT DCE's read/write static external anchor.

CEECAA_DANCHOR DCE's per-thread anchor.

CEECAA_CTOC TOC anchor for CRENT.

CEECAACICSRSN CICS reason code from member language.

CEECAAMEMBR Address of thread-level member list.

CEECAA_SIGNAL_STATUS Signal status of the terminating thread member list.

The Condition Information Block
The Language Environment condition manager creates a condition information
block (CIB) for each condition encountered in the Language Environment environ-
ment. The CIB holds data required by the condition handling facilities and pointers
to locations of other data. The address of the current CIB is located in the CAA.

For COBOL, Fortran, and PL/I applications, Language Environment provides
macros (in the SCEESAMP data set) that map the CIB. For C/C++ applications, the
macros are in leawi.h.

Figure 11 on page 71 shows the condition information block.

70 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Figure 11 (Part 1 of 2). Condition Information Block

 Chapter 3. Using Language Environment Debugging Facilities 71

Pointer to Language Environment’s
Copy of the OpenEdition PPSD

+104

Address of the SDWA
Associated with the Condition

+F8

Name of the Abnormal
Termination Exit in Control

Return or Action Code
From Condition Handler

+EC

Identification Code at
Time of Interrupt

+E4

Token Provided by CEEHDLR
or SF Address

+D4

+D8

+DC

+E0

Address of Feedback Token
for Signaled Conditions

Save Area of the First
Language Environment-Conforming Prolog

First Language Environment-Conforming Prolog

+F4

Member Function Code

Address of Feedback Token
for Signaled Conditions

Address of Save Area
at Time of EVENT

Abend Load Module Name

Abend Reason Word+B8

+BC

+C4

+C8

+CC

~~ ~~

~~ ~~

~~ ~~

~~ ~~

~~ ~~

~~ ~~

Figure 11 (Part 2 of 2). Condition Information Block

The flags for Condition Flag 4:

2 The resume cursor has been moved
4 Message service has processed the condition
8 The resume cursor has been moved explicitly

The flags for Status Flag 5, Language Environment events:

1 Caused by an attention interrupt
2 Caused by a signaled condition
4 Caused by a promoted condition
8 Caused by a condition management raised TIU
32 Caused by a condition signaled via CEEOKILL 1

64 Caused by a program check

1 The signaled via CEEOKILL flag is always set with the signaled flag; thus, a signaled condition can have a value of either 2 or 34.
(The value is 2 if the signaled condition does not come through CEEOKILL. If it comes through CEEOKILL, its value is 2+32=34.)

72 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

128 Caused by an abend

The flags for Status Flag 6, Language Environment actions:

2 Doing stack frame zero scan
4 H-cursor pointing to owning SF
8 Enable only pass (no condition pass)
16 MRC type 1
32 Resume allowed
64 Math service condition
128 Abend reason code valid

The language-specific function codes for the CIB:

X'1' For condition procedure
X'2' For enablement
X'3' For stack frame zero conditions

Using the Machine State Information Block: The Language Environment
machine state information block contains condition information pertaining to the
hardware state at the time of the error. Figure 12 on page 74 shows the machine
state information block.

 Chapter 3. Using Language Environment Debugging Facilities 73

Figure 12. Machine State Information Block

Multiple Enclave Dumps
If multiple enclaves are used, the dump service generates data and storage infor-
mation for the most current enclave and moves up the chain of enclaves to the
starting enclave in a LIFO order. For example, if two enclaves are used, the dump
service first generates output for the most current enclave. Then the service creates
output for the previous enclave. A thread terminating in a non-POSIX environment
is analogous to an enclave terminating because Language Environment Version 1
supports only single threads.

Figure 13 on page 75 illustrates the information available in the Language Environ-
ment dump and the order of information for multiple enclaves.

74 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Enclave2

Information forEnclave1

Traceback:
Callchainof routines

Condition Information forActiveRoutine:
Failingroutine information

Arguments,Registers,andVariables forActive
Routines:
Symbolicdumpfor routines

ControlBlocks forActiveRoutines:
DSAsfor routines
CIBs for routines
Language-specificcontrolblocks

StorageforActiveRoutines:
Language-specific information
Variables for routines

ControlBlocksAssociatedwith theThread:
Commonanchorarea(CAA)
DummyDSA

EnclaveControlBlocks:
Enclavedatablock(EDB)
Enclave-levelmember list (MEML)

EnclaveStorage:
Heapstoragefor routines

ProcessControlBlocks:
Processcontrolblock(PCB)
Process-levelmember list (MEML)
Language-specificcontrolblocks

LanguageEnvironment LanguageEnvironment

Thread2
Main2
subroutine
subroutine
subroutine
.
.
.

Enclave1

Process

Thread1
Main1
subroutine
subroutine
subroutine
.
.
.

Entry Information
(CEE3DMPcallsonly)

Information forEnclave2

Traceback:
Callchainof routines

Condition Information forActiveRoutine:
Failingroutine information

Arguments,Registers,andVariables forActive
Routines:
Symbolicdumpfor routines

ControlBlocks forActiveRoutines:
DSAsfor routines
CIBs for routines
Language-specificcontrolblocks

StorageforActiveRoutines:
Language-specific information
Storagefor routines
Variables for routines

ControlBlocksAssociatedwith theThread:
Commonanchorarea(CAA)
DummyDSA

EnclaveControlBlocks:
Enclavedatablock(EDB)
Enclave-levelmember list (MEML)
Language-specificcontrolblocks

EnclaveStorage:
Heapstoragefor routines

ProcessControlBlocks:
Processcontrolblock(PCB)
Process-levelmember list (MEML)
Language-specificcontrolblocks

Figure 13. Language Environment Dump of Multiple Enclaves

 Chapter 3. Using Language Environment Debugging Facilities 75

Generating a System Dump
A system dump contains the storage information needed to diagnose errors. You
can use Language Environment to generate a system dump though any of the fol-
lowing methods:

TERMTHDACT(UAONLY, UATRACE, or UADUMP)
You can use these run-time options, with TRAP(ON), to generate a system
dump if an unhandled condition of severity 2 or greater occurs. See “Gener-
ating a Language Environment Dump with TERMTHDACT” on page 40 for
further details regarding the level of dump information produced by each of the
TERMTHDACT suboptions.

TRAP(ON,NOSPIE) TERMTHDACT(UAIMM)
TRAP(ON,NOSPIE) TERMTHDACT(UAIMM) generates a system dump of the
user address space of the original abend or program interrupt prior to the Lan-
guage Environment condition manager processing the condition.

ABPERC(abcode)
The ABPERC run-time option specifies one abend code that is exempt from
the Language Environment condition handler. The Language Environment con-
dition handler percolates the specified abend code to the operating system.
The operating system handles the abend and generates a system dump.

ABPERC is ignored under CICS.

Abend Codes in Initialization Assembler User Exit
Abend codes listed in the initialization assembler user exit are passed to the
operating system. The operating system can then generate a system dump.

CEE3ABD
You can use the CEE3ABD callable service to cause the operating system to
handle an abend.

Refer to system or subsystem documentation for detailed system dump information.
If you are running under VM, refer to the system documentation for the procedures
to generate and interpret a system dump.

The method for generating a system dump varies for each of the Language Envi-
ronment run-time environments. The following sections describe the recommended
steps needed to generate a system dump in a batch, IMS, CICS, and the OS/390
UNIX shell run-time environments. Other methods may exist, but these are the
recommended steps for generating a system dump.

See OS/390 Language Environment Programming Guide for details on setting Lan-
guage Environment run-time options.

Generating a System Dump in a Batch Run-Time Environment
To generate a system dump in a batch run-time environment complete the following
steps:

1. Specify run-time options TERMTHDACT(UAONLY, UADUMP, UATRACE, or
UAIMM), and TRAP(ON). If you specify the suboption UAIMM then you must
set TRAP(ON,NOSPIE). The TERMTHDACT suboption determines the level of
detail of the Language Environment formatted dump. See “Generating a Lan-
guage Environment Dump with TERMTHDACT” on page 40 for further details
on the TERMTHDACT suboptions.

76 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

2. Include a SYSMDUMP DD card with the desired data set name and DCB
information: LRECL=4160, BLKSIZE=4160, and RECFM=FBS.

3. Rerun the program.

Generating a System Dump in an IMS Run-Time Environment
To generate a system dump in an IMS run-time environment you must complete
the following steps:

1. Specify run-time options TERMTHDACT(UAONLY, UADUMP, UATRACE, or
UAIMM), ABTERM(ABEND), and TRAP(ON). If you specify the suboption
UAIMM then you must set TRAP(ON,NOSPIE). The TERMTHDACT suboption
determines the level of detail of the Language Environment formatted dump.
See “Generating a Language Environment Dump with TERMTHDACT” on
page 40 for further details on the TERMTHDACT suboptions.

Note: In an IMS environment you can only use CEEUOPT, CEEDOPT, or
CEEROPT to change run-time options. CEEUOPT cannot be used by
OS/VS COBOL or non-Language Environment assembler.

2. Include a SYSMDUMP DD card with the desired data set name and DCB
information: LRECL=4160, BLKSIZE=4160, and RECFM=FBS.

3. Rerun the program.

Generating a System Dump in a CICS Run-Time Environment
Under CICS, a system dump provides the most useful information for diagnosing
problems. To generate a system dump perform the following steps:

1. Specify run-time options TERMTHDACT(UAONLY, UADUMP, or UATRACE),
ABTERM(ABEND), and TRAP(ON). The TERMTHDACT suboption determines
the level of detail of the Language Environment formatted dump. See “Gener-
ating a Language Environment Dump with TERMTHDACT” on page 40 for
further details on the TERMTHDACT suboptions.

2. Update the transaction dump table with the CICS supplied CEMT command,

CEMT SET TRD(4#XX) SYS ADD

A sample CEMT output is shown:

STATUS: RESULTS - OVERTYPE TO MODIFY
Trd(4#88) Sys Loc Max(999) Cur(####)

3. Rerun the program.

If you have a Language Environment U4038 abend CICS will not generate a
system dump. In order to generate diagnostic information you must create a Lan-
guage Environment U4039 abend by performing the following steps:

1. Specify DUMP=YES in CICS DFHSIT

2. Relink your program by including CEEUOPT.

Note: CEEUOPT cannot be used by OS/VS COBOL or non-Language Envi-
ronment assembler.

3. Take CEECOPT from SCEESAMP and modify the Language Environment run-
time options TERMTHDACT(UAONLY, UATRACE, or UADUMP),
ABTERM(ABEND), and TRAP(ON). By setting these run-time options a Lan-
guage Environment U4039 abend occurs which generates a system dump.

 Chapter 3. Using Language Environment Debugging Facilities 77

4. Rerun the program

Note: In the CICS run-time environment the TERMTHDACT suboption UAIMM is
processed the same as UAONLY.

Generating a System Dump in an OS/390 UNIX Shell
To generate a system dump from an OS/390 UNIX shell perform the following
steps:

1. Specify where to write the system dump

� To write the system dump to an OS/390 data set, issue the command:

export _BPXK_MDUMP=filename

where filename is a fully qualified OS/390 data set name with DCB
information: LRECL=4160, BLKSIZE=4160, and RECFM=FBS, e.g.

export _BPXK_MDUMP=hlq.mydump

� To write the system dump to an HFS file, issue the command:

export _BPXK_MDUMP=filename

where filename is a fully qualified HFS filename, e.g.

export _BPXK_MDUMP=/tmp/mydump.dmp

2. Specify Language Environment run-time options:

export _CEE_RUNOPT="termthdact(suboption)"

where suboption = UAONLY, UADUMP, UATRACE, or UAIMM. If UAIMM is
set, TRAP(ON,NOSPIE) must also be set. The TERMTHDACT suboption deter-
mines the level of detail of the Language Environment formatted dump. See
“Generating a Language Environment Dump with TERMTHDACT” on page 40
for further details regarding the TERMTHDACT suboptions.

3. Rerun the program.

4. The system dump is written to the data set name or HFS filename specified.

See OS/390 UNIX System Services Command Reference for additional
BPXK_MDUMP information.

You can also specify the signal SIGDUMP on the kill command to generate a
system dump of the user address space. See OS/390 UNIX System Services
Command Reference for more information regarding the SIGDUMP signal.

Formatting and Analyzing System Dumps on OS/390
On OS/390, you can use the interactive problem control system (IPCS) to format
and analyze OS/390 system dumps. Language Environment provides an IPCS
verbexit LEDATA that can be used to format Language Environment control blocks.

For more information on using IPCS, refer to OS/390 MVS IPCS User's Guide.

78 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Preparing to Use the Language Environment IPCS Verbexit LEDATA
Before you can use IPCS to format Language Environment control blocks, you
must:

� Ensure that your IPCS job can find the CEEIPCSP member.

IPCS provides an exit control table with imbed statements to enable other pro-
ducts to supply exit control information. The IPCS default table, BLSCECT,
normally in the SYS1.PARMLIB library, has the following entry for Language
Environment:

IMBED MEMBER(CEEIPCSP) ENVIRONMENT(IPCS)

The Language Environment-supplied CEEIPCSP member, installed in the
SYS1.PARMLIB library, contains the Language Environment-specific entries for
the IPCS exit control table.

Provide an IPCSPARM DD statement to specify the libraries containing the
IPCS control tables. For example:

//IPCSPARM DD DSN=SYS1.PARMLIB,DISP=SHR

� Ensure that your IPCS job can find the Language Environment-supplied dump
exit routines installed in the SYS1.MIGLIB library.

Language Environment IPCS Verbexit – LEDATA
Use the LEDATA verbexit to format data for the Language Environment component
of OS/390. This verbexit provides information about the following topics:

� A summary of the Language Environment at the time of the dump
 � Run-time Options
� Storage Management Control Blocks
� Condition Management Control Blocks
� Message Handler Control Blocks
� C/C++ Control Blocks
� COBOL Control Blocks

 Format

 Chapter 3. Using Language Environment Debugging Facilities 79

 Syntax

VERBEXIT LEDATA ['parameter[,parameter]...']

Report Type Parameters:
[SUM]
[HEAP | STACK | SM]
[CM]
[MH]
[CEEDUMP]
[ALL]

Data Selection Parameters:
[DETAIL | EXCEPTION]

Control Block Selection Parameters:
[CAA(caa-address)]
[DSA(dsa-address)]
[TCB(tcb-address)]
[ASID(address-space-id)]

 Parameters

Report Type Parameters
Use these parameters to select the type of report. You can specify as many reports
as you wish. If you omit these parameters, the default is SUMMARY.

SUMmary
Requests a summary of the Language Environment at the time of the dump.
The following information is included:

 � TCB address
� Address Space Identifier
� Language Environment Release

 � Active members
� Formatted CAA, PCB, RCB, EDB and PMCB
� Run-time Options in effect

HEAP | STACK | SM

HEAP
Requests a report on Storage Management control blocks pertaining to
HEAP storage, as well as a detailed report on heap segments. The detailed
report includes information about the free storage tree in the heap segment,
and information about each allocated storage element.

STACK
Requests a report on Storage Management control blocks pertaining to
STACK storage.

SM
Requests a report on Storage Management control blocks. This is the same
as specifying both HEAP and STACK.

80 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

CM
Requests a report on Condition Management control blocks.

MH
Requests a report on Message Handler control blocks.

CEEdump
Requests a CEEDUMP-like report. Currently this includes the traceback, the
Language Environment trace, and thread synchronization control blocks at
process, enclave and thread levels.

ALL
Requests all above reports, as well as C/C++ and COBOL reports.

Data Selection Parameters: Data selection parameters limit the scope of the data
in the report. If no data selection parameter is selected, the default is DETAIL.

DETail
Requests formatting all control blocks for the selected components. Only signif-
icant fields in each control block are formatted.

Note: For the Heap and Storage Management Reports, the DETAIL param-
eter will provide a detailed heap segment report for each heap segment
in the dump. The detailed heap segment report includes information on
the free storage tree in the heap segments, and all allocated storage
elements. This report will also identify problems detected in the heap
management data structures. For more information about the Heap
Reports, see “Understanding the HEAP LEDATA Output” on page 96.

EXCeption
Requests validating all control blocks for the selected components. Output is
only produced naming the control block and its address for the first control
block in a chain that is invalid. Validation consists of control block header verifi-
cation at the very least.

Note: For the Summary, CEEDUMP, C/C++, and COBOL reports, the
EXCEPTION parameter has not been implemented. For these reports,
DETAIL output is always produced.

Control Block Selection Parameters: Use these parameters to select the CAA
and DSA control blocks used as the starting points for formatting.

CAA(caa-address)
specifies the address of the CAA. If not specified, the CAA address is obtained
from the TCB.

DSA(dsa-address)
specifies the address of the DSA. If not specified, the DSA address is assumed
to be the register 13 value for the TCB.

TCB(tcb-address)
specifies the address of the TCB. If not specified, the TCB address of the
current TCB from the CVT is used.

ASID(address-space-id)
specifies the hexadecimal address space id. If not specified, the IPCS default
address space id is used. This parameter is not needed when the dump only
has one address space.

 Chapter 3. Using Language Environment Debugging Facilities 81

Understanding the Language Environment IPCS Verbexit LEDATA
Output

The Language Environment IPCS Verbexit LEDATA generates formatted output of
the Language Environment run-time environment control blocks from a system
dump. Figure 14 on page 83 illustrates the output produced when the LEDATA
Verbexit is invoked with the ALL parameter. The system dump being formatted was
obtained by specifying the TERMTHDACT(UADUMP) run-time option when running
the program CELSAMP in Figure 5 on page 44. “Sections of the Language Envi-
ronment LEDATA Verbexit Formatted Output” on page 93 describes the information
contained in the formatted output. Ellipses are used to summarize some sections of
the dump.

For easy reference, the sections of the dump are numbered to correspond with the
description of each section that follows.

82 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

| CC
| LANGUAGE ENVIRONMENT DATA
| CC
| [1]TCB: ##6E7378 LE Level: #D ASID: ##1F

| [2]Active Members: C/C++

| [3]+###### FLAG#:## LANGP:#8 BO S:###22### EOS:########
| +####44 TORC:######## TOVF:8##136D8 ATTN:#63186E8
| +###15C HLLEXIT:######## HOOK:5#C#D#64 #5C#58C# C##6#5CC
| +###1A4 DIMA:####8B58 ALLOC:#7##C3C8 STATE:#7##C3C8
| +###1B# ENTRY:#7##C3C8 EXIT:#7##C3C8 MEXIT:#7##C3C8
| +###1BC LABEL:#7##C3C8 BCALL:#7##C3C8 ACALL:#7##C3C8
| +###1C8 DO:#7##C3C8 IFTRUE:#7##C3C8 IFFALSE:#7##C3C8
| +###1D4 WHEN:#7##C3C8 OTHER:#7##C3C8 CGOTO:#7##C3C8
| +###1F# CGENE:#631D7A4 CRENT:#67C68F8 CTHD:#631BDFC
| +###21# EDCV:8661466C CEDB:#631CD54 EDCOV:#66#F154
| +###258 TCASRV_USERWORD:######## TCASRV_WORKAREA:#6318#38
| +###26# TCASRV_GETMAIN:######## TCASRV_FREEMAIN:########
| +###268 TCASRV_LOAD:8###E#18 TCASRV_DELETE:8###DF38
| +###27# TCASRV_EXCEPTION:######## TCASRV_ATTENTION:########
| +###278 TCASRV_MESSAGE:######## LWS:###1763# SAVR:#656BA3A
| +###2AC SYSTM:#3 HRDWR:#3 SBSYS:#2 FLAG2:B# LEVEL:#D
| +###2B1 PM:#4 GETLS:###11318 CELV:###18#38 GETS:###114#8
| +###2C# LBOS:###21### LEOS:######## LNAB:###21#18
| +###2CC DMC:######## ABCODE:######## RSNCODE:########
| +###2D8 ERR:###233#8 GETSX:###129E# DDSA:###17428
| +###2E4 SECTSIZ:######## PARTSUM:########
| +###2EC SSEXPNT:######## EDB:###159D# PCB:###1556#
| +###2F8 EYEPTR:###16AA8 PTR:###16AC# GETS1:###12AD8
| +###3#4 SHAB:######## PRGCK:#######4 FLAG1:## URC:########
| +###314 ESS:######## LESS:######## OGETS:###132##
| +###32# OGETLS:######## PICICB:######## GETSX:######## GOSMR:####
| +###33# LEOV:#67C5#38 SIGSCTR:######## SIGSFLG:########
| +###33C THDID:#676992# ######## DCRENT:########
| +###348 DANCHOR:######## CTOC:######## RCB:###14918
| +###354 CICSRSN:######## MEMBR:###174C8
| +###35C SIGNAL_STATUS:#######8 HCOM_REG7:########
| +###364 STACKFLOOR:7FFFFFFF HPGETS:######## EDCHPXV:########
| +###37# FOR1:######## FOR2:######## THREADHEAPID:###173#4
| +###37C SYS_RTNCODE:######## SYS_RSNCODE:######## GETFN:#646A3A#
| +###39# SIGNGPTR:###16E54 SIGNG:#######1 FORDBG:########
| +###39C AB_STATUS:## STACKDIRECTION:## AB_GR#:########
| +###3A4 AB_ICD1:######## AB_ABCC:######## AB_CRC:########
| +###3B# GTS:####FC18 LERN5N1:######## HERP:#63CF7C8
| +###3BC USTKBOS:######## USTKEOS:########
| +###3C4 USERRTN:######## UDHOOK:A7F4FEE8 A7F4#1A#
| +###3D# HPXV_B:#64DB218 HPXV_M:#64DC7C# HPXV_L:#64E117#
| +###3DC HPXV_O:#64E126# SMCB:###171F# ERRCM:#63186A#
| +###43# MIB_PTR:######## STV:## A_ISA:########
| +###43C ISA_SIZE:######## PTATPTR:######## SIGSSDSA1:##
| +###445 SIGSSDSA2:## STACKUNSTABLE:## STACK_FLAG:##
| +###448 SQELADDR:#631A618 VBA:######## TCS:#68ECE78
| +###45C THDSTATUS:######## TICB_PTR:#63199C8
| +###4A4 FWD_CHAIN:###16AC# BKWD_CHAIN:###16AC#

| Figure 14 (Part 1 of 11). Example of Formatted Output from LEDATA Verbexit

 Chapter 3. Using Language Environment Debugging Facilities 83

| [4]CEEPCB: ###1556#
| +###### PCBEYE:CEEPCB SYSTM:#3 HRDWR:#3 SBSYS:#2 FLAG2:98
| +#####C DBGEH:######## DMEMBR:###1579# ZLOD:#64D3D2#
| +####2# ZDEL:#64CB928 ZGETST:#64D1AB# ZFREEST:#64D15E#
| +####2C LVTL:#63#B978 RCB:###14918 SYSEIB:########
| +####38 PSL:######## PSA:###159D# PSRA:#64D19#8
| +####44 OMVS_LEVEL:7F###### PCB_CHAIN:########
| +####4C PCB_VSSFE:###133#4 PCB_PRFEH:########
| +####84 LPKA_LODTYP:#######3 IMS:######## ABENDCODE:########
| +####9# REASON:######## F3456:####8#C2 MEML:###15778
| +####9C MEMBR:###1579# PCB_EYE:######## PCB_BKC:####5F78
| +####A8 PCB_FWC:######## PCB_R14:863##2BE
| +####B# PCB_R15:####6EA8 PCB_R#:7D####16 PCB_R1:####5FE8
| +####BC PCB_R2:#63###8# PCB_R3:######## PCB_R4:########
| +####C8 PCB_R5:######## PCB_R6:######## PCB_R7:########
| +####D4 PCB_R8:#63#4#B# PCB_R9:##6E771# PCB_R1#:########
| +####E# PCB_R11:863##1F2 PCB_R12:######## CELV24:###18#38
| +####EC CELV31:#63#ED2# SLDR:8###E1#8 SECTSIZ:########
| +####F8 PARTSUM:######## SSEXPNT:######## BMPS:#6321FC8
| +###1#4 BMPE:#639A7#8 BLEHL:#63#B45# BCMXB:###14B#8 BSTV:#2
| +###111 PM_BYTE:## INI_AMODE:## FLAGS1:28 ISA:#63#6###
| +###118 ISA_SIZ:###18A5C SRV_CNT:########
| +###12# SRV_UWORD:######## WORKAR:######## LOAD:####E6C#
| +###12C DELETE:####E338 GETSTOR:###1#43# FREESTOR:####FF3#
| +###138 EXCEPT:######## ATTN:######## MSGS:########
| +###144 ABEND:####8#D8 MSGOU:####B2B8 GLAT:#642A#9#
| +###15# RLAT:#6452B4# ELAT:#6423398 1PTQ:#64634B#
| +###15C 1ENV:#646268# DBG_LODTYP:FFFFFFFF DUMMY_STK:#63#6##8
| +###168 DUMMY_LIB:###14### DUMMY_CAA:#63#A#1#
| +###17# TST_LVL:FFFFFFFF GETCAA:###14D38 SETCAA:###14D4#
| +###17C LLTPTR:#63#AD3# AUE:######## RC:########
| +###188 REASON:######## RC_MOD:######## AUE_UWORD:########
| +###194 FB_TOKEN:............ EOV:#67C5#38 PPA:#68D1F44
| +###1A8 PPA_SIZ:#####A## BELOW:###14### BELOW_LEN:####394#
| +###1B4 PICB:#6315228 UTL1:#6315238 ZINA:864D26A#
| +###1C# ZINB:###138D8 XPLINKFLAGS:## FLAGS5:8#
| +###1D4 LANGINIT:#######1 ######## ######## ######## ####
| +###1E8 NUMINIT:#######1 LASTINIT:#######3
| +###1F# LANGREUSE:######## ######## ######## ######## ####
| +###2#2 REUSEMEMS:######## ######## ######## ######## ####

| CEEMEML: ###1579#
| +###### MEMLDEF:........ EXIT:#63A9C58 LLVTL:########

| [5]CEERCB: ###14918
| +###### EYE:CEERCB SYSTM:#3 HRDWR:#3 SBSYS:#2 FLAGS:8#
| +####14 DMEMBR:#63#AC#8 ZLOD:#64D555# ZDEL:#64CD##8
| +####2# ZGETST:#64D1AB# ZFREEST:#64D15E# VERSION_ID:#3#2#A##

| [6]CEEEDB: ###159D#
| +###### EYE:CEEEDB FLAG1:D7 BIPM:## BPM:##
| +#####B CREATOR_ID:#1 MEMBR:###1698# OPTCB:###16#58
| +####14 URC:######## RSNCD:######## DBGEH:########
| +####2# BANHP:###15E98 BBEHP:###15EC8 BCELV:###18#38
| +####2C PCB:###1556# ELIST:######## PL_ASTRPTR:###148#8
| +####38 DEFPLPTR:###15AF# CXIT_PAGE:########
| +####4# DEBUG_TERMID:######## PARENT:######## R13_PARENT:####5F78
| +####54 LEOV:#67C5#38 ENVAR:#63182E# ENVIRON:###15A28
| +####6# CEEOSIGR:####DAF8 OTRB:#68D1### PSA31:#631EA5C
| +####6C PSL31:######## PSA24:###1794# PSL24:########
| +####78 PSRA:#64D171# CAACHAIN@:###16AC# FLAG1A:9#
| +####84 CEEOSGR1:####DE66 MEMBERCOMPAT1:##
| +####9# THREADSACTIVE:#######1 CURMSGFILEDCBPTR:###14B88
| +####98 CEEINT_INPUT_R1:####5FE8 LAST_RBADDR:##6E7A5#
| +####A# LAST_RBCNT:#######1

| CEEMEML: ###1698#
| +###### MEMLDEF:........ EXIT:#63A9C58 LLVTL:########

| [7]PMCB: #6318##8
| +###### EYE:PMCB PREV$:######## NEXT$:########
| +####1# LVT_CURR$:###18#38 LLT_CURR$:#68D47F8 FLAGS:A#######

| Figure 14 (Part 2 of 11). Example of Formatted Output from LEDATA Verbexit

84 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

| [8]Language Environment Run-Time Options in effect.
| LAST WHERE SET Override OPTIONS
| CC
| INSTALLATION DEFAULT OVR ABTERMENC(ABEND)
| INSTALLATION DEFAULT OVR NOAIXBLD
| INSTALLATION DEFAULT OVR ALL31(OFF)
| INSTALLATION DEFAULT OVR ANYHEAP(###16384,####8192,ANY ,FREE)
| INSTALLATION DEFAULT OVR NOAUTOTASK
| INSTALLATION DEFAULT OVR BELOWHEAP(####8192,####4#96,FREE)
| INSTALLATION DEFAULT OVR CBLOPTS(ON)
| INSTALLATION DEFAULT OVR CBLPSHPOP(ON)
| INSTALLATION DEFAULT OVR CBLQDA(OFF)
| INSTALLATION DEFAULT OVR CHECK(ON)
| INSTALLATION DEFAULT OVR COUNTRY(US)
| INSTALLATION DEFAULT OVR NODEBUG
| INSTALLATION DEFAULT OVR DEPTHCONDLMT(######1#)
| INSTALLATION DEFAULT OVR ENVAR("")
| INSTALLATION DEFAULT OVR ERRCOUNT(########)
| INSTALLATION DEFAULT OVR ERRUNIT(#######6)
| INSTALLATION DEFAULT OVR FILEHIST
| DEFAULT SETTING OVR NOFLOW
| INSTALLATION DEFAULT OVR HEAP(###32768,###32768,ANY ,
| KEEP,####8192,####4#96)
| PROGRAMMER DEFAULT OVR HEAPCHK(ON,#######1,########)
| INSTALLATION DEFAULT OVR HEAPPOOLS(OFF,
| #######8,######1#,
| ######32,######1#,
| #####128,######1#,
| #####256,######1#,
| ####1#24,######1#,
| ####2#48,######1#)
| INSTALLATION DEFAULT OVR INFOMSGFILTER(OFF)
| INSTALLATION DEFAULT OVR INQPCOPN
| INSTALLATION DEFAULT OVR INTERRUPT(OFF)
| INSTALLATION DEFAULT OVR LIBRARY(SYSCEE)
| INSTALLATION DEFAULT OVR LIBSTACK(####4#96,####4#96,FREE)
| INSTALLATION DEFAULT OVR MSGFILE(SYSOUT ,FBA ,#####121,########,
| NOENQ)
| INSTALLATION DEFAULT OVR MSGQ(######15)
| INSTALLATION DEFAULT OVR NATLANG(ENU)
| INSTALLATION DEFAULT OVR NONONIPTSTACK(####4#96,####4#96,BELOW,KEEP)
| INSTALLATION DEFAULT OVR OCSTATUS
| INSTALLATION DEFAULT OVR NOPC
| INSTALLATION DEFAULT OVR PLITASKCOUNT(######2#)
| PROGRAMMER DEFAULT OVR POSIX(ON)
| INSTALLATION DEFAULT OVR PROFILE(OFF,"")
| INSTALLATION DEFAULT OVR PRTUNIT(#######6)
| INSTALLATION DEFAULT OVR PUNUNIT(#######7)
| INSTALLATION DEFAULT OVR RDRUNIT(#######5)
| INSTALLATION DEFAULT OVR RECPAD(OFF)
| INSTALLATION DEFAULT OVR RPTOPTS(OFF)
| PROGRAMMER DEFAULT OVR RPTSTG(ON)
| INSTALLATION DEFAULT OVR NORTEREUS
| INSTALLATION DEFAULT OVR RTLS(OFF)
| INSTALLATION DEFAULT OVR NOSIMVRD
| INSTALLATION DEFAULT OVR STACK(##131#72,##131#72,BELOW,KEEP,
| ##524288,##131#72)
| INSTALLATION DEFAULT OVR STORAGE(NONE,NONE,NONE,####8192)
| PROGRAMMER DEFAULT OVR TERMTHDACT(UADUMP)
| INSTALLATION DEFAULT OVR NOTEST(ALL,C,PROMPT,INSPPREF)
| INSTALLATION DEFAULT OVR THREADHEAP(####4#96,####4#96,ANY ,KEEP)
| INSTALLATION DEFAULT OVR THREADSTACK(OFF,####4#96,####4#96,BELOW,KEEP,
| ##131#72,##131#72)
| PROGRAMMER DEFAULT OVR TRACE(ON,#1#48576,NODUMP,LE=#######1)
| INSTALLATION DEFAULT OVR TRAP(ON,SPIE)
| INSTALLATION DEFAULT OVR UPSI(########)
| INSTALLATION DEFAULT OVR NOUSRHDLR()
| INSTALLATION DEFAULT OVR VCTRSAVE(OFF)
| INSTALLATION DEFAULT OVR VERSION()
| INSTALLATION DEFAULT OVR XPLINK(OFF)
| INSTALLATION DEFAULT OVR XUFLOW(AUTO)
| CC

| Figure 14 (Part 3 of 11). Example of Formatted Output from LEDATA Verbexit

 Chapter 3. Using Language Environment Debugging Facilities 85

| [9]Heap Storage Control Blocks

| ENSM: ###15E5#
| +###### EYE_CATCHER:ENSM ST_HEAP_ALLOC_FLAG:########
| +#####8 ST_HEAP_ALLOC_VAL:######## ST_HEAP_FREE_FLAG:########
| +####1# ST_HEAP_FREE_VAL:######## REPORT_STORAGE:###15F2C
| +####18 UHEAP:C8D7C3C2 #68D5### #68D5### ####8### ####8### ####2### ####1### ######## ##
| +####48 AHEAP:C8D7C3C2 #67C7### #68F5### ####4### ####2### ####2### ####1### ######## ##
| +####78 BHEAP:C8D7C3C2 ###42### ###42### ####2### ####1### ####2### ####1### 8####### ##
| +####A8 ENSM_ADDL_HEAPS:#68F#2##

| STSB: ###15F2C
| +###### EYE_CATCHER:STSB CRHP_REQ:#######2 DSHP_REQ:#######1
| +#####C IPT_INIT_SIZE:###2#### NONIPT_INIT_SIZE:###2####
| +####14 IPT_INCR_SIZE:###2#### NONIPT_INCR_SIZE:###2####
| +####1C THEAP_MAX_STOR:########

| Enclave Level Stack Statistics

| SKSB: ###15FC4
| +###### MAX_ALLOC:####8CF8 CURR_ALLOC:####346#
| +#####8 LARGEST:####8CF8 GETMAINS:#######1
| +####1# FREEMAINS:########

| SKSB: ###15FEC

| +###### MAX_ALLOC:####1978 CURR_ALLOC:########
| +#####8 LARGEST:#####DB8 GETMAINS:#######2
| +####1# FREEMAINS:########

| SKSB: ###15FD8
| +###### MAX_ALLOC:#####33# CURR_ALLOC:#####33#
| +#####8 LARGEST:#####33# GETMAINS:#######1
| +####1# FREEMAINS:########

| User Heap Control Blocks

| HPCB: ###15E68
| +###### EYE_CATCHER:HPCB FIRST:#68D5### LAST:#68D5###

| HPSB: ###15F4C
| +###### BYTES_ALLOC:#####C38 CURR_ALLOC:#####C38
| +#####8 GET_REQ:#######7 FREE_REQ:########
| +####1# GETMAINS:#######1 FREEMAINS:########

| HPSB: ###16###
| +###### BYTES_ALLOC:######## CURR_ALLOC:########
| +#####8 GET_REQ:######## FREE_REQ:########
| +####1# GETMAINS:######## FREEMAINS:########

| HANC: #68D5###
| +###### EYE_CATCHER:HANC NEXT:###15E68 PREV:###15E68
| +#####C HEAPID:######## SEG_ADDR:#68D5### ROOT_ADDR:#68D5C38
| +####18 SEG_LEN:####8### ROOT_LEN:####73C8

| This is the last heap segment in the current heap.

| Free Storage Tree for Heap Segment #68D5###

| Node Node Parent Left Right Left Right
| Depth Address Length Node Node Node Length Length
| # #68D5C38 ####73C8 ######## ######## ######## ######## ########

| Map of Heap Segment #68D5###

| To display entire segment: IP LIST #68D5### LEN(X'####8###') ASID(X'##1F')

| #68D5#2#: Allocated storage element, length=#####11#. To display: IP LIST #68D5#2# LEN(X'#####11#') ASID(X'##1F')
| #68D5#28: #68D5138 #68D532# #68D535D #68D539A #68D53D7 #68D5414 #68D5451 #68D548E).......P............

| #68D513#: Allocated storage element, length=#####828. To display: IP LIST #68D513# LEN(X'#####828') ASID(X'##1F')
| #68D5138: ######## ######## ######## ######## ######## ######## ######## ########

| Figure 14 (Part 4 of 11). Example of Formatted Output from LEDATA Verbexit

86 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

| [9]Heap Storage Control Blocks

| #68D5958: Allocated storage element, length=#####25#. To display: IP LIST #68D5958 LEN(X'#####25#') ASID(X'##1F')
| #68D596#: ######## ######## ######## ######## ######## ######## ######## ########

| #68D5BA8: Allocated storage element, length=######38. To display: IP LIST #68D5BA8 LEN(X'######38') ASID(X'##1F')
| #68D5BB#: C3C4D3D3 ######## C####### ######## #63##### #63###C# #67C68F8 #####7#4 CDLL.....................@.8....

| #68D5BE#: Allocated storage element, length=######38. To display: IP LIST #68D5BE# LEN(X'######38') ASID(X'##1F')
| #68D5BE8: C3C4D3D3 #68D5BB# 8####### ######## #68ED### #68ED#C8 #631EE8# #####17A CDLL..$................H.......:

| #68D5C18: Allocated storage element, length=######1#. To display: IP LIST #68D5C18 LEN(X'######1#') ASID(X'##1F')
| #68D5C2#: #68F#18# ########

| #68D5C28: Allocated storage element, length=######1#. To display: IP LIST #68D5C28 LEN(X'######1#') ASID(X'##1F')
| #68D5C3#: #68F#1C# ########

| #68D5C38: Free storage element, length=####73C8. To display: IP LIST #68D5C38 LEN(X'####73C8') ASID(X'##1F')

| Summary of analysis for Heap Segment #68D5###:
| Amounts of identified storage: Free:####73C8 Allocated:#####C18 Total:####7FE#
| Number of identified areas : Free: 1 Allocated: 7 Total: 8
| ######## bytes of storage were not accounted for.
| No errors were found while processing this heap segment.
| This is the last heap segment in the current heap.| .| .| .
| [1�]Stack Storage Control Blocks

| SMCB: ###171F#
| +###### EYE_CATCHER:SMCB US_EYE_CATCHER:USTK USFIRST:###22###
| +#####C USLAST:###22### USBOS:###22### USEOS:###42###
| +####18 USNAB:###253C# USINITSZ:###2#### USINCRSZ:###2####
| +####24 USANYBELOW:8####### USKEEPFREE:######## USPOOL:8######2
| +####3# USPREALLOC:#######1 US_BYTES_ALLOC:####8CF8
| +####38 US_CURR_ALLOC:####346# US_GETMAINS:########
| +####4# US_FREEMAINS:######## US_OPLINK:## LS_THIS_IS:LSTK
| +####4C LSFIRST:###21### LSLAST:###21### LSBOS:###21###
| +####58 LSEOS:###22### LSNAB:###21#18 LSINITSZ:####1###
| +####64 LSINCRSZ:####1### LSANYBELOW:8#######
| +####6C LSKEEPFREE:#######1 LSPOOL:8######1 LSPREALLOC:#######1
| +####78 LS_BYTES_ALLOC:#####33# LS_CURR_ALLOC:#####33#
| +####8# LS_GETMAINS:######## LS_FREEMAINS:######## LS_OPLINK:##
| +####8C RSBOS:###1F### RSEOS:###21### RSIZE:####2###
| +####98 RSACTIVE:######## SA_REG##:###2546#
| +####A# SA_REG#1:###253C# SA_REG#2:###233#8
| +####A8 SA_REG#3:#######3 SA_REG#4:###16#58
| +####B# SA_REG#5:######1# SA_REG#6:###23#D8
| +####B8 SA_REG#7:###23C9F SA_REG#8:#63CECCD
| +####C# SA_REG#9:#63CDCCE SA_REG1#:#63CCCCF
| +####C8 SA_REG11:#63D8838 SA_REG12:###16AC#
| +####D# SA_REG13:###22CA# SA_REG14:863D886A
| +####D8 SA_REG15:########
| +####DC SAVEREG_XINIT:######## ######## ######## ########
| +####EC CEEVGTSI:###114F8 ST_DSA_ALLOC_FLAG:########
| +####F4 ST_DSA_ALLOC_VAL:######## ALLOCSEG:########
| +####FC BELOW16M_FLAG:######## LOCAL_ALLOC:FFFFFF##
| +###1#C LOCAL_GETMAINS:######## LOCAL_FREEMAINS:########
| +###15C MOREFLAGS:######## DS_THIS_IS:.... DSFIRST:###1735#
| +###168 DSLAST:###1735# DSBOS:###1735# DSINITSZ:########
| +###17C DSINCRSZ:######## DSGUARDSZ:########
| +###184 DSKEEPFREE:######## DSPOOL:######## DSPREALLOC:########
| +###19# DS_BYTES_ALLOC:######## DS_CURR_ALLOC:########
| +###198 DS_GETMAINS:######## DS_FREEMAINS:########
| +###1A# DS_FLAGS:########

| Figure 14 (Part 5 of 11). Example of Formatted Output from LEDATA Verbexit

 Chapter 3. Using Language Environment Debugging Facilities 87

| DSA backchain

| DSA: ###253C#

| +###### FLAGS:#### MEMD:#### BKC:###22CA# FWC:###254C#
| +#####C R14:864C1E3A R15:#64C3F88 R#:####82A8
| +####18 R1:###25454 R2:###17428 R3:###2547C
| +####24 R4:###2547# R5:###22#18 R6:########
| +####3# R7:###2548# R8:#######1 R9:FFFFFFFC
| +####3C R1#:#63CE334 R11:#64C1C38 R12:###16AC#
| +####48 LWS:###1763# NAB:###2546# PNAB:########
| +####64 RENT:######## CILC:######## MODE:863D#4CE
| +####78 RMR:########

| Contents of DSA at location ###253C#:

| +######## ######## ###22CA# ###254C# 864C1E3A #64C3F88 ####82A8 ###25454 ###17428f<...<.h..by........
| +######2# ###2547C ###2547# ###22#18 ######## ###2548# #######1 FFFFFFFC #63CE334 ...@..........................T.
| +######4# #64C1C38 ###16AC# ###1763# ###2546# ######## ######## ######## ######## .<.............-................
| +######6# ######## ######## ######## 863D#4CE ######## ######## ######## ########f...................
| +######8# ###23#D8 #63CF18F ###23#F4 ###231#C ###2311# ###25484 ###25474 ###25478 ...Q..1....4...........d........

| DSA: ###22CA#
| +###### FLAGS:#8#8 MEMD:CEE1 BKC:###221F8 FWC:###253C#
| +#####C R14:863CE4C4 R15:#63D8838 R#:#6319A64
| +####18 R1:###23#B# R2:###233#8 R3:#######3
| +####24 R4:###16#58 R5:######1# R6:###23#D8
| +####3# R7:###23C9F R8:#63CECCD R9:#63CDCCE
| +####3C R1#:#63CCCCF R11:863CBCD# R12:###16AC#
| +####48 LWS:###1763# NAB:###253C# PNAB:######12
| +####64 RENT:###22BF8 CILC:#####259 MODE:863CD462
| +####78 RMR:#6484AE8

| Contents of DSA at location ###22CA#:

| +######## #8#8CEE1 ###221F8 ###253C# 863CE4C4 #63D8838 #6319A64 ###23#B# ###233#88....f.UD..h.............
| +######2# #######3 ###16#58 ######1# ###23#D8 ###23C9F #63CECCD #63CDCCE #63CCCCF-........Q................
| +######4# 863CBCD# ###16AC# ###1763# ###253C# ######12 867C5882 867C5896 8644894# f...................f@.bf@.of.i
| +######6# FFFFFFFF ###22BF8 #####259 863CD462 ###1763# ###22D8# #6484AE8 ########8....f.M............Y....
| +######8# 863CC#9A ######## ###24218 ###23#B# ###159D# #63186A# ######## ###133#4 f.....................f.........
| +######A# ###23C9F #63CECCD #63CDCCE #63CCCCF 863CBCD# ###16AC# #6319D54 #6319A64f...............
| +######C# 863CC62C ###221F8 #6319A64 ###23194 #######2 #63186A# ######## #######1 f.F....8.......m......f.........
| +######E# #63199D# ###23C9F #63CECCD #63CDCCE #63CCCCF 863CBCD# ###16AC# #6319A64 ..r.................f...........

| To display entire DSA: IP LIST ###22CA# LEN(X'####272#') ASID(X'##1F')

| DSA: ###221F8
| +###### FLAGS:1### MEMD:#### BKC:###22#E# FWC:###222D8
| +#####C R14:863#26BA R15:#6615#24 R#:#67C68F8
| +####18 R1:###2229# R2:#67C6CC# R3:#63#1BCA
| +####24 R4:#68E#414 R5:#67C6B38 R6:###222B2
| +####3# R7:###222BC R8:###222C# R9:8#######
| +####3C R1#:8669199A R11:8###82A8 R12:###16AC#
| +####48 LWS:###1763# NAB:###222D8 PNAB:#65D28D2
| +####64 RENT:###15E68 CILC:###159D# MODE:863#22E8
| +####78 RMR:###1763#

| Contents of DSA at location ###221F8:

| +######## 1####### ###22#E# ###222D8 863#26BA #6615#24 #67C68F8 ###2229# #67C6CC#Qf..../&..@.8.....@%.
| +######2# #63#1BCA #68E#414 #67C6B38 ###222B2 ###222BC ###222C# 8####### 8669199A@,.................f...
| +######4# 8###82A8 ###16AC# ###1763# ###222D8 #65D28D2 #67C68F8 #67C68F8 ###159D# ..by...........Q.).K.@.8.@.8....
| +######6# ###15E5# ###15E68 ###159D# 863#22E8 8649AA9# ###16AC# ###1763# ###222C8 ..;&..;.....f..Yf..............H
| +######8# ######## #######4 #4###### F97FC14F #######1 F97FC14F #67C6CC# #67C6C889"A]....9"A].@%..@%h
| +######A# #######3 #67C6BA8 #68ECE56 ######## #68DF1EC #68E#414 ######## ########@,y..........1.............
| +######C# ######## #######2 #68ECEE# ######## ######## ######## #67C68F8 ########@.8....

| .| .| .

| Figure 14 (Part 6 of 11). Example of Formatted Output from LEDATA Verbexit

88 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

| [11]Condition Management Control Blocks
| User Stack Control Blocks

| STKH: ###22###
| +###### EYE_CATCHER:STKU NEXT:###171F4 PREV:###171F4
| +#####C SEGMENT_LEN:###2####

| Library Stack Control Blocks

| STKH: ###21###
| +###### EYE_CATCHER:STKL NEXT:###17238 PREV:###17238
| +#####C SEGMENT_LEN:####1###

| HCOM: #63186A#
| +###### PICA_AREA:######## ######## EYES:HCOM CAA_PTR1:###16AC#
| +####14 CVTDCB:9B FLAG:6#F#4### EXIT_STK:#68F##28
| +####2# RSM_PTR:######## HDLL_STK:#68ECF#8
| +####28 SRP_TOKEN:######## CSTK:###42#28 CIBH:###23818

| CIBH: ###23818
| +###### EYE:CIBH BACK:#63199D# FRWD:########
| +####1# PTR_CIB:######## FLAG1:## ERROR_LOCATION_FLAGS:##
| +####18 HDLQ:######## STATE:######## PRM_DESC:########
| +####24 PRM_PREFIX:########
| +####28 PRM_LIST:######## ######## ######## ########
| +####38 PARM_DESC:######## PARM_PREFIX:########
| +####4# PARM_LIST:######## ######## ######## ######## FUN:########
| +####54 CIB_SIZ:#### CIB_VER:#### FLG_5:## FLG_6:##
| +####5A FLG_7:## FLG_8:## FLG_1:## FLG_2:## FLG_3:##
| +####5F FLG_4:## ABCD:######## ABRC:########
| +####68 OLD_COND_64:######## ######## OLD_MIB:########
| +####74 COND_64:######## ######## MIB:######## PL:########
| +####84 SV2:######## SV1:######## INT:########
| +####9# MID:######## HDL_SF:######## HDL_EPT:########
| +####9C HDL_RST:######## RSM_SF:######## RSM_POINT:########
| +####A8 RSM_MACHINE:######## COND_DEFAULT:########
| +####B4 Q_DATA_TOKEN:######## FDBK:######## ABNAME:........
| Machine State
| +###348 MCH_EYE:....
| +###35# MCH_GPR##:######## MCH_GPR#1:########
| +###358 MCH_GPR#2:######## MCH_GPR#3:########
| +###36# MCH_GPR#4:######## MCH_GPR#5:########
| +###368 MCH_GPR#6:######## MCH_GPR#7:########
| +###37# MCH_GPR#8:######## MCH_GPR#9:########
| +###378 MCH_GPR1#:######## MCH_GPR11:########
| +###38# MCH_GPR12:######## MCH_GPR13:########
| +###388 MCH_GPR14:######## MCH_GPR15:########
| +###39# MCH_PSW:######## ######## MCH_ILC:#### MCH_IC1:##
| +###39B MCH_IC2:## MCH_PFT:######## MCH_FLT_#:######## ########
| +###3A8 MCH_FLT_2:######## ######## MCH_FLT_4:######## ########
| +###3B8 MCH_FLT_6:######## ######## MCH_EXT:########
| +###418 MCH_FLT_1:######## ######## MCH_FLT_3:######## ########
| +###428 MCH_FLT_5:######## ######## MCH_FLT_7:######## ########
| +###438 MCH_FLT_8:######## ######## MCH_FLT_9:######## ########
| +###448 MCH_FLT_1#:######## ########
| +###45# MCH_FLT_11:######## ########
| +###458 MCH_FLT_12:######## ########
| +###46# MCH_FLT_13:######## ########
| +###468 MCH_FLT_14:######## ########
| +###47# MCH_FLT_15:######## ######## MCH_FPC:########
| +###47C MCH_APF_FLAGS:##

| +###9E# ABCC:######## HRC:######## RSM_SF_FMT:##
| +###9E9 RSM_PH_CALLEE_FMT:## SV1_FMT:## RSM_PH_CALLEE:########
| +###9F# INT_FCN_EP:######## HDL_SF_FMT:## HDL_PH_CALLEE_FMT:##
| +###9F6 SV2_FMT:## HDL_PH_CALLEE:########

| Figure 14 (Part 7 of 11). Example of Formatted Output from LEDATA Verbexit

 Chapter 3. Using Language Environment Debugging Facilities 89

| CIBH: #63199D#
| +###### EYE:CIBH BACK:######## FRWD:###23818
| +####1# PTR_CIB:###233#8 FLAG1:C5 ERROR_LOCATION_FLAGS:1F
| +####18 HDLQ:######## STATE:######## PRM_DESC:########
| +####24 PRM_PREFIX:########
| +####28 PRM_LIST:###2332# ###233E8 ###233F4 #631A11C
| +####38 PARM_DESC:######## PARM_PREFIX:########
| +####4# PARM_LIST:###233E4 ###233#8 ###233F4 #631A11C FUN:######67
| +####54 CIB_SIZ:#1#C CIB_VER:###4 FLG_5:48 FLG_6:23
| +####5A FLG_7:## FLG_8:## FLG_1:## FLG_2:## FLG_3:##
| +####5F FLG_4:#5 ABCD:94#C9### ABRC:#######9
| +####68 OLD_COND_64:###3#C89 59C3C5C5 OLD_MIB:#######1
| +####74 COND_64:###3#C89 59C3C5C5 MIB:#######1 PL:#63#1B38
| +####84 SV2:###221F8 SV1:###221F8 INT:#63#26CE
| +####9# MID:#######3 HDL_SF:###17428 HDL_EPT:#63A9C58
| +####9C HDL_RST:######## RSM_SF:###221F8 RSM_POINT:#63#26D#
| +####A8 RSM_MACHINE:#6319F18 COND_DEFAULT:#######3
| +####B4 Q_DATA_TOKEN:#6319B#8 FDBK:######## ABNAME:........
| Machine State
| Machine State
| +###348 MCH_EYE:ZMCH
| +###35# MCH_GPR##:######## MCH_GPR#1:###2229#
| +###358 MCH_GPR#2:#67C6CC# MCH_GPR#3:#63#1BCA
| +###36# MCH_GPR#4:#68E#414 MCH_GPR#5:#67C6B38
| +###368 MCH_GPR#6:######## MCH_GPR#7:#######1
| +###37# MCH_GPR#8:###222C# MCH_GPR#9:8#######
| +###378 MCH_GPR1#:8669199A MCH_GPR11:8###82A8
| +###38# MCH_GPR12:###16AC# MCH_GPR13:###221F8
| +###388 MCH_GPR14:863#26BA MCH_GPR15:######12
| +###39# MCH_PSW:#78D24## 863#26D# MCH_ILC:###2 MCH_IC1:##
| +###39B MCH_IC2:#9 MCH_PFT:######## MCH_FLT_#:4DB3EDBF DAC99794
| +###3A8 MCH_FLT_2:######## ######## MCH_FLT_4:######## ########
| +###3B8 MCH_FLT_6:######## ######## MCH_EXT:########
| +###418 MCH_FLT_1:######## ######## MCH_FLT_3:######## ########
| +###428 MCH_FLT_5:######## ######## MCH_FLT_7:######## ########
| +###438 MCH_FLT_8:######## ######## MCH_FLT_9:######## ########
| +###448 MCH_FLT_1#:######## ########
| +###45# MCH_FLT_11:######## ########
| +###458 MCH_FLT_12:######## ########
| +###46# MCH_FLT_13:######## ########
| +###468 MCH_FLT_14:######## ########
| +###47# MCH_FLT_15:######## ######## MCH_FPC:########
| +###47C MCH_APF_FLAGS:##

| +###9E# ABCC:######## HRC:######## RSM_SF_FMT:##
| +###9E9 RSM_PH_CALLEE_FMT:## SV1_FMT:## RSM_PH_CALLEE:########
| +###9F# INT_FCN_EP:######## HDL_SF_FMT:## HDL_PH_CALLEE_FMT:##
| +###9F6 SV2_FMT:## HDL_PH_CALLEE:########

| CIB: ###233#8
| +###### EYE:CIB BACK:######## FRWD:######## SIZ:#1#C
| +#####E VER:###4 PLAT_ID:###15A38 COND_64:###3##C6 59C3C5C5
| +####2# MIB:######## MACHINE:###23414
| +####28 OLD_COND_64:###3#C89 59C3C5C5 OLD_MIB:#######1
| +####34 FLG_1:## FLG_2:## FLG_3:## FLG_4:#4 HDL_SF:###22#18
| +####3C HDL_EPT:#63A9C58 HDL_RST:######## RSM_SF:###221F8
| +####48 RSM_POINT:#63#26D# RSM_MACHINE:#6319F18
| +####5# COND_DEFAULT:#######3 PH_CALLEE_SF:FCFDFEFF HDL_SF_FMT:##
| +####59 PH_CALLEE_SF_FMT:## VSR:######## ######## VSTOR:########
| +####9C VRPSA:######## MCB:#631EE8# MRN:#####17A #68ED338
| +####AC MFLAG:## FLG_5:48 FLG_6:23 FLG_7:## FLG_8:##
| +####B4 ABCD:94#C9### ABRC:#######9 ABNAME:######## ########
| +####C4 PL:#63#1B38 SV2:###221F8 SV1:###221F8
| +####D# INT:#63#26CE Q_DATA_TOKEN:D3D34#4# FDBK:########
| +####DC FUN:######67 TOKE:###22#18 MID:#######3
| +####E8 STATE:######## RTCC:FFFFFFFC PPAV:#######3
| +####F4 AB_TERM_EXIT:###232B# ######## SDWA_PTR:########
| +###1## SIGNO:#######8 PPSD:#631A13#

| Figure 14 (Part 8 of 11). Example of Formatted Output from LEDATA Verbexit

90 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

| [12]Message Processing Control Blocks
| CMXB: ###14B#8
| +###### EYE:CMXB SIZE:#11# FLAGS:C### DHEAD1:###94###
| +#####C DHEAD2:###14B28

| MDST forward chain from CMXBDHEAD(1)

| MDST: ###94###
| +###### EYE:MDST SIZE:##C8 CTL:4# CEEDUMPLOC:##
| +#####8 NEXT:###14B28 PREV:######## DDNAM:CEEDUMP

| MDST: ###14B28
| +###### EYE:MDST SIZE:##C8 CTL:4# CEEDUMPLOC:##
| +#####8 NEXT:######## PREV:###94### DDNAM:SYSOUT

| MDST back chain from CMXBDHEAD(2)

| MDST: ###14B28
| +###### EYE:MDST SIZE:##C8 CTL:4# CEEDUMPLOC:##
| +#####8 NEXT:######## PREV:###94### DDNAM:SYSOUT

| MDST: ###94###
| +###### EYE:MDST SIZE:##C8 CTL:4# CEEDUMPLOC:##
| +#####8 NEXT:###14B28 PREV:######## DDNAM:CEEDUMP

| TMXB: #631A4E8
| +###### EYE:TMXB MIB_CHAIN_PTR:#68F5#28

| MGF: #68F5#28
| +###### EYE:CMIB PREV:#68F655# NEXT:#631A52#

| MGF: #631A52#
| +###### EYE:CMIB PREV:#68F5#28 NEXT:#68F655#

| MGF: #68F655#
| +###### EYE:CMIB PREV:#631A52# NEXT:#68F5#28

| [13]Information for enclave main

| [14]Information for thread #676992#########

| [15]Traceback:
| DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
| ###253C# CEEHSDMP #63D8838 +###E96## CEEHSDMP #63D8838 +###E96## Call
| ###22CA# CEEHDSP #63CBCD# +####27F2 CEEHDSP #63CBCD# +####27F2 Call
| ###221F8 #63#1B9# +#####B3E main #63#1B9# +#####B3E Exception
| ###22#E# #66919A6 +##242CFA EDCZMINV #66919A6 +##242CFA Call
| ###22#18 CEEBBEXT ####82A8 +#68CC3F6 CEEBBEXT ####82A8 +#68CC3F6 Call

| [16]Control Blocks Associated with the Thread:
| Thread Synchronization Queue Element (SQEL): #631A618
| +###### #631A618 ######## ######## ######## ######## ######## ######## ######## ########
| +####2# #631A638 ###16AC# ######## ######## ######## ######## ######## ######## ########

| Figure 14 (Part 9 of 11). Example of Formatted Output from LEDATA Verbexit

 Chapter 3. Using Language Environment Debugging Facilities 91

| [17]Enclave Control Blocks:
| Mutex and Condition Variable Blocks (MCVB+MHT+CHT): #68D1#18
| +###### #68D1#18 ####8F5# #68D1#44 #####3F8 ####1FC# ######## #68D413# #68D1444 ######F8 ...&.......8...................8
| +####2# #68D1#38 #####7C# ######## #68D4148 ######## ######## ######## ######## ########
| +####4# #68D1#58 ######## ######## ######## ######## ######## ######## ######## ########| .| .| .

| Thread Synchronization Enclave Latch Table (EPALT): #68D1544
| +###### #68D1544 ######## ######## ######## ######## ######## ######## ######## ########
| +####2# #68D1564 - +###55F #68D1AA3 same as above
| +###56# #68D1AA4 ######## ######## ######## ######## #646A478 ######## ######## ########u.............
| +###58# #68D1AC4 ######## ######## ######## ######## ######## ######## ######## ########
| +###5A# #68D1AE4 - +###61F #68D1B63 same as above
| +###62# #68D1B64 ######## ######## ######## ######## ######## ######## #646A478 ########u.....
| +###64# #68D1B84 ######## ######## ######## ######## ######## ######## ######## ########
| +###66# #68D1BA4 - +###9FF #68D1F43 same as above
| HEAPCHK Option Control Block (HCOP): #68D3#28
| +###### #68D3#28 C8C3D6D7 ######24 #######1 ######## ######## #68F3#28 #68D3#4C ######## HCOP.......................<....
| +####2# #68D3#48 ######## C8C3C6E3 #####2## ######## ######## ######## ######## ########HCFT........................
| HEAPCHK Element Table (HCEL) for Heapid #68F#2#C :
| Header: #68F3#28
| +###### #68F3#28 C8C3C5D3 #68DD#28 ######## #68F#2#C #####1F4 #######1 #######1 ######## HCEL...............4............
| Address Seg Addr Length Address Seg Addr Length
| Table: #68F3#48
| +###### #68F3#48 #68F2#2# #68F2### #####2A8 ######## ######## ######## ######## ########y....................
| HEAPCHK Element Table (HCEL) for Heapid ######## :
| Header: #68DD#28
| +###### #68DD#28 C8C3C5D3 ######## #68F3#28 ######## #####1F4 #######7 #######7 ######## HCEL...............4............

| Address Seg Addr Length Address Seg Addr Length
| Table: #68DD#48
| +###### #68DD#48 #68D5#2# #68D5### #####11# ######## #68D513# #68D5### #####828 ######## ..&...&...............&.........
| +####2# #68DD#68 #68D5958 #68D5### #####25# ######## #68D5BA8 #68D5### ######38 ########&....&......$y..&.........
| +####4# #68DD#88 #68D5BE# #68D5### ######38 ######## #68D5C18 #68D5### ######1# ######## ..$...&...........C...&.........
| +####6# #68DD#A8 #68D5C28 #68D5### ######1# ######## ######## ######## ######## ######## ..C...&.........................

| .| .| .
| [18]Language Environment Trace Table:

| Most recent trace entry is at displacement: ##49##
| Most recent trace entry is at displacement: ##448#

| Displacement Trace Entry in Hexadecimal Trace Entry in EBCDIC
| ------------ -- --------------------------------
| +###### Time 2#.55.18.#5#451 Date 2###.#4.21 Thread ID... #676992#########
| +####1# Member ID.... #3 Flags..... ###### Entry Type..... #######1
| +####18 94818995 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# main
| +####38 6#6#6E4D F#F8F55D 4#979989 95A3864D 5D4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# -->(#85) printf()
| +####58 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4#
| +####78 4#4#4#4# 4#4#4#4#

| +####8# Time 2#.55.18.#68354 Date 2###.#4.21 Thread ID... #676992#########
| +####9# Member ID.... #3 Flags..... ###### Entry Type..... #######2
| +####98 4C6#6#4D F#F8F55D 4#D9F1F5 7EF#F#F# F#F#F#F# C54#C5D9 D9D5D67E F#F#F#F# <--(#85) R15=#######E ERRNO=####
| +####B8 F#F#F#F# ######## ######## ######## ######## ######## ######## ######## ####............................
| +####D8 ######## ######## ######## ######## ######## ######## ######## ########
| +####F8 ######## ########

| +###1## Time 2#.55.18.#68362 Date 2###.#4.21 Thread ID... #676992#########
| +###11# Member ID.... #3 Flags..... ###### Entry Type..... #######3
| +###118 94818995 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# main
| +###138 6#6#6E4D F1F5F55D 4#97A388 99858184 6D94A4A3 85A76D89 9589A34D 5D4#4#4# -->(155) pthread_mutex_init()
| +###158 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4####### ########
| +###178 ######## ########

| +###18# Time 2#.55.18.#68388 Date 2###.#4.21 Thread ID... #676992#########
| +###19# Member ID.... #3 Flags..... ###### Entry Type..... #######4
| +###198 4C6#6#4D F1F5F55D 4#D9F1F5 7EF#F#F# F#F#F#F# F#4#C5D9 D9D5D67E F#F#F#F# <--(155) R15=######## ERRNO=####
| +###1B8 F#F#F#F# 4#C5D9D9 D5D6F27E F#F#F#F# F#F#F#F# ######## ######## ######## #### ERRNO2=########............
| +###1D8 ######## ######## ######## ######## ######## ######## ######## ########
| +###1F8 ######## ########| .| .| .

| Figure 14 (Part 10 of 11). Example of Formatted Output from LEDATA Verbexit

92 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

| +###2## Time 2#.55.18.#68395 Date 2###.#4.21 Thread ID... #676992#########
| +###21# Member ID.... #3 Flags..... ###### Entry Type..... #######1
| +###218 94818995 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# main
| +###238 6#6#6E4D F#F8F55D 4#979989 95A3864D 5D4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# -->(#85) printf()
| +###258 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4#
| +###278 4#4#4#4# 4#4#4#4#

| +##44## Time 2#.55.23.736474 Date 2###.#4.21 Thread ID... #676992#########
| +##441# Member ID.... #3 Flags..... ###### Entry Type..... #######1
| +##4418 A3889985 81846D83 93858195 A4974#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# thread_cleanup
| +##4438 6#6#6E4D F#F8F55D 4#979989 95A3864D 5D4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# -->(#85) printf()
| +##4458 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4#
| +##4478 4#4#4#4# 4#4#4#4#

| +##448# Time 2#.55.23.736488 Date 2###.#4.21 Thread ID... #676992#########
| +##449# Member ID.... #3 Flags..... ###### Entry Type..... #######2
| +##4498 4C6#6#4D F#F8F55D 4#D9F1F5 7EF#F#F# F#F#F#F# F#4#C5D9 D9D5D67E F#F#F#F# <--(#85) R15=######## ERRNO=####
| +##44B8 F#F#F#F# ######## ######## ######## ######## ######## ######## ######## ####............................
| +##44D8 ######## ######## ######## ######## ######## ######## ######## ########
| +##44F8 ######## ########

| [19]Process Control Blocks:
| Thread Synchronization Process Latch Table (PPALT): #68D1F44
| +###### #68D1F44 ######## ######## ######## ######## ######## ######## ######## ########
| +####2# #68D1F64 - +###9FF #68D2943 same as above

| Exiting Language Environment Data

| Figure 14 (Part 11 of 11). Example of Formatted Output from LEDATA Verbexit

Sections of the Language Environment LEDATA Verbexit
Formatted Output
The sections of the output listed here appear independently of the Language
Environment-conforming languages used.

[1]-[8] Summary

These sections are included when the SUMMARY parameter is specified on the
LEDATA invocation.

[1] Summary Header

The summary header section contains:

� Address of Thread control block (TCB)
 � Release number
� Address Space ID (ASID)

[2] Active Members List

This list of active members is extracted from the enclave member list (MEML).

[3] CEECAA

This section formats the contents of the Language Environment common anchor
area (CAA). Refer to “The Common Anchor Area” on page 63 for a description of
the fields in the CAA.

[4] CEEPCB

This section formats the contents of the Language Environment process control
block (PCB), and the process level member list.

[5] CEERCB

 Chapter 3. Using Language Environment Debugging Facilities 93

This section formats the contents of the Language Environment region control block
(RCB).

[6] CEEEDB

This section formats the contents of the Language Environment enclave data block
(EDB), and the enclave level member list.

[7] PMCB

This section formats the contents of the Language Environment program manage-
ment control block (PMCB).

[8] Run-Time Options

This section lists the run-time options in effect at the time of the dump, and indi-
cates where they were set.

[9] Heap Storage Control Blocks

This section is included when the HEAP or SM parameter is specified on the
LEDATA invocation.

This section formats the Enclave-level storage management control block (ENSM)
and for each different type of heap storage:

� Heap control block (HPCB)

� Chain of heap anchor blocks (HANC). A HANC immediately precedes each
segment of heap storage.

This section includes a detailed heap segment report for each segment in the
dump. See “Understanding the HEAP LEDATA Output” on page 96 for more infor-
mation about the detailed heap segment report.

[10] Stack Storage Control Blocks

This section is included when the STACK or SM parameter is specified on the
LEDATA invocation.

This section formats:

� Storage management control block (SMCB)

� Chain of dynamic save areas (DSA)

Refer to “The Upward-Growing (Non-XPLINK) Stack Frame Section” on
| page 61 or “The Downward-Growing (XPLINK) Stack Frame Section” on
| page 62 for a description of the fields in the DSA.

� Chain of stack segment headers (STKH)

An STKH immediately precedes each segment of stack storage.

[11] Condition Management Control Blocks

This section is included when the CM parameter is specified on the LEDATA invo-
cation.

94 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

This section formats the chain of Condition Information Block Headers (CIBH) and
Condition Information Blocks. The Machine State Information Block is contained
with the CIBH starting with the field labeled MCH_EYE. Refer to “The Condition
Information Block” on page 70 for a description of fields in these control blocks.

[12] Message Processing Control Blocks

This section is included when the MH parameter is specified on the LEDATA invo-
cation.

[13]-[19] CEEDUMP Formatted Control Blocks

These sections are included when the CEEDUMP parameter is specified on the
LEDATA invocation.

[13] Enclave Identifier

This statement names the enclave for which information is provided.

[14] Information for thread

This section shows the system identifier for the thread. Each thread has a unique
identifier.

[15] Traceback

For all active routines, the traceback section shows:

� Stack frame (DSA) address

 � Program unit

The primary entry point of the external procedure. For COBOL programs, this is
the PROGRAM-ID name. For C, Fortran, and PL/I routines, this is the compile
unit name. For Language Environment-conforming assemblers, this is the
EPNAME = value on the CEEPPA macro.

� Program unit address

� Program unit offset

The offset of the last instruction to run in the routine. If the offset is a negative
number, zero, or a very large positive number, the routine associated with the
offset probably did not allocate a save area, or the routine could have been
called using SVC-assisted linkage. Adding the program unit address to the
offset gives you the location of the current instruction in the routine. This offset
is from the starting address of the routine.

 � Entry

For COBOL, Fortran, and PL/I routines, this is the entry point name. For C/C++
routines, this is the function name. If a function name or entry point was not
specified for a particular routine, then the string '** NoName **' will appear.

� Entry point address

� Entry point offset

 � Statement number

This field is always blank.

 Chapter 3. Using Language Environment Debugging Facilities 95

 � Load module

This field is always blank.

 � Service level

This field is always blank.

 � Status

Routine status can be call, exception, or running.

[16] Control Blocks Associated with the Thread

This section lists the contents of the thread synchronization queue element (SQEL).

[17] Enclave Control Blocks

If the POSIX run-time option was set to ON, this section lists the contents of the
mutex and condition variable control blocks, the enclave level latch table, and the
thread synchronization trace block and trace table. If the HEAPCHK run-time option
is set to ON, this section lists the contents of the HEAPCHK options control block
(HCOP) and the HEAPCHK element tables (HCEL). A HEAPCHK element table
contains the location and length of all allocated storage elements for a heap in the
order that they were allocated.

[18] Language Environment Trace Table

If the TRACE run-time option was set to ON, this section shows the contents of the
Language Environment trace table.

[19] Process Control Blocks

If the POSIX run-time option was set to ON, this section lists the contents of the
process level latch table.

Understanding the HEAP LEDATA Output
The Language Environment IPCS Verbexit LEDATA generates a detailed heap
segment report when the HEAP option is used with the DETAIL option, or when the
SM,DETAIL option is specified. The detailed heap segment report is useful when
trying to pinpoint damage because it provides very specific information. The report
describes the nature of the damage, and specifies where the actual damage
occurred. The report can also be used to diagnose storage leaks, and to identify
heap fragmentation. Figure 15 on page 97 illustrates the output produced by speci-
fying the HEAP option. “Heap Report Sections of the LEDATA Output” on
page 100 describes the information contained in the formatted output.

For easy reference, the sections of the dump are numbered to correspond with the
description of each section that follows. Ellipses are used to summarize some
sections of the dump.

96 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CC
LANGUAGE ENVIRONMENT DATA

 CC

 Heap Storage Control Blocks

 ENSM: ###14D3#
 +####A8 ENSM_ADDL_HEAPS:259B112#

User Heap Control Blocks

 HPCB: ###14D48
+###### EYE_CATCHER:HPCB FIRST:25995### LAST:25995###

 HANC: 25995###
+###### EYE_CATCHER:HANC NEXT:###14D48 PREV:###14D48

 +#####C HEAPID:######## SEG_ADDR:25995### ROOT_ADDR:25995#B#
 +####18 SEG_LEN:####8### ROOT_LEN:####7F5#

This is the last heap segment in the current heap.

[1]Free Storage Tree for Heap Segment 25995###

Node Node Parent Left Right Left Right
Depth Address Length Node Node Node Length Length

25995#B# ####7F5# ######## ######## ######## ########

[2]Map of Heap Segment 25995###

 To display entire segment: IP LIST 25995### LEN(X'####8###') ASID(X'##21')

 25995#2#: Allocated storage element, length=######38. To display: IP LIST 25995#2# LEN(X'######38') ASID(X'##21')
 25995#28: C3C4D3D3 ######## 4####### ######## 247##F98 247#3F7# 2599387# #####49# CDLL....q.....r......

 25995#58: Allocated storage element, length=######38. To display: IP LIST 25995#58 LEN(X'######38') ASID(X'##21')
 25995#6#: C3C4D3D3 25995#28 8####### ######## 247##6F# 247##77# 2471CEB# #####15# CDLL.r&............#...........&

 25995#9#: Allocated storage element, length=######1#. To display: IP LIST 25995#9# LEN(X'######1#') ASID(X'##21')
 25995#98: 259ADBB8 ########

 25995#A#: Allocated storage element, length=######1#. To display: IP LIST 25995#A# LEN(X'######1#') ASID(X'##21')
 25995#A8: 259ADBE# ########

 25995#B#: Free storage element, length=####7F5#. To display: IP LIST 25995#B# LEN(X'####7F5#') ASID(X'##21')

 Summary of analysis for Heap Segment 25995###:

Amounts of identified storage: Free:####7F5# Allocated:######9# Total:####7FE#
Number of identified areas : Free: 1 Allocated: 4 Total: 5
######## bytes of storage were not accounted for.
No errors were found while processing this heap segment.
This is the last heap segment in the current heap.

 Anywhere Heap Control Blocks

 HPCB: ###14D78
+###### EYE_CATCHER:HPCB FIRST:24A91### LAST:259C2###

 HANC: 24A91###
+###### EYE_CATCHER:HANC NEXT:25993### PREV:###14D78

 +#####C HEAPID:###14D78 SEG_ADDR:24A91### ROOT_ADDR:########
 +####18 SEG_LEN:##F###28 ROOT_LEN:########

Free Storage Tree for Heap Segment 24A91###

The free storage tree is empty.

Map of Heap Segment 24A91###

 To display entire segment: IP LIST 24A91### LEN(X'##F###28') ASID(X'##21')

 24A91#2#: Allocated storage element, length=##F####8. To display: IP LIST 24A91#2# LEN(X'##F####8') ASID(X'##21')
 24A91#28: B#35F6D8 B2C###81 24ABED8# ######## #3###### #######1 94818995 4#4#4#4# ..6Q...a................main

Figure 15 (Part 1 of 4). Example Formatted Detailed Heap Segment Report from LEDATA Verbexit

 Chapter 3. Using Language Environment Debugging Facilities 97

 Summary of analysis for Heap Segment 24A91###:
Amounts of identified storage: Free:######## Allocated:##F####8 Total:##F####8
Number of identified areas : Free: # Allocated: 1 Total: 1
######## bytes of storage were not accounted for.
No errors were found while processing this heap segment.

...

 HANC: 259AC###
+###### EYE_CATCHER:HANC NEXT:259AF### PREV:2599D###

 +#####C HEAPID:###14D78 SEG_ADDR:259AC### ROOT_ADDR:259AC#2#
 +####18 SEG_LEN:####2### ROOT_LEN:#####C3#

Free Storage Tree for Heap Segment 259AC###

Node Node Parent Left Right Left Right
Depth Address Length Node Node Node Length Length

259AC#2# #####C3# ######## ######## 259ADC48 ######## #####3B8
1 259ADC48 #####3B8 259AC#2# ######## ######## ######## ########

Map of Heap Segment 259AC###

 To display entire segment: IP LIST 259AC### LEN(X'####2###') ASID(X'##21')

 259AC#2#: Free storage element, length=#####C3#. To display: IP LIST 259AC#2# LEN(X'#####C3#') ASID(X'##21')

 259ACC5#: Allocated storage element, length=#####728. To display: IP LIST 259ACC5# LEN(X'#####728') ASID(X'##21')
 259ACC58: D3D3E34# #71C###1 ######## ######## ######## #######3 ######4# 2##1###3 LLT

 259AD378: Allocated storage element, length=######8#. To display: IP LIST 259AD378 LEN(X'######8#') ASID(X'##21')
 259AD38#: ######## ######## 247##6F# 247##6F# #####8A8 2471CEB# ######## #######1#...#...y............

 259AD3F8: Allocated storage element, length=######68. To display: IP LIST 259AD3F8 LEN(X'######68') ASID(X'##21')
 259AD4##: C5E3C3E2 #######7 ######## 2599387# A4797478 247971E# 2599387# A4797478 ETCS.........r..u........r..u...

 259AD46#: Allocated storage element, length=#####728. To display: IP LIST 259AD46# LEN(X'#####728') ASID(X'##21')
 259AD468: C3D3D3E3 #71C###1 ######## ######## ######## #######1 ######4# 6##1###5 CLLT....................... -...

 259ADB88: Allocated storage element, length=######28. To display: IP LIST 259ADB88 LEN(X'######28') ASID(X'##21')
 259ADB9#: 18#F58FF ##1##7FF 247##AB8 2471CEB# 2479A6E8 FFFFFFFE 247##6F# 259AD38#wY.......#..L.

 259ADBB#: Allocated storage element, length=######28. To display: IP LIST 259ADBB# LEN(X'######28') ASID(X'##21')
 259ADBB8: ######## 25995#98 7###4### ######## ######## ######## ######## ########r.&q.........................

 259ADBD8: Allocated storage element, length=######28. To display: IP LIST 259ADBD8 LEN(X'######28') ASID(X'##21')
 259ADBE#: ######## 25995#A8 7###4### ######## ######## ######## ######## ########r.&y.........................

 259ADC##: Allocated storage element, length=######48. To display: IP LIST 259ADC## LEN(X'######48') ASID(X'##21')
 259ADC#8: C1C4C8D7 F#F##### 259ADC14 C8D7C3C2 259AE### 259AE### ####1### ####1### ADHP##......HPCB................

 259ADC48: Free storage element, length=#####3B8. To display: IP LIST 259ADC48 LEN(X'#####3B8') ASID(X'##21')

 Summary of analysis for Heap Segment 259AC###:
Amounts of identified storage: Free:#####FE8 Allocated:#####FF8 Total:####1FE#
Number of identified areas : Free: 2 Allocated: 8 Total: 1#
######## bytes of storage were not accounted for.
No errors were found while processing this heap segment.

...

Figure 15 (Part 2 of 4). Example Formatted Detailed Heap Segment Report from LEDATA Verbexit

98 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Below Heap Control Blocks

 HPCB: ###14DA8
+###### EYE_CATCHER:HPCB FIRST:###44### LAST:###44###

 HANC: ###44###
+###### EYE_CATCHER:HANC NEXT:###14DA8 PREV:###14DA8

 +#####C HEAPID:###14DA8 SEG_ADDR:8##44### ROOT_ADDR:###44388
 +####18 SEG_LEN:####2### ROOT_LEN:####1C78

This is the last heap segment in the current heap.

Free Storage Tree for Heap Segment ###44###

Node Node Parent Left Right Left Right
Depth Address Length Node Node Node Length Length

###44388 ####1C78 ######## ######## ######## ########

Map of Heap Segment ###44###

 To display entire segment: IP LIST ###44### LEN(X'####2###') ASID(X'##21')

 ###44#2#: Allocated storage element, length=######48. To display: IP LIST ###44#2# LEN(X'######48') ASID(X'##21')
 ###44#28: C8C4D3E2 ######## ###4422# ######4# ###1#### #######1 ###241E# 247#1#38 HDLS...........

 ###44#68: Allocated storage element, length=#####128. To display: IP LIST ###44#68 LEN(X'#####128') ASID(X'##21')
 ###44#7#: #7###7## #5E#9##F E#A641DE ##2258C# E11258F# E116#B#F E2C6E7D4 #12####1w.........#....SFXM....

 ###4419#: Allocated storage element, length=######88. To display: IP LIST ###4419# LEN(X'######88') ASID(X'##21')
 ###44198: C3E2E3D2 ######## ######## ##8####1 #######1 ######68 #4###### ######## CSTK............................

 ###44218: Allocated storage element, length=######48. To display: IP LIST ###44218 LEN(X'######48') ASID(X'##21')
 ###4422#: C8C4D3E2 ###44#28 ######## ######4# ###1#### #######2 ###241E# 259ADB9# HDLS..

 ###4426#: Allocated storage element, length=#####128. To display: IP LIST ###4426# LEN(X'#####128') ASID(X'##21')
 ###44268: #7###7## #5E#9##F E#A641DE ##2258C# E11258F# E116#B#F E2C6E7D4 #12####1w.........#....SFXM....

 ###44388: Free storage element, length=####1C78. To display: IP LIST ###44388 LEN(X'####1C78') ASID(X'##21')

 Summary of analysis for Heap Segment ###44###:
Amounts of identified storage: Free:####1C78 Allocated:#####368 Total:####1FE#
Number of identified areas : Free: 1 Allocated: 5 Total: 6
######## bytes of storage were not accounted for.
No errors were found while processing this heap segment.
This is the last heap segment in the current heap.

Additional Heap Control Blocks

 ADHP: 259B112#
+###### EYE_CATCHER:ADHP NEXT:259B24A8 HEAPID:259B112C

 HPCB: 259B112C
+###### EYE_CATCHER:hpcb FIRST:259B112C LAST:259B112C

 ADHP: 259B24A8
+###### EYE_CATCHER:ADHP NEXT:259ADC#8 HEAPID:259B24B4

 HPCB: 259B24B4
+###### EYE_CATCHER:hpcb FIRST:259B24B4 LAST:259B24B4

 ADHP: 259ADC#8
+###### EYE_CATCHER:ADHP NEXT:F#F##### HEAPID:259ADC14

 HPCB: 259ADC14
+###### EYE_CATCHER:HPCB FIRST:259AE### LAST:259AE###

 HANC: 259AE###
+###### EYE_CATCHER:HANC NEXT:259ADC14 PREV:259ADC14

 +#####C HEAPID:259ADC14 SEG_ADDR:259AE### ROOT_ADDR:259AE1E8
 +####18 SEG_LEN:####1### ROOT_LEN:#####E18

This is the last heap segment in the current heap.

Figure 15 (Part 3 of 4). Example Formatted Detailed Heap Segment Report from LEDATA Verbexit

 Chapter 3. Using Language Environment Debugging Facilities 99

Free Storage Tree for Heap Segment 259AE###

Node Node Parent Left Right Left Right
Depth Address Length Node Node Node Length Length

259AE1E8 #####E18 ######## ######## ######## ########

Map of Heap Segment 259AE###

 To display entire segment: IP LIST 259AE### LEN(X'####1###') ASID(X'##21')

 259AE#2#: Allocated storage element, length=#####1C8. To display: IP LIST 259AE#2# LEN(X'#####1C8') ASID(X'##21')
 259AE#28: D7C3C9C2 ######## ######## ###1#1BC ######## ######## ######## ######## PCIB............................

 259AE1E8: Free storage element, length=#####E18. To display: IP LIST 259AE1E8 LEN(X'#####E18') ASID(X'##21')

 Summary of analysis for Heap Segment 259AE###:
Amounts of identified storage: Free:#####E18 Allocated:#####1C8 Total:#####FE#
Number of identified areas : Free: 1 Allocated: 1 Total: 2
######## bytes of storage were not accounted for.
No errors were found while processing this heap segment.
This is the last heap segment in the current heap.

Exiting Language Environment Data

Figure 15 (Part 4 of 4). Example Formatted Detailed Heap Segment Report from LEDATA Verbexit

Heap Report Sections of the LEDATA Output
The Heap Report sections of the LEDATA output provide information for each heap
segment in the dump. The detailed heap segment reports include information on
the free storage tree in the heap segments, the allocated storage elements, and the
cause of heap management data structure problems.

[1]Free Storage Tree Report

Within each heap segment, Language Environment keeps track of unallocated
storage areas by chaining them together into a tree. Each free area represents a
node in the tree. Each node contains a header, which points to its left and right
child nodes. The header also contains the length of each child.

The LEDATA HEAP option formats the free storage tree within each heap, and vali-
dates all node addresses and lengths within each node. Each node address is vali-
dated to ensure that it:

� Falls on a doubleword boundary
� Falls within the current heap segment
� Does not point to itself
� Does not point to a node that was previously traversed

Each node length is validated to ensure that it:

� Is a multiple of 8
� Is not larger than the heap segment length
� Does not cause the end of the node to fall outside of the current heap segment
� Does not cause the node to overlap another node

If the formatter finds a problem, then it will place an error message describing the
problem directly after the formatted line of the node that failed validation

[2]Heap Segment Map Report

The LEDATA HEAP option produces a report that lists all of the storage areas
within each heap segment, and identifies the area as either allocated or freed. For

100 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

each allocated area the contents of the first X'20' bytes of the area are displayed in
order to help identify the reason for the storage allocation.

Each allocated storage element has an 8 byte prefix used by Language Environ-
ment to manage the area. The first fullword contains a pointer to the start of the
heap segment. The second fullword contains the length of the allocated storage
element. The formatter validates this header to ensure that its heap segment
pointer is valid. The length is also validated to ensure that it:

� Is a multiple of 8
� Is not zero
� Is not larger than the heap segment length
� Does not cause the end of the element to fall outside of the current heap

segment
� Does not cause the element to overlap a free storage node

If the heap_free_value of the STORAGE run-time option was specified, then the
formatter also checks that the free storage within each free storage element is set
to the requested heap_free_value. If a problem is found, then an error message
describing the problem is placed after the formatted line of the storage element that
failed validation.

Diagnosing Heap Damage Problems
Heap storage errors can occur when an application allocates a heap storage
element that is too small for it to use, and therefore, accidently overlays heap
storage. If this situation occurs then some of the typical error messages generated
are:

� The node address does not represent a valid node within the heap segment
� The length of the segment is not valid, or
� The heap segment pointer is not valid.

If one of the above error messages is generated by one of the reports, then
examine the storage element that immediately precedes the damaged node to
determine if this storage element is owned by the application program. Check the
size of the storage element and ensure that it is sufficient for the program's use. If
the size of the storage element is not sufficient then adjust the allocation size.

If an error occurs indicating that the node's pointers form a circular loop within the
free storage tree, then check the Free Storage Tree Report to see if such a loop
exists. If a loop exists, then contact the IBM support center for assistance because
this may be a problem in the Language Environment heap management routines.

Additional diagnostic information regarding heap damage can be obtained by using
the HEAPCHK run-time option. This option provides a more accurate time perspec-
tive on when the heap damage actually occurred, which could help to determine the
program that caused the damage. See OS/390 Language Environment Program-
ming Reference for more information on HEAPCHK.

Diagnosing Storage Leak Problems
A storage leak occurs when a program does not return storage back to the heap
after it has finished using it. To determine if this problem exists, examine the Heap
Segment Map report to see if any data areas, within the allocated storage ele-
ments, appear more frequently than expected. If they do, then check to see if these
data areas are still being used by the application program. If the data areas are not

 Chapter 3. Using Language Environment Debugging Facilities 101

being used, then change the program to free the storage element after it is done
with it.

Diagnosing Heap Fragmentation Problems
Heap fragmentation occurs when allocated storage is interlaced with many free
storage areas that are too small for the application to use. Heap fragmentation
could indicate that the application is not making efficient use of its heap storage.
Check the Heap Segment Map report for frequent free storage elements that are
interspersed with the allocated storage elements.

Understanding the C/C++-specific LEDATA Output
The Language Environment IPCS Verbexit LEDATA generates formatted output of
C/C++-specific control blocks from a system dump when the ALL parameter is
specified and C/C++ is active in the dump. Figure 16 on page 103 illustrates the
C/C++-specific output produced. The system dump being formatted was obtained
by specifying the TERMTHDACT(UADUMP) run-time option when running the
program CELSAMP Figure 5 on page 44. “C/C++-specific Sections of the LEDATA
Output” on page 107 describes the information contained in the formatted output.
Ellipses are used to summarize some sections of the dump.

For easy reference, the sections of the dump are numbered to correspond with the
description of each section that follows.

102 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

CC
CRTL ENVIRONMENT DATA

CC
[1]CGEN: ###1592#
 +####7C OS_SPCTYPE:######## CGENE:2471AD74 CRENT:2599387#

+###1F8 CFLTINIT:4E###### ######## CPRMS:###149D# TRACE:######FF
 +###2#8 CTHD:24719964 CURR_FECB:2471ABD4 CEDCXV:A489EB#4

+###214 CGEN_CPCB:24719##4 CGEN_CEDB:2471A5A4 CFLG3:##
 +###22# CIO:247191AC FDSETFD:######## FCB_MUTEXOK:####

+###22C T_C16:######## T_C17:######## CEDCOV:2489A69C
 +###238 CTOFSV:######## TRTSPACE:24719D74

[2]CGENE: 2471AD74
+###### CGENEYE:.... CGENESIZE:######## CGENEPTR:########

 +####D# CERRNO:######## TEMPLONG:######## AMRC:########
 +###1#4 STDINFILE:######## STDOUTFILE:########
 +###1#C STDERRFILE:######## CTYPE:######## LC_CTYPE:###1###1
 +###124 LC_CHARMAP:#######1

+###5## MIN_FLT:##F2##F3 ##F4##F5 ##F6##F7 ##F8##F9
+###51# MAX_FLT:##F3##AD ##E###E8 ##E9##1F 2599386#

 +###52# FLT_EPS:######## DBL_EPS:######## ########
+###53# LDBL_EPS:######## ######## C7C5D5C5 #####6E#

 +###544 IMSPCBLIST:###163BC ADDRTBL:24719C7C
 +###6D4 ABND_CODE:######## RSN_CODE:########

[3]CEDB: 2471A5A4
 +###### EYE:CEDB SIZE:#####4D# PTR:2471A5A4 CLLST:247#4B4#
 +####1# CEELANG:###3 CASWITCH:#### CLWA:2471B2DC
 +####18 CALTLWA:2471B62C CCADDR:247#2178 CFLGS:######8#
 +####28 CANCHOR:######## RPLLEN:######## ACBLEN:########
 +####34 LC:2471AA7C VALID_HIGH:2483D6E# _LOW:2483BD3C
 +####4# HEAD_FECB:######## ATEXIT_COUNT:########
 +####48 _EMPTY_COUNT:######## MAINPRMS:25993D#8
 +####5# STDINFILE:2471A3A8 STDOUTFILE:24719FB8
 +####58 STDERRFILE:2471A1B# CTYPE:2484#29A TZDFLT:####465#
 +####64 CINFO:2471AB8C CMS_WRITE_DISK:4#4# _DISK_SET:########

+####7# MIN_FLT:##1##### ######## ######## ########
+####8# MAX_FLT:7FFFFFFF FFFFFFFF 71FFFFFF FFFFFFFF

 +####9# FLT_EPS:3C1##### DBL_EPS:341##### ########
+####A# LDBL_EPS:261##### ######## 18###### ######## FLAGS1:#2######

 +####B4 MTF_MAINTASK_BLK:######## EMSG_SETTING:## DEPTH:########
 +####C# SCREEN_WIDTH:######## USERID:IBMUSER.
 +####CC HEAP24_ANCHOR:######## TCIC:######## TKCLI:########

+####D8 ATEXIT_FUNCS#1:######## ######## ######## ######## ########
+####EC ATEXIT_FUNCS#2:######## ######## ######## ######## ########

...

Figure 16 (Part 1 of 5). Example Formatted C/C++ Output from LEDATA Verbexit

 Chapter 3. Using Language Environment Debugging Facilities 103

+###33# ATEXIT_FUNCS31:######## ######## ######## ######## ########
+###344 ATEXIT_FUNCS32:######## ######## ######## ######## ########

 +###358 HEAD_FOREIGN_FECB:######## SNAP_DUMP_COUNT:########
 +###36# ENVIRON:######## GETENV_BUF:########
 +###368 _BUF_LEN:######## INSPECT_GLOBALS:########

+###374 _JMP_BUFF:###25C44 _BACK_END:######## _FLAGS:########
+###38# _TAB:######## INTOFFLIST:######## CGEN_CRENT:2599387#

 +###38C _CPRMS:###149D# _CEDCXV:A489EB#4 _CEDCOV:2489A69C
 +###398 _EPCBLIST:######## CAA_ADDR:###1592#
 +###3A4 USERIDLENGTH:#######7 MAXUNGETCOUNT:###4
 +###3C4 IOGET_ANY:2493BFB# _BELOW:2493B6D# IOFREE_ANY:2493C47#
 +###3D# _BELOW:2493BC1# MTFMAINTASKBLK:########
 +###3E# SIGTABLE:2471ADB4 INIT_STDIN:2471A3A8

+###3E8 _STDOUT:24719FB8 _STDERR:2471A1B# TABNUM:#######8
 +###3F8 FLAGS2:######## OPENMVS_FLAGS:## MRPSTDR:2482D7F8
 +###4#8 MWPSTDR:2482DA## MRPSTDC:2482C928
 +###41# MWPSTDC:2482CB3# OWRP1:24898BA4 OWRP3:2489EB#4
 +###41C STATIC_EDCOV:######## GETENV_BUF2:########
 +###424 _BUF2_LEN:######## DLCB_MUTEX:25993DA8 _CONDV:25993DAC
 +###43# EDCOV:2498B48# LCX:2471ACB4 MUTEX_ATTR:25993D48
 +###444 STOR_INIT:####3### _INCR:####2### DEMANGLE:########
 +###454 TEMPR15:######## TERMINATE:########
 +###45C CXX_INV:######## D4_JOIN_MUTEX_ATTR:25993D98
 +###468 _MUTEX:25993D9C _CONDV_ATTR:25993DA# _CONDV:25993DA4
 +###474 DLLANCHOR:######## DLLLAST:######## MEM24P:###163C#
 +###48# RTLMUTEX_ARRAYPTR:25993D4C MSGCATLIST:########

+###488 SRCHP:######## ETOAP:######## ATOEP:########
 +###494 NDMGMTP:######## POPENP:######## RND48P:########
 +###4A# BRK_HEAPID:######## _START:######## _CURRENT:########
 +###4AC _END:######## RESTARTTABLE:2497BE48 SYSLOGP:########
 +###4BC LOGIN_NAME:......... PREV_UMASK_VAL:########

[4]CTHD: 24719964
 +###### CTHDEYE:CTHD SIZE:#####31# CTHDPTR:24719964
 +#####C STORPTR:######## TOKPTR:2483744#
 +####14 ASCTIME_RESULT:..........................
 +####2E SNAP_DUMP_FLAG:## GMTIME_BKDN:24719D4C
 +####34 TIMECALLED:######## DATECALLED:########
 +####3C DTCALLED:######## LOC_CALLED:########
 +####44 DOFMTO_DISCARDS:######## CERRNO:######## AMRC:24719854

+####5# AMRC2:2471993C GDATE:######## OPTARGV:########
 +####5C OPTERRV:#######1 OPTINDV:#######1

+####64 OPTOPTV:######## OPTSIND:######## DLGHTV:########
 +####7# TZONEV:######## GTDTERRV:######## OPTARGP:259938A8
 +####7C OPTERRP:259938A4 OPTINDP:259938A#
 +####84 OPTOPTP:2599389C DLGHTP:2599389# TZONEP:25993894
 +####9# GTDTERRP:259938B# RNDSTGP:########
 +####98 LOCNAME:######## ENCRYPTP:######## CRYPTP:########
 +####A4 RND48P:######## L64AP:######## WCSTOKP:########
 +####B# CUSERP:######## GPASSP:######## UTMPXP:########
 +####BC NDMGMTP:######## RECOMP:######## STACKPTR:########
 +####C8 STACKSIZE:######## STACKFLAGS:## ######
 +####D# MCVTP:######## H_ERRNO:######## SD:FFFFFFFF
 +####DC HOSTENT_DATA_P:######## HOSTENT_P:########
 +####E4 NETENT_DATA_P:######## NETENT_P:########
 +####EC PROTOENT_DATA_P:######## PROTOENT_P:########
 +####F4 SERVENT_DATA_P:######## SERVENT_P:########
 +####FC NTOA_BUF:.................. __LOC1V:########

Figure 16 (Part 2 of 5). Example Formatted C/C++ Output from LEDATA Verbexit

104 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

+###118 HERRNOP:259938AC __LOC1P:2599388C REXECP:########
 +###124 CXXEXCEPTION:######## TEMPDCBE:24719644
 +###12C T_ERRNOV:######## T_ERRNOP:2599387#
 +###148 THD_STORAGE:######## CONTEXT_LINK:######## FLAGS1:########
 +###154 LABEL_VAR:24719E74 ABND_CODE:########
 +###15C RSN_CODE:######## STRFTIME_ERADTCALLED:########
 +###164 STRFTIME_ERADATECALLED:########
 +###168 STRFTIME_ERATIMECALLED:########
 +###16C STRFTIME_ERAYEARCALLED:######## MBRLEN_STATE:####
 +###172 MBRTOWC_STATE:#### WCRTOMB_STATE:####

+###176 MBSRTOWCS_STATE:#### WCSRTOMBS_STATE:#### MBLEN_STATE:####
 +###17C MBTOWC_STATE:#### CURR_HEAP_ID:########
 +###184 CURR_CAA:######## CURR_MOD_HANDLE:########
 +###18C CURR_BMR:######## CU_LIST:######## CURR_STATUS:##
 +###198 RAND_NEXT:#######1 STRERRORBUF:247193BC
 +###1A# TMPAREA:######## IOWORKAREA:2471971C
 +###1A8 TEMPDCB:###5##88 TEMPJFCB:###5##E8
 +###1B# TEMPDSCB:2471967C NAMEBUF:259A#BC8
 +###1B8 ERRNO_JR:######## RET_STRUCT:########
 +###1C# BKDN_IS_LOCALTIME:######## SWPRINTF_SIZE:####8###
 +###1C8 SWPRINTF_BUF:######## S99P:24719624 MUTEXCTARRAY:24719EAC
 +###1D4 STRFTIME_ERANAMECALLED:######## FCB_MUTEX:########
 +###2#4 HSPABHWA:24719364 MUTEX_SAVE:24719EFC
 +###21# INITIAL_CPU_TIME:4D###### ###53ADF FCB_MUTEX_OK:#######1
 +###21C FCB_MUTEX_SAVE:######## ENTRY_ADDRTABLESIZE:########
 +###224 ADDRESS:######## NUMBEROFNAMES:########
 +###22C NAMES1:.........................
 +###245 NAMES2:.........................
 +###25E NAMES3:.........................
 +###277 NAMES4:.........................
 +###29# NAMES5:.........................
 +###2A9 NAMES6:.........................
 +###2C4 ENTRY_SITETABLESIZE:######## KIND:##
 +###2CC NUM_ADDRS:########

+###2D# ADDRESSES:######## ######## ######## ######## ######## ########
+###2E8 NAME:######## ######## ######## ######## ######## ########

[5]CPCB: 24719##4
 +###### CPCB_EYE:CPCB CPCB_SIZE:######38 CPCB_PTR:########
 +#####C FLAGS1:4####### TTKNHDR:######## TTKN:########
 +####18 FOOTPRINT:2471A5A4 CODE37#:######## CIO:247191AC
 +####24 _Reuse:######## _RSAbove:24719##4 _RSAbovelen:####3#28
 +####3# _RSBelow:###163B8 _RSBelowlen:#####328

[6]CIO: 247191AC
+###### EYE:CIO SIZE:######88 PTR:######## FLG1:#8
+#####D FLG2:## FLG3:## FLG4:## DUMMYF:24719234

 +####14 EDCZ24:A49BF4E# FCBSTART:259A#4#8 DUMMYFCB:2471924C
 +####2# MFCBSTART:259A#5F# IOANYLIST:2599F###
 +####28 IOBELOWLIST:###5#### FCBDDLIST:24719FCC
 +####3# PERRORBUF:24719#74 TMPCOUNTER:########
 +####38 TEMPMEM:######## PROMPTBUF:######## IO24:###5#2D#
 +####44 IOEXITS:###5#F4C TERMINALCHAIN:########
 +####4C VANCHOR:######## XTI:######## ENOWP24:249BFFD#
 +####58 MAXNUMDESCRPS:######## DESCARRAY:########
 +####6# PROC_RES_P:######## TEMPFILENUM:######## CSS:########
 +####6C DUMMY_NAME:........ HOSTNAME_CACHE:########
 +####78 HOSTADDR_CACHE:########

Figure 16 (Part 3 of 5). Example Formatted C/C++ Output from LEDATA Verbexit

 Chapter 3. Using Language Environment Debugging Facilities 105

[7]File name: memory.data
 FCB: 259A#4#8
 +###### BUFPTR:259A#7E5 COUNTIN:######## COUNTOUT:#####3DB
 +#####C READFUNC:259A#4D8 WRITEFUNC:259A#4F8 FLAGS1:####

+####16 DEPTH:#### NAME:259A#5A4 _LENGTH:#######B
 +####2# _BUFSIZE:######44 MEMBER:........ NEXT:2599F2##
 +####3# PREV:######## PARENT:259A#4#8 CHILD:########
 +####3C DDNAME:........ FD:FFFFFFFF DEVTYPE:#8 FCBTYPE:##55
 +####4C FSCE:259A#51C UNGETBUF:259A#51C REPOS:24825EA#
 +####58 GETPOS:24828418 CLOSE:24828678 FLUSH:24828AE#

+####64 UTILITY:248#D43# USERBUF:######## LRECL:#####4##
 +####7# BLKSIZE:#####4## REALBUFPTR:########
 +####78 UNGETCOUNT:######## BUFSIZE:#####4## BUF:259A#7C#
 +####84 CURSOR:259A#7C# ENDOFDATA:######## SAVEDBUF:########
 +####9# REALCOUNTIN:######## REALCOUNTOUT:########
 +####98 POSMAJOR:######## SAVEMAJOR:########
 +####A# POSMINOR:######## SAVEMINOR:######## STATE:####
 +####AA SAVESTATE:#### EXITFTELL:######## EXITUNGETC:24815DB#
 +####B4 DBCSTART:######## UTILITYAREA:########
 +####BC INTERCEPT:######## FLAGS2:43#2###8 4###1###
 +####C8 DBCSSTATE:#### FCB_CPCB:24719##4
 +####D# READGLUE:58FF###8 #7FF#### READ:248158B8
 +####DC RADDR_WSA:######## _GETFN:######## RDLL_INDEX:########
 +####E8 RCEESG##3:######## RWSA:########
 +####F# WRITEGLUE:58FF###8 #7FF#### WRITE:248245D8
 +####FC WADDR_WSA:######## _GETFN:######## WDLL_INDEX:########
 +###1#8 WCEESG##3:######## WWSA:########

 FSCE: 259A#51C
+###### GENERIC1:D4C5D4D6 259A#5F# 259A#664
+#####C GENERIC2:###1#### ######## 248158B8
+####18 GENERIC3:248245D8 24825EA# 24828AE#

...

File name: DD:SYSPRINT

 FCB: 24719FCC
 +###### BUFPTR:2599F#BD COUNTIN:######## COUNTOUT:######84
 +#####C READFUNC:2471A#9C WRITEFUNC:2471A#BC FLAGS1:8###

+####16 DEPTH:#### NAME:2471A168 _LENGTH:#######B
 +####2# _BUFSIZE:######44 MEMBER:........ NEXT:2471A1C4
 +####3# PREV:2471A3BC PARENT:24719FCC CHILD:########
 +####3C DDNAME:SYSPRINT FD:FFFFFFFF DEVTYPE:#2 FCBTYPE:##43
 +####4C FSCE:2471A#E# UNGETBUF:2471A#E# REPOS:249C##D#
 +####58 GETPOS:249C#1F# CLOSE:24A2315# FLUSH:24A23#48

+####64 UTILITY:24A239A8 USERBUF:######## LRECL:######89
 +####7# BLKSIZE:#####372 REALBUFPTR:########
 +####78 UNGETCOUNT:######## BUFSIZE:######8A BUF:2599F#B8
 +####84 CURSOR:2599F#BC ENDOFDATA:######## SAVEDBUF:########
 +####9# REALCOUNTIN:######## REALCOUNTOUT:########
 +####98 POSMAJOR:######## SAVEMAJOR:########
 +####A# POSMINOR:######## SAVEMINOR:######## STATE:###2
 +####AA SAVESTATE:#### EXITFTELL:249C#2A8 EXITUNGETC:249C#36#
 +####B4 DBCSTART:######## UTILITYAREA:########
 +####BC INTERCEPT:######## FLAGS2:43128#2# 2A188###
 +####C8 DBCSSTATE:#### FCB_CPCB:24719##4
 +####D# READGLUE:58FF###8 #7FF#### READ:249BFE68
 +####DC RADDR_WSA:######## _GETFN:######## RDLL_INDEX:########
 +####E8 RCEESG##3:######## RWSA:########
 +####F# WRITEGLUE:58FF###8 #7FF#### WRITE:24A21A68
 +####FC WADDR_WSA:######## _GETFN:######## WDLL_INDEX:########
 +###1#8 WCEESG##3:######## WWSA:########

Figure 16 (Part 4 of 5). Example Formatted C/C++ Output from LEDATA Verbexit

106 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 OSNS: 2471A#E#
+###### OSNS_EYE:OSNS READ:249BFE68 WRITE:24A21A68

 +#####C REPOS:249C##D# GETPOS:249C#1F# CLOSE:24A2315#
 +####18 FLUSH:24A23#48 UTILITY:24A239A8 EXITFTELL:249C#2A8
 +####24 EXITUNGETC:249C#36# OSIOBLK:2599F#2#
 +####2C NEWLINEPTR:2599F141 RECLENGTH:######85 FLAGS:848#####

 OSIO: 2599F#2#
+###### OSIO_EYE:OSIO DCBW:###5##2# DCBRU:########

 +#####C JFCB:###5#F68 CURRMBUF:###51#2# MBUFCOUNT:#######1
 +####18 READMAX:#######1 CURBLKNUM:FFFFFFFF
 +####2# LASTBLKNUM:FFFFFFFF BLKSPERTRK:########
 +####2C FIRSTPOS:######## LASTPOS:######## NEWPOS:#######2
 +####38 READFUNCNUM:#######5 WRITEFUNCNUM:24719FCC FCB:2599F#2#
 +####44 PARENT:8####### FLAGS1:######## DCBERU:2599F#78
 +####5# DCBEW:8#####4#

 DCB: ###5##2#
 +###### DCBRELAD:2599F#78 DCBFDAD:######## ######19
 +#####F DCBBUFNO:## DCBSRG1:#5 DCBEODAD:####5E DCBRECFM:A#
 +####2# DCBEXLSA:86#5#4 DCBDDNAM:;....... DCBMACR1:9C
 +####2E DCBMACR2:55 DCBSYNAD:###### DCBBLKSI:#5#4 DCBNCP:##
 +####4D DCBLRECL:9A2C

 DCBE: 2599F#78
 +###### DCBEID:DCBE DCBELEN:##38 RESERVED#:####
 +#####8 DCBEDCB:###5##2# DCBERELA:######## DCBEFLG1:C#
 +####11 DCBEFLG2:88 DCBENSTR:#### DCBESIZE:########

+####28 DCBEEODA:######## DCBESYNA:######## MULTSDN:##

 JFCB: ###5#F68
 +###### JFCBDSNM:IBMUSER.PAHBAT.JOB###18.D####1#1.?
 +####2C JFCBELNM: JFCBTSDM:2# JFCBDSCB:######
 +####46 JFCBVLSQ:#### JFCBIND1:## JFCBIND2:81

+####58 JFCBUFNO:## JFCDSRG1:## JFCDSRG2:##
+####64 JFCRECFM:## JFCBLKSI:#### JFCLRECL:#### JFCNCP:##

 +####75 JFCBNVOL:## JFCFLGS1:##
...

Dummy FCB encountered at location 2471924C

Exiting CRTL Environment Data

Figure 16 (Part 5 of 5). Example Formatted C/C++ Output from LEDATA Verbexit

C/C++-specific Sections of the LEDATA Output
For the LEDATA output:

[1] CGEN

This section formats the C/C++-specific portion of the Language Environment
common anchor area (CAA).

[2] CGENE

This section formats the extension to the C/C++-specific portion of the Language
Environment common anchor area (CAA).

[3] CEDB

This section formats the C/C++-specific portion of the Language Environment
enclave data block (EDB).

[4] CTHD

This section formats the C/C++ thread-level control block (CTHD).

 Chapter 3. Using Language Environment Debugging Facilities 107

[5] CPCB

This section formats the C/C++-specific portion of the Language Environment
process control block (PCB).

[6] CIO

This section formats the C/C++ IO control block (CIO).

[7] File Control Blocks

This section formats the C/C++ file control block (FCB). The FCB and its related
control blocks represent the information needed by each open stream.

Related Control Blocks

FSCE The file specific category extension control block. The FSCE represents
the specific type of IO being performed. The following is a list of FSCEs
that may be formatted.

OSNS — OS no seek

OSFS — OS fixed text

OSVF — OS variable text

OSUT — OS undefined format text

Other FSCEs will be displayed using a generic overlay.

OSIO The OS IO interface control block.

DCB The data control block. For more information about the DCB, refer to
OS/390 DFSMS Macro Instructions for Data Sets.

DCBE The data control block extension. For more information about the DCBE,
refer to OS/390 DFSMS Macro Instructions for Data Sets.

JFCB The job file control block (JFCB). For more information about the JFCB,
refer to OS/390 MVS Data Areas, Vol 3 (IVT-RCWK).

Understanding the COBOL-specific LEDATA Output
The Language Environment IPCS Verbexit LEDATA generates formatted output of
COBOL-specific control blocks from a system dump when the ALL parameter is
specified and COBOL is active in the dump. Figure 17 on page 109 illustrates the
COBOL-specific output produced. The system dump being formatted was obtained
by specifying the TERMTHDACT(UADUMP) run-time option. “COBOL-specific
Sections of the LEDATA Output” on page 110 describes the information contained
in the formatted output.

For easy reference, the sections of the dump are numbered to correspond with the
description of each section that follows.

108 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

CC

COBOL ENVIRONMENT DATA
 CC

 [1]RUNCOM: ###49#38
 +###### IDENT:C3RUNCOM LENGTH:#####2D8 FLAGS:##86####
 +####1# RU_ID:###178B# INVK_RSA:####5F8#
 +####24 MAIN_PGM_ADDR:####7DE8 MAIN_PGM_CLLE:###49328
 +####2C ITBNAB:######## PARM_ADDR:###179D# NEXT_RUNCOM:########

+####4# THDCOM:###1AA8# COBVEC:###1A1BC SUBCOM:########
 +####4C COBVEC2:###1A7FC CAA:###1892# UPSI_SWITCHES:########
 +####7C DUM_CLLE:#BF15BA8 1ST_FREE_CLLE:########
 +####88 HAT:#BF157A8 1ST_CLLE:###49488
 +####9# SORT_CONTROL_DCB:######## COBOL_ACTIVE:########
 +####A4 IO_FLAGS:######## UNSTR_WRK:########
 +###11C INSP_WRK:######## INSP_WRK1:########

+###12C DDNAME_SORT_CONTROL:........ LEN_UNSTR_WRK:########
 +###138 UNSTR_DELIMS:####

+###154 CEEINT_PLIST:###491B# #######8 #######6 ###491B4 ######## ########
+###16C ----------->:#######5 ######## ######## ######## ########

 +###1C8 MAIN_ID:CALLSUBX
 +###2#4 ------>:
 +###24# ------>:

 [2]THDCOM: ###1AA8#
 +###### IDENT:C3THDCOM LENGTH:#####1E8 FLAGS:81###### #####1##

+####18 COBCOM:###1A1#8 COBVEC:###1A1BC 1ST_RUNCOM:###49#38
 +####28 1ST_PROGRAM:CALLSUBX SUBCOM:########

+####34 CEEINT_PLIST:######## ######## ######## ######## ######## ########
+####4C ----------->:######## ######## ######## ######## ########

 +####84 COBVEC2:###1A7FC ITBLK:######## STT_BST:########
 +####98 CICS_EIB:######## SIBLING:########
 +####AC SORT_RETURN:######## INFO_MSG_LIMIT:####
 +####C8 R12_SAVE:######## STP_DUM_TGT:########
 +###18# LRR_COBCOM:######## CAA:###1892# DUM_THDCOM:########
 +###19C ITBLK_TRAP_RSA:######## ITBLK_PLFPARMS:########
 +###1A4 ITBLK_BS2PARMS:######## ITBLK_NAB:########
 +###1AC DUM_MAIN_DSA:######## BDY_RSA:########
 +###1D# RRE_TAIL_RSA:######## ESTUB_TGT:########

 [3]COBCOM: ###1A1#8
 +###### IDENT:C3COBCOM LENGTH:#####978 VERSION:#1#9##
 +####58 FLAGS:9#6### ESM_ID:O COBVEC:###1A1BC
 +####6# COBVEC2:###1A7FC

+####64 LOADFG:#####1## ######## 8####### ####8### ########
 +####78 THDCOM:###1AA8# INSH:######## LRR_THDCOM:########
 +####9C LRR_ITBLK:######## LRR_SUBCOM:########
 +####A4 LRR_EPLF:########

[4] CLLE: ###49488
 +###### PGMNAME:PARM5 OPEN_NON_EXT_FILES:#### TGT_FLAGS:##
 +#####C LANG_LST:###5#F98 INFO_FLAGS:8891 LOAD_ADDR:8##4FF88

+####18 TGT_ADDR:###5#248 LE_TOKEN:#BF15#BC FLAGS2:##

Figure 17 (Part 1 of 2). Example Formatted COBOL Output from LEDATA Verbexit

 Chapter 3. Using Language Environment Debugging Facilities 109

 [5] TGT: ###5#248
+####48 IDENT:3TGT LVL:#5 FLAGS:4##2#22# RUNCOM:###49#38

 +####5C COBVEC:###1A7FC #FCBS:######## WS_LEN:########
 +####7# SMG_WRK:######## CAA:###1892# LEN:#####154
 +####8C EXT_FCBS:######## OUTDD:SYSOUT

+####AC CALC_RSA:######## ######## ######## ######## ######## ########
+####C4 ------->:######## ######## ######## ######## ######## ########

 +####DC ------->:######## ABINF:###5##A5 TESTINF:########
 +###1## PGMADDR:###4FF88 1STFCB:######## WS_ADDR:########
 +###118 1STEXTFCB:########

 CLLE: ###4944#
 +###### PGMNAME:PARM1 OPEN_NON_EXT_FILES:#### TGT_FLAGS:##
 +#####C LANG_LST:###4EF98 INFO_FLAGS:8891 LOAD_ADDR:8##4DFE#

+####18 TGT_ADDR:###4E258 LE_TOKEN:#BF15#A# FLAGS2:##

 TGT: ###4E258
+####48 IDENT:3TGT LVL:#5 FLAGS:4##2#22# RUNCOM:###49#38

 +####5C COBVEC:###1A7FC #FCBS:######## WS_LEN:########
 +####7# SMG_WRK:######## CAA:###1892# LEN:#####144
 +####8C EXT_FCBS:######## OUTDD:SYSOUT

+####AC CALC_RSA:######## ######## ######## ######## ######## ########
+####C4 ------->:######## ######## ######## ######## ######## ########

 +####DC ------->:######## ABINF:###4E#FD TESTINF:########
 +###1## PGMADDR:###4DFE# 1STFCB:######## WS_ADDR:########
 +###118 1STEXTFCB:########

 CLLE: ###4937#
 +###### PGMNAME:PARM# OPEN_NON_EXT_FILES:#### TGT_FLAGS:##
 +#####C LANG_LST:###4CF98 INFO_FLAGS:8891 LOAD_ADDR:8##4BFF8

+####18 TGT_ADDR:###4C26# LE_TOKEN:#BF15#84 FLAGS2:##

 TGT: ###4C26#
+####48 IDENT:3TGT LVL:#5 FLAGS:4##2#22# RUNCOM:###49#38

 +####5C COBVEC:###1A7FC #FCBS:######## WS_LEN:########
 +####7# SMG_WRK:######## CAA:###1892# LEN:#####14#
 +####8C EXT_FCBS:######## OUTDD:SYSOUT

+####AC CALC_RSA:######## ######## ######## ######## ######## ########
+####C4 ------->:######## ######## ######## ######## ######## ########

 +####DC ------->:######## ABINF:###4C115 TESTINF:########
 +###1## PGMADDR:###4BFF8 1STFCB:######## WS_ADDR:########
 +###118 1STEXTFCB:########

 CLLE: ###49328
+###### PGMNAME:CALLSUBX OPEN_NON_EXT_FILES:#### TGT_FLAGS:##

 +#####C LANG_LST:######## INFO_FLAGS:9881 LOAD_ADDR:8###7DE8
+####18 TGT_ADDR:####822# LE_TOKEN:######## FLAGS2:##

 TGT: ####822#
+####48 IDENT:3TGT LVL:#5 FLAGS:6##2#22# RUNCOM:###49#38

 +####5C COBVEC:###1A7FC #FCBS:######## WS_LEN:######2C
 +####7# SMG_WRK:######## CAA:###1892# LEN:#####15#
 +####8C EXT_FCBS:######## OUTDD:SYSOUT

+####AC CALC_RSA:######## ######## ######## ######## ######## ########
+####C4 ------->:######## ######## ######## ######## ######## ########

 +####DC ------->:######## ABINF:####7F34 TESTINF:########
 +###1## PGMADDR:####7DE8 1STFCB:######## WS_ADDR:####83C#
 +###118 1STEXTFCB:########

 Exiting COBOL Environment Data

Figure 17 (Part 2 of 2). Example Formatted COBOL Output from LEDATA Verbexit

COBOL-specific Sections of the LEDATA Output
For the LEDATA output:

[1] RUNCOM

This section formats the COBOL enclave-level control block (RUNCOM).

[2] THDCOM

This section formats the COBOL process-level control block (THDCOM).

110 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

[3] COBCOM

This section formats the COBOL region-level control block (COBCOM).

[4] CLLE

This section formats the COBOL loaded program control blocks (CLLE).

[5] TGT

This section formats the COBOL TGT control blocks.

Requesting a Language Environment Trace for Debugging
Language Environment provides an in-storage, wrapping trace facility that can
reconstruct the events leading to the point where a dump is taken. The trace facility
can record two types of events: entry and exit library calls and, if the POSIX run-
time option is set to ON, user mutex and condition variable activity such as init,
lock/unlock, and wait. Language Environment produces a trace table in its dump
report under the following conditions:

� The CEE3DMP callable service is invoked with the BLOCKS option and the
TRACE run-time option is set to ON.

� The TRACE run-time option is set to NODUMP and the TERMTHDACT run-
time option is set to DUMP, UADUMP, TRACE, or UATRACE.

� The TRACE run-time option is set to DUMP (the default).

For more information about the CEE3DMP callable service, the TERMTHDACT run-
time option, or the TRACE run-time option, see OS/390 Language Environment
Programming Reference.

The TRACE run-time option activates Language Environment run-time library
tracing and controls the size of the trace buffer, the type of trace events to record,
and it determines whether a dump containing only the trace table should be uncon-
ditionally taken when the application (enclave) terminates. The trace table contents
can be written out either upon demand or at the termination of an enclave.

The contents of the Language Environment dump depend on the values set in the
TERMTHDACT run-time option. Under abnormal termination, the following dump
contents are generated:

� TERMTHDACT(QUIET) generates a Language Environment dump containing
the trace table only

� TERMTHDACT(MSG) generates a Language Environment dump containing the
trace table only

� TERMTHDACT(TRACE) generates a Language Environment dump containing
the trace table and the traceback

� TERMTHDACT(DUMP) generates a Language Environment dump containing
thread/enclave/process storage and control blocks (the trace table is included
as an enclave control block)

� TERMTHDACT(UAONLY) generates a system dump of the user address space

 Chapter 3. Using Language Environment Debugging Facilities 111

� TERMTHDACT(UATRACE) generates a Language Environment dump that con-
tains traceback information, and a system dump of the user address space

� TERMTHDACT(UADUMP) generates a Language Environment dump con-
taining thread/enclave/process storage and control blocks (the trace table is
included as an enclave control block), and a user address space dump

� TERMTHDACT(UAIMM) generates a system dump of the user address space
of the original abend or program interrupt that occurred prior to the Language
Environment condition manager processing the condition.

Note: Under CICS, UAIMM yields UAONLY behavior. Under non-CICS,
TRAP(ON,NOSPIE) must be in effect. When TRAP(ON,SPIE) is in
effect, UAIMM yields UAONLY behavior. For software raised conditions
or signals, UAIMM behaves the same as UAONLY.

Under normal termination, the following dump contents are generated:

� Independent of the TERMTHDACT setting, Language Environment generates a
dump containing the trace table only based on the TRACE run-time option

Language Environment quiesces all threads that are currently running except for
the thread that issued the call to CEE3DMP. When you call CEE3DMP in a multi-
thread environment, only the current thread is dumped. Enclave- and process-
related storage could have changed from the time the dump request was issued.

Locating the Trace Dump
If your application calls CEE3DMP, the Language Environment dump is written to
the file specified in the FNAME parameter of CEE3DMP (the default is CEEDUMP).

If your application is running under TSO or OS/390 batch, and a CEEDUMP DD is
not specified, Language Environment writes the CEEDUMP to the batch log
(SYSOUT=* by default). You can change the SYSOUT class by specifying a
CEEDUMP DD, or by setting the environment variable,
_CEE_DMPTARG=SYSOUT(x), where x is the preferred SYSOUT class.

If your application is running under OS/390 UNIX and is either running in an
address space you issued a fork() to, or if it is invoked by one of the exec family
of functions, the dump is written to the hierarchical file system (HFS). Language
Environment writes the CEEDUMP to one of the following directories in the speci-
fied order:

1. The directory found in environment variable _CEE_DMPTARG, if found

2. The current working directory, if the directory is not the root directory (/), and
the directory is writeable

3. The directory found in environment variable TMPDIR (an environment variable
that indicates the location of a temporary directory if it is not /tmp)

4. The /tmp directory

The name of this file changes with each dump and uses the following format:

/path/Fname.Date.Time.Pid

path The path determined from the above algorithm.

Fname The name specified in the FNAME parameter on the call to CEE3DMP
(default is CEEDUMP).

112 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Date The date the dump is taken, appearing in the format YYYYMMDD (such as
19980918 for September 18, 1998).

Time The time the dump is taken, appearing in the format HHMMSS (such as
175501 for 05:55:01 p.m.).

Pid The process ID the application is running in when the dump is taken.

Using the Language Environment Trace Table Format in a Dump
Report

The Language Environment trace table is established unconditionally at enclave
initialization time if the TRACE run-time option is set to ON. All threads in the
enclave share the trace table; there is no thread-specific table, nor can the table be
dynamically extended or enlarged.

Understanding the Trace Table Entry (TTE)
Each trace table entry is a fixed-length record consisting of a fixed-format portion
(containing such items as the timestamp, thread ID, and member ID) and a
member-specific portion. The member-specific portion has a fixed length, of which
some (or all) can be unused. For information about how participating products use
the trace table entry, refer to the product-specific documentation. The format of the
trace table entry is as follows:

Char (104)Char (4)Char (4)Char (8)Char (8)

Mbr-specific info up to
a maximum of 104 bytes

Member
entry
type

Member
ID and
flags

Thread
ID

Time of
Day

Following is a definition of each field:

Time
The 64-bit value obtained from a store clock (STCK).

Thread ID
The 8-byte thread ID of the thread that is adding the trace table entry.

Member ID and Flags
Contains 2 fields:

Member ID
The 1-byte member ID of the member making the trace table entry.

Flags
24 flags reserved for internal use.

Member Entry Type
A number that indicates the type of the member-specific trace information that
follows the field.

To uniquely identify the information contained in a specific TTE, you must con-
sider Member ID as well as Member Entry Type. Following is a list of member
IDs:

ID Name
01 CEL
03 C/C++
05 COBOL

 Chapter 3. Using Language Environment Debugging Facilities 113

07 Fortran
08 DCE
10 PL/I
12 Sockets

Member Specific Information
Based on the member ID and the member entry type, this field contains the
specific information for the entry, up to 104 bytes.

For C/C++, the entry type of 1 is a record that records an invocation of a base C
run-time library function. The entry consists of the name of the invoking function
and the name of the invoked function. Entry type 2 is a record that records the
return from the base library function. It contains the returned value and the value of
errno.

Sample Dump for the Trace Table Entry
The following is an example of a dump of the trace table when you specify the
LE=1 suboption (the library call/return trace):

...

 Enclave Control Blocks:
 EDB: ###1E92#

+###### ###1E92# C3C5C5C5 C4C24#4# C5#####1 ###2#E68 ###1F#4# ######## ######## ######## |CEEEDB E.........#|

...
 MEML: ###2#E68

+###### ###2#E68 ######## ######## ###7C5B8 ######## ######## ######## ###7C5B8 ######## |..........E...............E.....|

...
Language Environment Trace Table:
Most recent trace entry is at displacement: ##1B8#

Displacement Trace Entry in Hexadecimal Trace Entry in EBCDIC
 ------------ -- --------------------------------

+###### Time 21.41.57.595359 Date 1998.#3.26 Thread ID... 8###############
+####1# Member ID.... #3 Flags..... ###### Entry Type..... #######1
+####18 6D6DA289 9589A3F6 F46D6D83 82836D83 938296A2 F2F46D89 96A2A399 8581946D __sinit64__cbc_clbos24_iostream_
+####38 6#6#6E4D F1F9F35D 4#6D6D87 85A38382 4D5D4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# -->(193) __getcb()
+####58 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4#

 +####78 4#4#4#4# 4#4#4#4#

+####8# Time 21.41.57.595367 Date 1998.#3.26 Thread ID... 8###############
+####9# Member ID.... #3 Flags..... ###### Entry Type..... #######2
+####98 4C6#6#4D F1F9F35D 4#D9F1F5 7EF#F#F# F#F#F#F# F#4#C5D9 D9D5D67E F#F#F#F# <--(193) R15=######## ERRNO=####
+####B8 F#F#F#F# ######## ######## ######## ######## ######## ######## ######## ####............................
+####D8 ######## ######## ######## ######## ######## ######## ######## ########

 +####F8 ######## ########

+###1## Time 21.41.57.595374 Date 1998.#3.26 Thread ID... 8###############
+###11# Member ID.... #3 Flags..... ###### Entry Type..... #######3
+###118 6D6DA289 9589A3F6 F46D6D83 82836D83 938296A2 F2F46D89 96A2A399 8581946D __sinit64__cbc_clbos24_iostream_
+###138 6#6#6E4D F1F1F35D 4#6D6D89 A2D796A2 89A7D695 4D5D4#4# 4#4#4#4# 4#4#4#4# -->(113) __isPosixOn()
+###158 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4####### ########

 +###178 ######## ########

Figure 18 (Part 1 of 2). Trace Table in Dump Output

114 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

+###18# Time 21.41.57.59538# Date 1998.#3.26 Thread ID... 8###############
+###19# Member ID.... #3 Flags..... ###### Entry Type..... #######4
+###198 4C6#6#4D F1F1F35D 4#D9F1F5 7EF#F#F# F#F#F#F# F#4#C5D9 D9D5D67E F#F#F#F# <--(113) R15=######## ERRNO=####
+###1B8 F#F#F#F# 4#C5D9D9 D5D6F27E F#F#F#F# F#F#F#F# ######## ######## ######## #### ERRNO2=########............
+###1D8 ######## ######## ######## ######## ######## ######## ######## ########

 +###1F8 ######## ########

+###2## Time 21.41.57.595638 Date 1998.#3.26 Thread ID... 8###############
+###21# Member ID.... #3 Flags..... ###### Entry Type..... #######1
+###218 D3968392 A27A7AC9 95A2A381 9583854D 5D4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# Locks::Instance()
+###238 6#6#6E4D F1F2F45D 4#948193 9396834D F1F6F#F# 5D4#4#4# 4#4#4#4# 4#4#4#4# -->(124) malloc(16##)
+###258 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4#

 +###278 4#4#4#4# 4#4#4#4#

+###28# Time 21.41.57.59569# Date 1998.#3.26 Thread ID... 8###############
+###29# Member ID.... #3 Flags..... ###### Entry Type..... #######2
+###298 4C6#6#4D F1F2F45D 4#D9F1F5 7EF2F4C2 F6C4F8C5 F84#C5D9 D9D5D67E F#F#F#F# <--(124) R15=24B6D8E8 ERRNO=####
+###2B8 F#F#F#F# ######## ######## ######## ######## ######## ######## ######## ####............................
+###2D8 ######## ######## ######## ######## ######## ######## ######## ########

 +###2F8 ######## ########

+###3## Time 21.41.57.595743 Date 1998.#3.26 Thread ID... 8###############
+###31# Member ID.... #3 Flags..... ###### Entry Type..... #######1
+###318 8785A394 9684856D 86999694 6D86844D 8995A35D 4#4#4#4# 4#4#4#4# 4#4#4#4# getmode_from_fd(int)
+###338 6#6#6E4D F1F9F35D 4#6D6D87 85A38382 4D5D4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# -->(193) __getcb()
+###358 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4#

 +###378 4#4#4#4# 4#4#4#4#

+###38# Time 21.41.57.595746 Date 1998.#3.26 Thread ID... 8###############
+###39# Member ID.... #3 Flags..... ###### Entry Type..... #######2
+###398 4C6#6#4D F1F9F35D 4#D9F1F5 7EF#F#F# F#F#F#F# F#4#C5D9 D9D5D67E F#F#F#F# <--(193) R15=######## ERRNO=####
+###3B8 F#F#F#F# ######## ######## ######## ######## ######## ######## ######## ####............................
+###3D8 ######## ######## ######## ######## ######## ######## ######## ########

 +###3F8 ######## ########
...

Figure 18 (Part 2 of 2). Trace Table in Dump Output

 Chapter 3. Using Language Environment Debugging Facilities 115

116 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Part 2. Debugging Language-Specific Routines

This part provides specific information for debugging applications written in
C/C++, COBOL, Fortran, and PL/I. It also discusses techniques for debugging
under CICS.

Chapter 4. Debugging C/C++ Routines . 121
Debugging C/C++ Input/Output Programs . 121

Using the __amrc and __amrc2 Structures . 122
__last_op Values . 124
Displaying an Error Message with the perror() Function 127
Using __errno2() to Diagnose Application Problems 128

Using C/C++ Listings . 129
Generating C/C++ Listings and Maps . 129
Finding Variables . 132

Generating a Language Environment Dump of a C/C++ Routine 139
cdump() . 139
csnap() . 140
ctrace() . 140
Sample C Routine that Calls cdump . 140
Sample C++ Routine that Generates a Language Environment Dump 142
Sample Language Environment Dump with C/C++-Specific Information . . . 144
Finding C/C++ Information in a Language Environment Dump 152

| Sample Language Environment Dump with XPLINK-Specific Information . . 157
| Finding XPLINK Information in a Language Environment Dump 162

C/C++ Contents of the Language Environment Trace Tables 163
Debugging Examples of C/C++ Routines . 168

Divide-by-Zero Error . 168
| Calling a Nonexistent Non-XPLINK Function 172
| Calling a Nonexistent XPLINK Function . 175

Handling Dumps Written to the OS/390 UNIX File System 179
Multithreading Consideration . 180
Understanding C/C++ Heap Information in Storage Reports 180

Language Environment Storage Report with HeapPools Statistics 181
C Function, __uheapreport, Storage Report 185

Chapter 5. Debugging COBOL Programs . 187
Determining the Source of Error . 187

Tracing Program Logic . 187
Finding Input/Output Errors . 188
Handling Input/Output Errors . 188
Validating Data (Class Test) . 188
Assessing Switch Problems . 188
Generating Information about Procedures . 188

Using COBOL Listings . 190
Generating a Language Environment Dump of a COBOL Program 191

COBOL Program that Calls Another COBOL Program 191
COBOL Program that Calls the Language Environment CEE3DMP Callable

Service . 192
Sample Language Environment Dump with COBOL-Specific Information . . 193
Finding COBOL Information in a Dump . 196

Debugging Example COBOL Programs . 200

 Copyright IBM Corp. 1991, 2000 117

Subscript Range Error . 200
Calling a Nonexistent Subroutine . 203
Divide-by-Zero Error . 206

Chapter 6. Debugging Fortran Routines . 211
Determining the Source of Errors in Fortran Routines 211

Identifying Run-Time Errors . 211
Using Fortran Compiler Listings . 213
Generating a Language Environment Dump of a Fortran Routine 214

DUMP/PDUMP Subroutines . 214
CDUMP/CPDUMP Subroutines . 215
SDUMP Subroutine . 216

Finding Fortran Information in a Language Environment Dump 219
Understanding the Language Environment Traceback Table 220

Examples of Debugging Fortran Routines . 221
Calling a Nonexistent Routine . 221
Divide-by-Zero Error . 223

Chapter 7. Debugging PL/I Routines . 227
Determining the Source of Errors in PL/I Routines 227

Logic Errors in the Source Routine . 227
Invalid Use of PL/I . 227
Unforeseen Errors . 228
Invalid Input Data . 228
Compiler or Run-Time Routine Malfunction . 228
System Malfunction . 228
Unidentified Routine Malfunction . 228
Storage Overlay Problems . 229

Using PL/I Compiler Listings . 230
Generating PL/I Listings and Maps . 231
Finding Information in PL/I Listings . 231

Generating a Language Environment Dump of a PL/I Routine 238
PLIDUMP Syntax and Options . 238
PLIDUMP Usage Notes . 240

Finding PL/I Information in a Dump . 240
Traceback . 240
Control Blocks for Active Routines . 242
Control Blocks Associated with the Thread . 244

PL/I Contents of the Language Environment Trace Table 246
Debugging Example of PL/I Routines . 247

Subscript Range Error . 247
Calling a Nonexistent Subroutine . 250
Divide-by-Zero Error . 252

Chapter 8. Debugging under CICS . 257
Accessing Debugging Information . 257

Locating Language Environment Run-Time Messages 257
Locating the Language Environment Traceback 258
Locating the Language Environment Dump 258
Using CICS Transaction Dump . 258
Using CICS Register and Program Status Word Contents 259
Using Language Environment Abend and Reason Codes 259
Using Language Environment Return Codes to CICS 260

Ensuring Transaction Rollback . 260

118 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Finding Data When Language Environment Returns a Nonzero Reason Code . 260
Finding Data When Language Environment Abends Internally 261
Finding Data When Language Environment Abends from an EXEC CICS

Command . 261

 Part 2. Debugging Language-Specific Routines 119

120 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Chapter 4. Debugging C/C++ Routines

This chapter provides specific information to help you debug applications that
| contain one or more C/C++ routines. It also provides information about debugging
| C/C++applications compiled with XPLINK. It includes the following topics:

� Debugging C/C++ I/O routines
� Using C/C++ compiler listings
� Generating a Language Environment dump of a C/C++ routine

| � Generating a Language Environment dump of a C/C++ routine with XPLINK
� Finding C/C++ information in a Language Environment dump
� Debugging example of C/C++ routines

| � Debugging example of C/C++ routines with XPLINK

There are several debugging features that are unique to C/C++ routines. Before
examining the C/C++ techniques to find errors, you might want to consider the fol-
lowing areas of potential problems:

� If you suspect that you are using uninitialized storage, you may want to use the
STORAGE run-time option.

� If you are using the fetch() function, refer to OS/390 C/C++ Programming
Guide to ensure that you are creating the fetchable module correctly.

� If you are using DLLs, refer to OS/390 C/C++ Programming Guide to ensure
that you are using the DLL correctly.

� For non-System Programming C routines, ensure that the entry point of the
load module is CEESTART.

� You should avoid:

 – Incorrect casting

– Referencing an array element with a subscript outside the declared bounds

– Copying a string to a target with a shorter length than the source string

– Declaring but not initializing a pointer variable, or using a pointer to allo-
cated storage that has already been freed

If a routine exception occurred and you need more information than the condi-
tion handler provided, run your routine with the following run-time options,
TRAP(ON, NOSPIE) and TERMTHDACT(UAIMM). Setting these run-time
options generates a system dump of the user address space of the original
abend or program interrupt prior to the Language Environment condition
manager processing the condition. After the system dump is taken by the oper-
ating system the Language Environment condition manager continues proc-
essing.

Debugging C/C++ Input/Output Programs
You can use C/C++ conventions such as __amrc and perror() when you debug I/O
operations.

 Copyright IBM Corp. 1991, 2000 121

Using the __amrc and __amrc2 Structures
__amrc, a structure defined in stdio.h, can help you determine the cause of errors
resulting from an I/O operation, because it contains diagnostic information (for
example, the return code from a failed VSAM operation).

There are two structures:

__amrc (defined by type __amrc_type
__amrc2 (defined by type __amrc2_type)

The __amrc2_type structure contains secondary information that C can provide.

Because any I/O function calls, such as printf(), can change the value of __amrc
or __amrc2, make sure you save the contents into temporary structures of
__amrc_type and __amrc2_type respectively, before dumping them.

Figure 19 shows the structure as it appears in stdio.h.

typedef struct __amrctype {
[1] union {
[2] long int __error;
 struct {

unsigned short __syscode,
 __rc;
[3] } __abend;
 struct {

unsigned char __fdbk_fill,
 __rc,
 __ftncd,
 __fdbk;
[4] } __feedback;
 struct {

unsigned short __svc99_info,
 __svc99_error;
[5] } __alloc;
 } __code;
[6] unsigned long __RBA;
[7] unsigned int __last_op;
 struct {

unsigned long __len_fill; /C __len + 4 C/
 unsigned long __len;
 char __str[12#];
 unsigned long __parmr#;
 unsigned long __parmr1;
 unsigned long __fill2[2];
 char __str2[64];
[8] } __msg;
 } __amrc_type;

Figure 19. __amrc Structure

Figure 20 on page 123 shows the __amrc2 structure as it appears in stdio.h.

122 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 struct {
[9] long int __error2;
[1�] FILE C__fileptr;
[11] long int __reserved{6};
 }

Figure 20. __amrc2 Structure

[1] __code
The error or warning value from an I/O operation is in __error, __abend,
__feedback, or __alloc. Look at __last_op to determine how to interpret the
__code union.

[2] __error
A structure that contains error codes for certain macros or services your appli-
cation uses. Look at __last_op to determine the error codes. __syscode is the
system abend code.

[3] __abend
A structure that contains the abend code when errno is set to indicate a recov-
erable I/O abend. __rc is the return code. For more information on abend
codes, see OS/390 MVS System Codes.

[4] __feedback
A structure that is used for VSAM only. The __rc stores the VSAM register 15,
__fdbk stores the VSAM error code or reason code, and __RBA stores the RBA
after some operations.

[5] __alloc
A structure that contains errors during fopen or freopen calls when defining
files to the system using SVC 99.

[6] __RBA
The RBA value returned by VSAM after an ESDS or KSDS record is written
out. For an RRDS, it is the calculated value from the record number. It can be
used in subsequent calls to flocate.

[7] __last_op
A field containing a value that indicates the last I/O operation being performed
by C/C++ at the time the error occurred. These values are shown in Table 4
on page 124.

[8] __msg
May contain the system error messages from read or write operations emitted
from the DFSMS/MVS SYNADAF macro instruction. Because the message can
start with a hexadecimal address followed by a short integer, it is advisable to
start printing at MSG+6 or greater so the message can be printed as a string.
Because the message is not null-terminated, a maximum of 114 characters
should be printed. This can be accomplished by specifying a printf format
specifier as %.114s.

[9] __error2
A secondary error code. For example, an unsuccessful rename or remove
operation places its reason code here.

[10] __fileptr
A pointer to the file that caused a SIGIOERR to be raised. Use an fldata()
call to get the actual name of the file.

 Chapter 4. Debugging C/C++ Routines 123

[11] __reserved
Reserved for future use.

 __last_op Values
The __last_op field is the most important of the __amrc fields. It defines the last I/O
operation C/C++ was performing at the time of the I/O error. You should note that
the structure is neither cleared nor set by non-I/O operations, so querying this field
outside of a SIGIOERR handler should only be done immediately after I/O operations.
Table 4 lists __last_op values you could receive and where to look for further infor-
mation.

Table 4 (Page 1 of 4). __last_op Values and Diagnosis Information

Value Further Information

__IO_INIT Will never be seen by SIGIOERR exit value given at initialization.

__BSAM_OPEN Sets __error with return code from OS OPEN macro.

__BSAM_CLOSE Sets __error with return code from OS CLOSE macro.

__BSAM_READ No return code (either __abend (errno == 92) or __msg (errno
== 66) filled in).

__BSAM_NOTE NOTE returned 0 unexpectedly, no return code.

__BSAM_POINT This will not appear as an error lastop.

__BSAM_WRITE No return code (either __abend (errno == 92) or __msg (errno
== 65) filled in).

__BSAM_CLOSE_T Sets __error with return code from OS CLOSE TYPE=T.

__BSAM_BLDL Sets __error with return code from OS BLDL macro.

__BSAM_STOW Sets __error with return code from OS STOW macro.

__TGET_READ Sets __error with return code from TSO TGET macro.

__TPUT_WRITE Sets __error with return code from TSO TPUT macro.

__IO_DEVTYPE Sets __error with return code from I/O DEVTYPE macro.

__IO_RDJFCB Sets __error with return code from I/O RDJFCB macro.

__IO_TRKCALC Sets __error with return code from I/O TRKCALC macro.

__IO_OBTAIN Sets __error with return code from I/O CAMLST OBTAIN.

__IO_LOCATE Sets __error with return code from I/O CAMLST LOCATE.

__IO_CATALOG Sets __error with return code from I/O CAMLST CAT. The
associated macro is CATALOG.

__IO_UNCATALOG Sets __error with return code from I/O CAMLST UNCAT. The
associated macro is CATALOG.

__IO_RENAME Sets __error with return code from I/O CAMLST RENAME.

__SVC99_ALLOC Sets __alloc structure with info and error codes from SVC 99
allocation.

__SVC99_ALLOC_NEW Sets __alloc structure with info and error codes from SVC 99
allocation of NEW file.

__SVC99_UNALLOC Sets __unalloc structure with info and error codes from SVC 99
unallocation.

124 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Table 4 (Page 2 of 4). __last_op Values and Diagnosis Information

Value Further Information

__C_TRUNCATE Set when C or C++ truncates output data. Usually this is data
written to a text file with no newline such that the record fills up
to capacity and subsequent characters cannot be written. For a
record I/O file this refers to an fwrite() writing more data than
the record can hold. Truncation is always rightmost data. There
is no return code.

__C_FCBCHECK Set when C or C++ FCB is corrupted. This is due to a pointer
corruption somewhere. File cannot be used after this.

__C_DBCS_TRUNCATE This occurs when writing DBCS data to a text file and there is
no room left in a physical record for anymore double byte char-
acters. A new-line is not acceptable at this point. Truncation will
continue to occur until an SI is written or the file position is
moved. Cannot happen if MB_CUR_MAX is 1.

__C_DBCS_SO_TRUNCATE This occurs when there is not enough room in a record to start
any DBCS string or else when a redundant SO is written to the
file before an SI. Cannot happen if MB_CUR_MAX is 1.

__C_DBCS_SI_TRUNCATE This occurs only when there was not enough room to start a
DBCS string and data was written anyways, with an SI to end
it. Cannot happen if MB_CUR_MAX is 1.

__C_DBCS_UNEVEN This occurs when an SI is written before the last double byte
character is completed, thereby forcing C or C++ to fill in the
last byte of the DBCS string with a padding byte X'FE'. Cannot
happen if MB_CUR_MAX is 1.

__C_CANNOT_EXTEND This occurs when an attempt is made to extend a file that
allows writing, but cannot be extended. Typically this is a
member of a partitioned data set being opened for update.

__VSAM_OPEN_FAIL Set when a low level VSAM OPEN fails, sets __rc and __fdbk
fields in the __amrc struct.

__VSAM_OPEN_ESDS Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_RRDS Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_KSDS Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_ESDS_PATH Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_KSDS_PATH Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_MODCB Set when a low level VSAM MODCB macro fails, sets __rc and
__fdbk fields in the __amrc struct.

__VSAM_TESTCB Set when a low level VSAM TESTCB macro fails, sets __rc
and __fdbk fields in the __amrc struct.

__VSAM_SHOWCB Set when a low level VSAM SHOWCB macro fails, sets __rc
and __fdbk fields in the __amrc struct.

__VSAM_GENCB Set when a low level VSAM GENCB macro fails, sets __rc and
__fdbk fields in the __amrc struct.

__VSAM_GET Set when the last op was a low level VSAM GET; if the GET
fails, sets __rc and __fdbk in the __amrc struct.

 Chapter 4. Debugging C/C++ Routines 125

Table 4 (Page 3 of 4). __last_op Values and Diagnosis Information

Value Further Information

__VSAM_PUT Set when the last op was a low level VSAM PUT; if the PUT
fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_POINT Set when the last op was a low level VSAM POINT; if the
POINT fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_ERASE Set when the last op was a low level VSAM ERASE; if the
ERASE fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_ENDREQ Set when the last op was a low level VSAM ENDREQ; if the
ENDREQ fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_CLOSE Set when the last op was a low level VSAM CLOSE; if the
CLOSE fails, sets __rc and __fdbk in the __amrc struct.

__QSAM_GET __error is not set (if abend (errno == 92), __abend is set, oth-
erwise if read error (errno == 66), look at __msg.

__QSAM_PUT __error is not set (if abend (errno == 92), __abend is set, oth-
erwise if write error (errno == 65), look at __msg.

__QSAM_TRUNC This is an intermediate operation. You will only see this if an
I/O abend occurred.

__QSAM_FREEPOOL This is an intermediate operation. You will only see this if an
I/O abend occurred.

__QSAM_CLOSE Sets __error to result of OS CLOSE macro.

__QSAM_OPEN Sets __error to result of OS OPEN macro.

__CMS_OPEN Sets __error to result of FSOPEN.

__CMS_CLOSE Sets __error to result of FSCLOSE.

__CMS_READ Sets __error to result of FSREAD.

__CMS_WRITE Sets __error to result of FSWRITE.

__CMS_STATE Sets __error to result of FSSTATE.

__CMS_ERASE Sets __error to result of FSERASE.

__CMS_RENAME Sets __error to result of CMS RENAME command.

__CMS_EXTRACT Sets __error to result of DMS EXTRACT call.

__CMS_LINERD Sets __error to result of LINERD macro.

__CMS_LINEWRT Sets __error to result of LINEWRT macro.

__CMS_QUERY __error is not set.

__HSP_CREATE Indicates last op was a DSPSERV CREATE to create a
hiperspace for a hiperspace memory file. If CREATE fails,
stores abend code in __amrc__code__abend__syscode,
reason code in __amrc__code__abend__rc.

__HSP_DELETE Indicates last op was a DSPSERV DELETE to delete a
hiperspace for a hiperspace memory file during termination. If
DELETE fails, stores abend code in
__amrc__code__abend__syscode, reason code in
__amrc__code__abend__rc.

__HSP_READ Indicates last op was a HSPSERV READ from a hiperspace. If
READ fails, stores abend code in
__amrc__code__abend__syscode, reason code in
__amrc__code__abend__rc.

126 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Table 4 (Page 4 of 4). __last_op Values and Diagnosis Information

Value Further Information

__HSP_WRITE Indicates last op was a HSPSERV WRITE to a hiperspace. If
WRITE fails, stores abend code in
__amrc__code__abend__syscode, reason code in
__amrc__code__abend__rc.

__HSP_EXTEND Indicates last op was a HSPSERV EXTEND during a write to a
hiperspace. If EXTEND fails, stores abend code in
__amrc__code__abend__syscode, reason code in
__amrc__code__abend__rc.

__CICS_WRITEQ_TD Sets __error with error code from EXEC CICS WRITEQ TD.

__LFS_OPEN Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order 2
bytes can be looked up in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference.

__LFS_CLOSE Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order 2
bytes can be looked up in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference.

__LFS_READ Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order 2
bytes can be looked up in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference.

__LFS_WRITE Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order 2
bytes can be looked up in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference.

__LFS_LSEEK Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order 2
bytes can be looked up in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference.

__LFS_FSTAT Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order 2
bytes can be looked up in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference.

Displaying an Error Message with the perror() Function
To find a failing routine, check the return code of all function calls. After you have
found the failing routine, use the perror() function after the routine to display the
error message. perror() displays the string that you pass to it and an error
message corresponding to the value of errno. perror() writes to the standard error
stream (stderr).

If you need additional diagnostic information set the environment variable,
_EDC_ADD_ERRNO2 to 1, and that will append the current errno2 value to the
end of the perror() string.

Figure 21 on page 128 is an example of a routine using perror().

 Chapter 4. Debugging C/C++ Routines 127

 #include <stdio.h>
 int main(void){
 FILE Cfp;

fp = fopen("myfile.dat", "w");
if (fp == NULL)

 perror("fopen error");
 }

Figure 21. Example of a Routine Using perror()

Using __errno2() to Diagnose Application Problems
Use __errno2() when diagnosing problems in an OS/390 UNIX or OpenEdition VM
application. This function enables C/C++ application programs to access diagnostic
information returned to the C/C++ run-time library from an underlying kernel callable
service. __errno2() returns the reason code of the last failing kernel callable
service called by the C/C++ run-time library. The returned value is intended for
diagnostic display purposes only. The function call is always successful.

Note: Since the __errno2() function returns the reason code of the kernel callable
service that last failed, and not all function calls invoke the kernel, the value
returned by __errno2() may be misleading.

Figure 22 is an example of a routine using __errno2().

#include <stdio.h>
#include <errno.h>
FILE Cmyfopen(const char Cfn, const char Cmode) {
 FILE Cf;

f = fopen(fn,mode);
if (f==NULL) {

 perror("fopen() failed");
printf("__errno2 = %#8x\n", __errno2());

 }
 return(f);
}

Figure 22. Example of a Routine Using __errno2()

Figure 23 on page 129 is an example of a routine using the environment variable
_EDC_ADD_ERRNO2, and Figure 24 on page 129 shows the sample output from
that routine.

128 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

#include <stdio.h>
#include <errno.h>

int main(void) {
 FILE Cfp;

/C add errno2 to perror message C/
 setenv("_EDC_ADD_ERRNO2","1",1);

fp = fopen("testfile.dat", "r");
if (fp == NULL)

 perror("fopen error");

 }

Figure 23. Example of a Routine Using _EDC_ADD_ERRNO2

fopen error: EDC5129I No such file or directory.
(errno2=#x#562##62)

Figure 24. Sample Output of a Routine Using _EDC_ADD_ERRNO2

Using C/C++ Listings
The following sections discuss C/C++ listings generated when the executable
program is created. They also explain how to use these listings to locate informa-
tion, such as variable values and the timestamp, in the dump.

Generating C/C++ Listings and Maps
The two techniques for creating an executable program are:

� When the executable program is to be stored in a PDSE or HFS, use the
binder to combine the output from the C/C++ compiler.

� When the executable program is to be stored in a PDS, use Language Environ-
ment Prelinker Utility to combine the output from the C/C++ compiler and pass
the prelinker output to the binder.

| Note: Executable programs using XPLINK can only be created by using the binder.

The listings and maps created by the compile, prelink (optional), and link-edit steps
provide many pieces of information necessary for performing problem analysis
tasks. When creating an executable program without using the prelink step, the
map of the Writable Static Area (WSA) is provided by the binder in the output listing
in the C_WSA section.

In addition, the @STATIC is replaced by the binder with $PRIVnnnnnn and to find
the source listing use the cross reference to associate $PRIVnnnnnn with the
defining section name and use the section name to find the source in the module
map. So, the output listing provided by the binder should be used when locating
variables in executable programs created without using the prelink step.

 Chapter 4. Debugging C/C++ Routines 129

When you are debugging, you can use various options depending upon which com-
piler you are using. The following section provides a overview of each listing and
specifies the compiler option to use. For a detailed description of available listings,
see OS/390 C/C++ User's Guide.

Table 5. Contents of Listing and Associated Compiler Options

Name Compiler Option Function

Pseudo-assembler
listing

LIST Generates a pseudo-assembler listing, which shows the
source listing for the current routine.

Storage Offset
Listing

XREF Produces a storage offset listing, which includes in the
source listing a cross reference table of names used in the
routine and the line numbers on which they were declared or
referenced, and a static map.

Structure Map AGGREGATE (C only) Causes a structure map to be included in the source listing.
The structure map shows the layout of variables for the type
struct or union.

Inline Report INLRPT works for C and
C++
INLINE(,REPORT,...)for C

Generates an inline report that summarizes all functions
inlined and provides a detailed call structure of all the func-
tions.

Prelinker Map MAP (prelink option) Creates the prelinker map when invoking the Prelinker. It is
the default under OS/390. You can use prelinker maps to
determine the location of static and external C variables
compiled with the RENT option and all C++ variables.

Link-edit Output
Listing

MAP, LIST, XREF (linker
option)

These options control the listing output from the link-edit
process.

Source Listing SOURCE Generates the source listing, which contains the original
source input statements and any compiler diagnostic mes-
sages issued for the source.

Cross-Reference
Listing

XREF Cross-reference table containing a list of the identifiers from
the source program and the line numbers in which they
appear.

External Symbol
Cross Reference
Listing

ATTR (C only) or XREF Shows the original name and corresponding mangled name
for each symbol.

Object File Map IPA(MAP) LIST Displays the names of the object files that were used as
input to the IPA Link step.

Source File Map IPA(MAP) LIST Identifies the source files included in the object files.

Compiler Options
Map

IPA(MAP) LIST Identifies the compiler options that were specified during the
IPA Compile step for each compilation unit that is encount-
ered when the object file is processed.

Global Symbols Map IPA(MAP) LIST Shows how global symbols are mapped into members of
global data structures by the global variable coalescing opti-
mization process.

Inline Report for IPA
Inliner

IPA(MAP) LIST Describes the actions performed by the IPA Inliner.

130 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

C, C++, and C/C++ IPA Listings
The options for each listing vary depending upon which Compiler is used. The fol-
lowing section illustrates which options are available for each listing.

C Compiler Listings: The following table specifies which listings are available for
the C compiler, and which option(s) must be specified to obtain it.

Table 6. OS/390 C Compiler Listings

Name Compiler Option

Source Program SOURCE

Cross-Reference Listing XREF

Structure and Union Maps AGGREGATE

Inline Report OPTIMIZE and INLINE(,REPORT,,) or INLRPT

Pseudo Assembly Listing LIST

Storage Offset Listing XREF

C++ Compiler Listings: The following table specifies which listings are available
for the C++ compiler, and which option(s) must be specified to obtain it.

Table 7. OS/390 C++ Compiler Listings

Name Compiler Option

Source Program SOURCE

Cross-Reference Listing ATTR and XREF

Inline Report OPTIMIZE INLRPT
INLINE(,REPORT,,) is C only

Pseudo Assembly Listing LIST

External Symbol Cross Reference Listing ATTR or XREF

C/C++ IPA Link Step Listings: The following table specifies which listings are
available for the C/C++ IPA Link Step, and which option(s) must be specified to
obtain it.

Table 8. C/C++ IPA Link Step Listings

Name Compiler Option

Object File Map IPA (MAP) LIST

Source File Map IPA (MAP) LIST

Compiler Options Map IPA (MAP) LIST

Global Symbols Map IPA (MAP) LIST

Inline Report for IPA Inliner IPA (MAP) LIST

Partition Map IPA (MAP) LIST

 Chapter 4. Debugging C/C++ Routines 131

 Finding Variables
You can determine the value of a variable in the routine at the point of interrupt by
using the compiled code listing as a guide to its address, then finding this address
in the Language Environment dump. The method you use depends on the storage
class of variable.

This method is generally used when no symbolic variables have been dumped (by
using the TEST compiler option).

It is possible for the routine to be interrupted before the value of the variable is
placed in the location provided for it. This can explain unexpected values in the
dump.

Finding Automatic Variables
To find automatic variables in the Language Environment dump, use the following
steps:

1. Identify the start of the stack frame. If a dump has been taken, each stack
frame is dumped. The stack frames can be cross-referenced to the function
name in the traceback.

2. Add the offset of the variable (which is given in decimal) in the storage offset
listing to the stack frame address.

 aa1 85-#:85 Class = automatic, Offset = 164(r13), Length = 4#

In the example, variable aa1 can be found in the dump by first determining the
value of the base register (in this case, GPR13) in the Saved Registers section
for the function you are interested in. Add this base address to the offset of the
variable. The contents of the variable can then be read in the DSA Frame
section corresponding to the function the variable is contained in.

Finding the Writable Static Area
If you have C code compiled with the RENT option or C++ code (hereafter called
RENT code):

� You must determine the base address of the writable static area (WSA) if you
want to calculate the address of a static or external variable.

� The WSA base address for application code is in the WSA address field in the
Enclave Control Blocks section (see page 153 for an explanation of WSA).

� The WSA base address for a fetched module is in the WSA address field of the
Fetch() Information section for the fetch() function pointer for which you are
interested.

� The WSA base address for a DLL is the corresponding WSA address in the
DLL Information section.

� Use the WSA base address to locate the WSA in the Enclave Storage section.

Finding the Static Storage Area
If you have C code compiled with the NORENT option (hereafter called NORENT
code):

� You must determine the base address of the static storage area if you want to
calculate the address of a static variable. A CSECT is generated for the static
storage area for each source file. In order to determine the origin and length of

132 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

the CSECT from the linker map, you must name the static storage area CSECT
by using the pragma csect directive.

� External variables are stored in a corresponding CSECT with the same name.
The origin and length of the external variable CSECT can be determined from
the linker map.

Address calculation for static and external variables uses the static storage area as
a base address with 1 or more offsets added to this address.

The storage associated with these CSECTs is not dumped when an exception
occurs. It is dumped when cdump or CEE3DMP is called, but it is written to a sepa-
rate ddname called CEESNAP. See “Generating a Language Environment Dump of
a C/C++ Routine” on page 139 for information about cdump, CEE3DMP, and ena-
bling the CEESNAP ddname.

Finding RENT Static Variables
1. Find the address of the WSA (see “Finding the Writable Static Area” on

page 132). For this example, the address of writable static is X'02D66E40'.

2. Find the offset of @STATIC (associated with the file where the static variable is
located) in the Writable Static Map section of the prelinker map, shown in
Figure 25. In this example, the offset is X'58'. Add this offset to the WSA to
get the base address of static variables. The result is X'2D66E98'
(X'02D66E40' + X'58').

==
| Writable Static Map |
==

 OFFSET LENGTH FILE ID INPUT NAME

1 ####1 DFHC##11
4 1 ####1 DFHC##1#
8 2 ####1 DFHDUMMY
C 2 ####1 DFHB##25
1# 2 ####1 DFHB##24
14 2 ####1 DFHB##23
18 2 ####1 DFHB##22
1C 2 ####1 DFHB##21
2# 2 ####1 DFHB##2#
24 2 ####1 DFHEIB#
28 4 ####1 DFHEIPTR
2C 4 ####1 DFHCP#11
3# 4 ####1 DFHCP#1#
34 4 ####1 DFHBP#25
38 4 ####1 DFHBP#24
3C 4 ####1 DFHBP#23
4# 4 ####1 DFHBP#22
44 4 ####1 DFHBP#21
48 4 ####1 DFHBP#2#
4C 4 ####1 DFHEICB
5# 4 ####1 DFHEID#
54 4 ####1 DFHLDVER
58 278 ����1 @STATIC
72# 3# ####2 @STATIC

Figure 25. Writable Static Map Produced by Prelinker

 Chapter 4. Debugging C/C++ Routines 133

3. Find the offset of the static variable in the partial storage offset compiler listing.
The offset is 96 (X'60').

sa# 66-#:66 Class = static, Location = WSA + @STATIC + 96, Length = 4

4. Add this offset to the base address of static variables, calculated above. The
sum is X'2D66EF8' (X'2D66E98' + X'60'). This is the address of the value
of the static variable in the Language Environment dump.

Figure 26 shows the path to locate RENT C++ and C static variables by adding
the address of writable static, the offset of @STATIC, and the variable offset.

Figure 26. Location of RENT Static Variable in Storage

Finding External RENT Variables
Locating external variables in the Language Environment dump requires several
steps:

1. Find the address of the WSA (see “Finding the Writable Static Area” on
page 132). In this example, the address of writable static is X'02D66E40'.

2. Find the offset of the external variable in the Prelinker Writable Static Map,
shown in Figure 27 on page 135 In this example, the offset for DFHEIPTR is
X'28'.

134 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

==
| Writable Static Map |
==

 OFFSET LENGTH FILE ID INPUT NAME

1 ####1 DFHC##11
4 1 ####1 DFHC##1#
8 2 ####1 DFHDUMMY
C 2 ####1 DFHB##25
1# 2 ####1 DFHB##24
14 2 ####1 DFHB##23
18 2 ####1 DFHB##22
1C 2 ####1 DFHB##21
2# 2 ####1 DFHB##2#
24 2 ####1 DFHEIB#
28 4 ����1 DFHEIPTR
2C 4 ####1 DFHCP#11
3# 4 ####1 DFHCP#1#
34 4 ####1 DFHBP#25
38 4 ####1 DFHBP#24
3C 4 ####1 DFHBP#23
4# 4 ####1 DFHBP#22
44 4 ####1 DFHBP#21
48 4 ####1 DFHBP#2#
4C 4 ####1 DFHEICB
5# 4 ####1 DFHEID#
54 4 ####1 DFHLDVER
58 42# ####1 @STATIC

Figure 27. Writable Static Map Produced by Prelinker

3. Add the offset of the external variable to the address of writable static. The
result is X'2D66E68' (X'02D66E40' + X'28'). This is the address of the value
of the external variable in the Language Environment dump.

Finding NORENT Static Variables
1. Find the name and address of the static storage area (see “Finding the Static

Storage Area” on page 132). For this example, the static storage area is called
STATSTOR and has an address of X'02D66E40'.

2. Find the offset of the static variable in the partial storage offset compiler listing
shown in the following example. The offset is 96 (X'60').

sa# 66-#:66 Class = static, Location = STATSTOR +96, Length = 4

3. Add this offset to the base address of static variables, calculated above. The
sum is X'2D66EA0' (X'2D66E40' + X'60'). This is the address of the value
of the static variable in the Language Environment dump.

Figure 28 shows how to locate NORENT C static variables by adding the Static
Storage Area CSECT address to the variable offset.

Static Storage Area CSECT

offset of variable
writable
static
area

sa0

Figure 28. Location of NORENT Static Variable in Storage

 Chapter 4. Debugging C/C++ Routines 135

Finding External NORENT Variables
Find the address of the external variable CSECT (see “Finding the Static Storage
Area” on page 132). In this example, the address is X'02D66E40'. This is the
address of the value of the external variable in the Language Environment dump.

Finding the C/370 Parameter List
A pointer to the parameter list is passed to the called function in register 1. is the
address of the start of the parameter list. Figure 29 shows an example code for the
parameter variable.

func#() {
...

 func1(a1,a2);
...

}

func1(int ppx, int pp#) {
...

}

Figure 29. Example Code for Parameter Variable

Parameters ppx and pp0 correspond to copies of a1 and a2 in the stack frame
belonging to func#.

 To locate a parameter in the Language Environment dump:

1. Find the register and offset in the partial storage offset listing shown in the fol-
lowing example. In this example the offset is 4 (X'4') from register 1.

pp# 62-#:62 Class = parameter, Location = 4(r1), Length = 4

2. Determine the value of GPR1 in the Saved Registers section for the function that
called the function you are interested in. Add this base address to the offset of
the parameter. The contents of the variable can then be read in the DSA frame
section corresponding to the function the parameter was passed from.

Finding the C++ Parameter List
Parameters are passed to the called function in a combination of registers and a
parameter list. Figure 30 shows the example code for the parameter variable.

func#() {
...

 func1(a1,a2);
...

}

func1(int ppx, int pp#) {
...

 }

Figure 30. Example Code for Parameter Variable

136 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Parameters ppx and pp0 correspond to copies of a1 and a2 in the stack frame
belonging to func1. To locate C++ functions with extern C attributes, use the
C/370 Parameter List section.

To locate the parameters in the Language Environment dump:

� If the base register is GPR1, use the C/370 Parameter List scheme. If the base
register is not GPR1, you can locate the value of the base register in the Saved
Registers section of the function you are interested in. Add to this value the
offset, and you can then locate the parameter. Note that when OPTIMIZE is on,
the parameter value might never be stored, since the first few parameters might
be passed in registers and there might be no need to save them.

ppx 62-#:62 Class = parameter, Location = 188(r13), Length = 4
pp# 62-#:62 Class = parameter, Location = 192(r13), Length = 4

Figure 31. Partial Storage Offset Listing

Finding Members of Aggregates
You can define aggregates in any of the storage classes or pass them as parame-
ters to a called function. The first step is to find the start of the aggregate. You can
compute the start of the aggregate as described in previous sections, depending on
the type of aggregate used.

The aggregate map provided for each declaration in a routine can further assist in
finding the offset of a specific variable within an aggregate. Structure maps are
generated using the AGGREGATE compiler option. Figure 32 shows an example
of a static aggregate.

static struct {
short int ss#1;

 char ss#2[56];
 int sz#[6];
 int ss#3;
} ss#;

Figure 32. Example Code for Structure Variable

Figure 33 shows an example aggregate map.

==
| Aggregate map for: ss# |
==
| Offset | Length | Member Name |
| Bytes(Bits) | Bytes(Bits) | |
====================|===================|=======================================
#	2	ss#1
2	56	ss#2[56]
58	2	CCCPADDINGCCC
6�	24	sz#[6]
84	4	ss#3
==

Figure 33. Example of Aggregate Map

 Chapter 4. Debugging C/C++ Routines 137

Assume the structure has been compiled as RENT. To find the value of variable
sz0[0]:

1. Find the address of the writable static. For this example the address of writable
static is X'02D66E40'.

2. Find the offset of @STATIC in the Writable Static Map. In this example, the
offset is X'58'. Add this offset to the address of writable static. The result is
X'2D66E98' (X'02D66E40' + X'58'). Figure 34 shows the Writable Static
Map produced by the prelinker.

==
| Writable Static Map |
==

 OFFSET LENGTH FILE ID INPUT NAME

1 ####1 DFHC##11
4 1 ####1 DFHC##1#
8 2 ####1 DFHDUMMY
C 2 ####1 DFHB##25
1# 2 ####1 DFHB##24
14 2 ####1 DFHB##23
18 2 ####1 DFHB##22
1C 2 ####1 DFHB##21
2# 2 ####1 DFHB##2#
24 2 ####1 DFHEIB#
28 4 ####1 DFHEIPTR
2C 4 ####1 DFHCP#11
3# 4 ####1 DFHCP#1#
34 4 ####1 DFHBP#25
38 4 ####1 DFHBP#24
3C 4 ####1 DFHBP#23
4# 4 ####1 DFHBP#22
44 4 ####1 DFHBP#21
48 4 ####1 DFHBP#2#
4C 4 ####1 DFHEICB
5# 4 ####1 DFHEID#
54 4 ####1 DFHLDVER
58 32� ����1 @STATIC

Figure 34. Writable Static Map Produced by Prelinker

3. Find the offset of the static variable in the storage offset listing. The offset is 96
(X'60'). Following is an example of a partial storage offset listing.

ss# 66-#:66 Class = static, Location = GPR13(96), Length = 4

Add this offset to the result from step 2. The result is X'2D66EF8'
(X'2D66E98' + X'60'). This is the address of the value of the static variable in
the dump.

4. Find the offset of sz0 in the Aggregate Map, shown in Figure 33 on page 137.
The offset is 60.

Add the offset from the Aggregate Map to the address of the ss0 struct. The result
is X'60' (X'3C' + X'60'). This is the address of the values of sz0 in the dump.

138 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Finding the Timestamp
The timestamp is in the compile unit block. The address for the compile unit block
is located at eight bytes past the function entry point. The compile unit block is the
same for all functions in the same compilation. The fourth word of the compile unit
block points to the timestamp. The timestamp is 16 bytes long and has the fol-
lowing format:

YYYYMMDDHHMMSSSS

Generating a Language Environment Dump of a C/C++ Routine
You can use either the CEE3DMP callable service or the cdump(), csnap(), and
ctrace() C/C++ functions to generate a Language Environment dump of C/C++
routines. These C/C++ functions call CEE3DMP with specific options.

 cdump()
If your routine is running under OS/390, VM, or CICS, you can generate useful
diagnostic information by using the cdump() function. cdump() produces a main
storage dump with the activation stack. This is equivalent to calling CEE3DMP with
the option string: TRACEBACK BLOCKS VARIABLES FILES STORAGE
STACKFRAME(ALL) CONDITION ENTRY.

When cdump() is invoked from a user routine, the C/C++ library issues an OS
SNAP macro to obtain a dump of virtual storage. The first invocation of cdump()
results in a SNAP identifier of 0. For each successive invocation, the ID is
increased by one to a maximum of 256, after which the ID is reset to 0.

The output of the dump is directed to the CEESNAP data set. Under OS/390, the
DD definition for CEESNAP is as follows:

//CEESNAP DD SYSOUT= C

Under VM, the definition statement is:

FILEDEF CEESNAP PRINTER (NOCHANGE PER

If the data set is not defined, or is not usable for any reason, cdump() returns a
failure code of 1. This occurs even if the call to CEE3DMP is successful.

If the SNAP is not successful, the CEE3DMP DUMP file displays the following
message:

Snap was unsuccessful

If the SNAP is successful, CEE3DMP displays this message:

Snap was successful; snap ID = nnn

Where nnn corresponds to the SNAP identifier described above. An unsuccessful
SNAP does not result in an incrementation of the identifier.

Because cdump() returns a code of 0 only if the SNAP was successful or 1 if it was
unsuccessful, you cannot distinguish whether a failure of cdump() occurred in the
call to CEE3DMP or SNAP. A return code of 0 is issued only if both SNAP and
CEE3DMP are successful.

 Chapter 4. Debugging C/C++ Routines 139

Support for SNAP dumps using the _cdump function is provided only under VM and
OS/390. SNAP dumps are not supported under CICS; no SNAP is produced in this
environment. Under OS/390 and VM, a successful SNAP results in a large quantity
of output. A routine calling cdump() under CICS receives a return code of 0 if the
ensuing call to CEE3DMP is successful. In addition to a SNAP dump, an LE for-
matted dump is also taken.

 csnap()
The csnap() function produces a condensed storage dump. csnap() is equivalent
to calling CEE3DMP with the option string: TRACEBACK FILES BLOCKS VARI-
ABLES NOSTORAGE STACKFRAME(ALL) CONDITION ENTRY.

To use these functions, you must add #include <ctest.h> to your C/C++ code.
The dump is directed to output dumpname, which is specified in either a //CEEDUMP
DD statement in MVS/JCL or a FILEDEF CEEDUMP command in VM.

cdump(), csnap(), and ctrace() all return a 1 code in the SPC environment
because they are not supported in SPC.

Refer to the OS/390 C/C++ Run-Time Library Reference for more details about the
syntax of these functions.

 ctrace()
The ctrace() function produces a traceback and includes the offset addresses from
which the calls were made. ctrace() is equivalent to calling CEE3DMP with the
option string: TRACEBACK NOFILES NOBLOCKS NOVARIABLES NOSTORAGE
STACKFRAME(ALL) NOCONDITION NOENTRY.

Sample C Routine that Calls cdump
Figure 35 on page 141 shows a sample C routine that uses the cdump function to
generate a dump.

Figure 40 on page 144 shows the dump output.

140 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

#include <stdio.h>
#include <signal.h>
#include <stdlib.h>

void hsigfpe(int);
void hsigterm(int);
void atf1(void);

typedef int (CFuncPtr_T)(void);

int st1 = 99;
int st2 = 255;
int xcount = #;

int main(void) {
 /C

C 1) Open multiple files
C 2) Register 2 signals
C 3) Register 1 atexit function
C 4) Fetch and execute a module

 C/

 FuncPtr_T fetchPtr;
 FILEC fp1;
 FILEC fp2;
 int rc;

fp1 = fopen("myfile.data", "w");
if (!fp1) {
perror("Could not open myfile.data for write");

 exit(1#1);
 }

fprintf(fp1, "record 1\n");
fprintf(fp1, "record 2\n");
fprintf(fp1, "record 3\n");

fp2 = fopen("memory.data", "wb,type=memory");
if (!fp2) {
perror("Could not open memory.data for write");

 exit(1#2);
 }

Figure 35 (Part 1 of 2). Example C Routine Using cdump to Generate a Dump

 Chapter 4. Debugging C/C++ Routines 141

fprintf(fp2, "some data");
fprintf(fp2, "some more data");
fprintf(fp2, "even more data");

signal(SIGFPE , hsigfpe);
 signal(SIGTERM, hsigterm);

rc = atexit(atf1);
if (rc) {
fprintf(stderr, "Failed on registration of atexit function atf1\n");

 exit(1#3);
 }

fetchPtr = (FuncPtr_T) fetch("MODULE1");
if (!fetchPtr) {
fprintf(stderr, "Failed to fetch MODULE1\n");

 exit(1#4);
 }

 fetchPtr();
 return(#);
}

void hsigfpe(int sig) {
 ++st1;
 return;
}

void hsigterm(int sig) {
 ++st2;
 return;
}

void atf1() {
 ++xcount;
}

Figure 35 (Part 2 of 2). Example C Routine Using cdump to Generate a Dump

Figure 36 shows a fetched C module:

#include <ctest.h>

#pragma linkage(func1, fetchable)
int func1(void) {
cdump("This is a sample dump");

 return(#);
}

Figure 36. Fetched module for C routine

Sample C++ Routine that Generates a Language Environment Dump
Figure 37 on page 143 shows a sample C++ routine that uses a protection excep-
tion to generate a dump.

142 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

#include <iostream.h>
#include <ctest.h>
#include "stack.h"

int main() {
cout << "Program starting:\n";
cerr << "Error report:\n";

 Stack<int> x;
 x.push(1);
cout << "Top value on stack : " << x.pop() << '\n';
cout << "Next value on stack: " << x.pop() << '\n';

 return(#);
}

Figure 37. Example C++ Routine with Protection Exception Generating a Dump

Figure 38 shows a DLL for a C++ routine:

#ifndef __STACK__
 #include "stack.h"
#endif

template <class T> T Stack<T>::pop() {
T value = head->value;
head = head->next;

 return(value);

}

template <class T> void Stack<T>::push(T value) {
NodeC newNode = new Node;
newNode->value = value;

 newNode->next = head;
head = newNode;

}

Figure 38. DLL for C++ routine

Figure 39 on page 144 shows the header file stack.h:

 Chapter 4. Debugging C/C++ Routines 143

#ifndef __STACK_
 #define __STACK__
template <class T> class Stack {

 public:
 Stack() {

charC badPtr = #; badPtr -= (#x#1#1#1#1);
head = (NodeC) badPtr; /C head initialized to #xFEFEFEFF C/

 }
 T pop();
 void push(T);
 private:

struct Node {
 T value;

struct NodeC next;
 }C head;
 };
#endif

Figure 39. Header file STACK.H

Sample Language Environment Dump with C/C++-Specific Information
This sample dump was produced by compiling the routine in Figure 35 on
page 141 with the TEST(SYM) compiler option, then running it. Notice the
sequence of calls in the traceback section - EDCZMINV is the C-C++ management
module that invokes main and @@FECBMODULE1 fetches the user-defined func-
tion func1, which in turn calls the library routine __cdump.

If source code is compiled with the GONUMBER or TEST compile option, statement
numbers are shown in the traceback. If source code is compiled with the TEST(SYM)
compile option, variables and their associated type and value are dumped out. See
“Finding C/C++ Information in a Language Environment Dump” on page 152 for
more information about C/C++-specific information contained in a dump.

CEE3DMP V1 R8.#: This is a sample dump

CEE3DMP called by program unit (entry point __cdump) at offset +#####184.

Snap was unsuccessful

Registers on Entry to CEE3DMP:

 PM....... #1##
 GPR#..... ######## GPR1..... ###3#5D# GPR2..... ###3#564 GPR3..... 8DD5CB#6
 GPR4..... #######1 GPR5..... ######15 GPR6..... #DEB54D8 GPR7..... #######1
 GPR8..... ######## GPR9..... #DEB5#38 GPR1#.... 8DB5#31# GPR11.... 8DB5#31#
 GPR12.... ###2389# GPR13.... ###3#4E# GPR14.... 8##26#DE GPR15.... 8DB6C67#
 FPR#..... 4D###### ###6#388 FPR2..... ######## ########

 FPR4..... ######## ######## FPR6..... ######## ########

...

Figure 40 (Part 1 of 9). Example Dump from Sample C Routine

144 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Information for enclave main

Information for thread 8###############

Registers on Entry to CEE3DMP:
 PM....... #1##
 GPR#..... ######## GPR1..... ###3#5D# GPR2..... ###3#564 GPR3..... 8DD5CB
 GPR4..... #######1 GPR5..... ######15 GPR6..... #DEB54D8 GPR7..... ######
 GPR8..... ######## GPR9..... #DEB5#38 GPR1#.... 8DB5#31# GPR11.... 8DB5#3
 GPR12.... ###2389# GPR13.... ###3#4E# GPR14.... 8##26#DE GPR15.... 8DB6C6
 FPR#..... 4D###### ###6#388 FPR2..... ######## ########
 FPR4..... ######## ######## FPR6..... ######## ########

...

 Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
###3#4E# #DD5CAB8 +#####184 __cdump #DD5CAB8 +#####184 CEEEV##3 Call

 ###3#44# POSIX.CRTL.C(MODULE1)
#DB5#31# +######6E func1 #DB5#31# +######6E 5 MODULE1 Call

###3#35# #DEB54F8 -#DEB54F3 @@FECBMODULE1 #DEB54F8 -#DEB54F3 Call
###3#298 #DCB4AE8 +######1A @@GETFN #DCB4A4# +######C2 CEEEV##3 Call

 ###3#1E# POSIX.CRTL.C(CSAMPLE)
#DB51#78 +#####392 main #DB51#78 +#####392 64 CSAMPLE Call

###3##C8 #DC626EE +######B4 EDCZMINV #DC626EE +######B4 CEEEV##3 Call
###3##18 CEEBBEXT ###1B898 +#####13C CEEBBEXT ###1B898 +#####13C CEEBINIT Call
Parameters, Registers, and Variables for Active Routines:

...
main (DSA address ###3#1E#):

 Saved Registers:

 GPR#..... #DEB533# GPR1..... 8DC9EE8A GPR2..... 8DC627A2 GPR3..... 8DB51#C6
 GPR4..... 8##1B97C GPR5..... #DEB5#98 GPR6..... #DEB533# GPR7..... #DB523DC
 GPR8..... #######1 GPR9..... 8####### GPR1#.... 8DC626E2 GPR11.... 8##1B898
 GPR12.... ###2389# GPR13.... ###3#1E# GPR14.... 8DB514#C GPR15.... #DCB4A4#

...
 Local Variables:

fetchPtr signed int (C) (void)

 #xDEB533#

fp2 struct __ffile C #xDEBEA1C

fp1 struct __ffile C #xDEBD#24

 rc signed int #

Figure 40 (Part 2 of 9). Example Dump from Sample C Routine

 Chapter 4. Debugging C/C++ Routines 145

[1] Storage for Active Routines:

Control Blocks for Active Routines:

...
DSA for func1: ###3#44#

 +###### FLAGS.... 1##2 member... 47D# BKC...... ###3#35# FWC...... F7F2#### R14...... 8DB5#38#
 +####1# R15...... #DD5CAB8 R#....... ###3#4E# R1....... ###3#4D8 R2....... 8DC5A732 R3....... 8DB5#35E
 +####24 R4....... 8##1B97C R5....... #DEB54D8 R6....... #DEB533# R7....... #DB523DC R8....... #######1
 +####38 R9....... #DB6E66E R1#...... #DB6D66F R11...... 8DB6C67# R12...... ###2389# reserved. ###247D#

+####4C NAB...... ###3#4E# PNAB..... ###3#4B# reserved. 8DBFE2#8 #DB5#B#8 ###3#4EC ########
 +####64 reserved. ###3#3D4 reserved. ###3#35# MODE..... ###3#538 reserved. ######## ########
 +####78 reserved. ######## reserved. D3C5F14#

...
DSA frame: ###3#44#
+###### ###3#44# 1##247D# ###3#35# F7F2#### 8DB5#38# #DD5CAB8 ###3#4E# ###3#4D8 8DC5A732 |.......&72.......N.........Q.Ex.|
+####2# ###3#46# 8DB5#35E 8##1B97C #DEB54D8 #DEB533# #DB523DC #######1 #DB6E66E #DB6D66F |...;...@...Q..............W>..O?|
+####4# ###3#48# 8DB6C67# ###2389# ###247D# ###3#4E# ###3#4B# 8DBFE2#8 #DB5#B#8 ###3#4EC |..F...................S.........|
+####6# ###3#4A# ######## ###3#3D4 ###3#35# ###3#538 ######## ######## ######## D3C5F14# |.......M...&................LE1 |
+####8# ###3#4C# 4#4#4#4# 4#4#4#4# #DB68414 4#4#4#4# 4#4#4#4# 4#4#4#4# #DEB54D8 4#4#4#4# | ..d. ...Q |

...
 [2] Control Blocks Associated with the Thread:
 CAA: ###2389#

+###### ###2389# #####8## ######## ###3#### ###5#### ######## ######## ######## ######## |................................|
+####2# ###238B# ######## ######## ###24A1# ######## ######## ######## ######## ######## |................................|
+####4# ###238D# ######## ######## ######## ######## ######## ######## ######## ######## |................................|
+####6# ###238F# ######## ######## ######## ######## ######## 8##2#76# ######## ######## |.......................-........|
+####8# ###2391# ######## ######## ######## ######## ######## ######## ######## ######## |................................|

...
[2A] C/37# CAA information :
C-C++ Specific CTHD......... #DB674#C
C-C++ Specific CEDB......... #DB67DE4

C-C++ Specific Thread block: #DB674#C
+###### #DB674#C C3E3C8C4 #####3#8 #DB674#C ######## #DC3865E ######## ######## ######## |CTHD.............Cf;............|
+####2# #DB6742C ######## ######## ######## ######## #DB677EC ######## ######## ######## |................................|
+####4# #DB6744C ######## ######## ######## ###2464# ###24728 ######## ######## #######1 |...............|
+####6# #DB6746C #######1 ######## ######## ######## ######## ######## #DEB54B8 #DEB54B4 |................................|
+####8# #DB6748C #DEB54B# #DEB54AC #DEB54A# #DEB54A4 #DEB54C# ######## ######## ######## |...............u................|

...
C-C++ Specific EDB block: #DB67DE4
+###### #DB67DE4 C3C5C4C2 #####4D# #DB67DE4 #DB52B4# ###3#### #DB691C4 #DB69514 #DB51#78 |CEDB......'U...jD..n.....|
+####2# #DB67E#4 ######8# #DB5#FD8 ######## ######## ######## #DB682BC #DC3DFB# #DC3DE2# |.......Q..............b..C...C..|
+####4# #DB67E24 #DEB54F8 #######1 ######## #DEB5388 #DB67CB# #DB67A58 #DB67B84 #DC95196 |...8...........h..@...:...#d.I.o|
+####6# #DB67E44 ####465# #DB683CC 4#4##### ######## ##1##### ######## ######## ######## |...&..c.|

...

Figure 40 (Part 3 of 9). Example Dump from Sample C Routine

146 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

[2B] errno value................. #
memory file block chain..... #DEBEBA#
open FCB chain.............. #DEBEA3#
GTAB table.................. #DB6771C

[3] signal information :
 SIGFPE :

function pointer... #DB51D2# WSA address... 8DEB5#38 function name... hsigfpe

 SIGTERM :
function pointer... #DB51E9# WSA address... 8DEB5#38 function name... hsigterm

 SIGOBJECT :
function pointer... #DB67A58 WSA address... #DB67B84 function name... (unknown)

 Enclave variables:
 C.C.C(CSAMPLE):>hsigterm
 void () #xDB51E9#
 C.C.C(CSAMPLE):>hsigfpe
 void () #xDB51D2#
 C.C.C(CSAMPLE):>xcount
 signed int #
 C.C.C(CSAMPLE):>main

signed int (void)
 #xDB51#78
 C.C.C(CSAMPLE):>atf1
 void (void) #xDB51FF8
 C.C.C(CSAMPLE):>st2
 signed int 255
 C.C.C(CSAMPLE):>st1
 signed int 99
 C.C.C(MODULE1):>func1

signed int (void)
 #xDB5#31#

Enclave Control Blocks:
 EDB: ###228B#

+###### ###228B# C3C5C5C5 C4C24#4# C######1 ###2375# ###22EF8 ######## ######## ######## |CEEEDB&...8............|
+####2# ###228D# ###22D78 ###22DA8 ###25#38 ###22558 ######## 8##218#8 ###229D# ####8### |.......y..&.....................|
+####4# ###228F# ######## ######## ####CFB# ######## ######## ######## #DB646F# #DEB54C8 |...........................#...H|
+####6# ###2291# 8##1C8D8 ######## #DB69864 ######## ###24AE# ######## #DC2A62# ###2389# |..HQ......q..............Bw.....|
+####8# ###2293# ######## ######## ######## ######## #######1 ######## ####8A#8 ##8DA738 |..............................x.|
+####A# ###2295# #######1 ######## ######## ######## ######## ######## ######## #######1 |................................|

 MEML: ###2375#
+###### ###2375# ######## ######## #DBBB#B8 ######## ######## ######## #DBBB#B8 ######## |................................|
+####2# ###2377# ######## ######## #DBBB#B8 ######## #DB67DE4 ######## 8DC2B6B8 ######## |..................'U.....B......|
+####4# ###2379# ######## ######## #DBBB#B8 ######## ######## ######## #DBBB#B8 ######## |................................|
+####6# ###237B# - +###11F ###2386F same as above

[4] WSA address.................#DEB5#38

Figure 40 (Part 4 of 9). Example Dump from Sample C Routine

 Chapter 4. Debugging C/C++ Routines 147

[5] atexit information :
function pointer... 8DB51FF8 WSA address... #DEB5#38 function name... atfl

[6] fetch information :
 fetch pointer : #DEB54F8

function pointer... 8DB5#31# WSA address... #DEB548#

 Enclave Storage:
Initial (User) Heap : #DEB5###
+###### #DEB5### C8C1D5C3 ###22D48 ###22D48 ######## #DEB5### #DEB55D# ####8### ####7A3# |HANC..............&...........:.|
+####2# #DEB5#2# #DEB5### #####19# ######## ######## ######## ######## ######## #DB67B98 |..&...........................#q|
+####4# #DEB5#4# #DB67A6C #DB67CC4 ######## ######## ######## ######## ######## ######## |..:%..@D........................|

...
LE/37# Anywhere Heap : #DEB1###
+###### #DEB1### C8C1D5C3 ###22D78 ###22D78 ###22D78 #DEB1### #DEB3C18 ####4### ####13E8 |HANC......................Y|
+####2# #DEB1#2# #DEB1### ####1##8 ######## ######## ######## ######## ######## ######## |................................|
+####4# #DEB1#4# ######## ######## ######## ######## ######## ######## ######## ######## |................................|

...

LE/37# Below Heap : ###5####
+###### ###5#### C8C1D5C3 ###22DA8 ###22DA8 ###22DA8 8##5#### ###5##A8 ####2### ####1F58 |HANC...y...y...y.......y........|
+####2# ###5##2# ###5#### ######88 C3E2E3D2 ######## ######## ##8####1 #######2 ######68 |.......hCSTK....................|
+####4# ###5##4# #4###### ######## ######## ######## ######## ######## ######## ######## |................................|
+####6# ###5##6# ######## ######## ######## ######## ######## ######## ######## ######## |................................|
+####8# ###5##8# - +##1FFF ###51FFF same as above

Additional Heap, heapid = #DEB3BE4 : #DB14###
+###### #DB14### C8C1D5C3 #DEB3BE4 #DEB3BE4 #DEB3BE4 #DB14### #DB143D# #####3E8 ######18 |HANC...U...U...U..Y....|
+####2# #DB14#2# #DB14### ######5# ######## #DB5#3AC #DB5#31# #DB14#98 #DEB54F8 46F11### |..&.............. q...8.1..|
+####4# #DB14#4# #######3 #DB5#58# ###2#### #DB14#78 ######## #DB5#31# #DB5#31# ######## |..............|
+####6# #DB14#6# #DB5#568 #DB5#3C# ######## ######## #DB14### ######2# ##15D7D6 E2C9E74B |..................POSIX.|
+####8# #DB14#8# C3D9E3D3 4BC34DD4 D6C4E4D3 C5F15D## #DB14### ######88 #DB14#28 ###1#### |CRTL.C(MODULE1)...h..|

...
File Status and Attributes:

[7] File Control Block: #DEBEA3#
+###### #DEBEA3# #DEBED65 ######## #####3DB #DEBEB## #DEBEB2# ######## #DEBEB5# ######11 |...........................&....|
+####2# #DEBEA5# ######14 ######## ######## #DEBD#38 ######## #DEBEA3# ######## ######## |................................|
+####4# #DEBEA7# ######## FFFFFFFF ###8##55 #DEBEB7# #DEBEB44 #DC8181# #DC83A#8 #DC83C88 |.....................H...H...H.h|
+####6# #DEBEA9# #DC84#F8 #DC71578 ######## #####4## #####4## ######## ######## #####4## |.H 8.G..........................|
+####8# #DEBEAB# #DEBED4# #DEBED4# ######## ######## ######## ######## ######## ######## |...|
+####A# #DEBEAD# ######## ######## ######## ######## #DC6814# ######## ######## ######## |.................Fa|
+####C# #DEBEAF# 43#2###8 4###1### ######## #DB66DDC 58FF###8 #7FF#### #DC67BF8 ######## |...._..........F#8....|
+####E# #DEBEB1# ######## ######## ######## ######## 58FF###8 #7FF#### #DC8##88 ######## |.........................H.h....|
+###1## #DEBEB3# ######## ######## ######## ######## ######## ######## 8#####2# #DEBD### |................................|

Figure 40 (Part 5 of 9). Example Dump from Sample C Routine

148 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

fldata FOR FILE: HEALY.MEMORY.DATA
 __recfmF:1........ 1
 __recfmV:1........ #
 __recfmU:1........ #
 __recfmS:1........ #
 __recfmBlk:1...... #
 __recfmASA:1...... #
 __recfmM:1........ #
 __recfmPO:1....... #
 __dsorgPDSmem:1... #
 __dsorgPDSdir:1... #
 __dsorgPS:1....... #
 __dsorgConcat:1... #
 __dsorgMem:1...... 1
 __dsorgHiper:1.... #
 __dsorgTemp:1..... #
 __dsorgVSAM:1..... #
 __dsorgHFS:1...... #
 __openmode:2...... 1
 __modeflag:4...... 2
 __dsorgPDSE:1..... #
 __reserve2:8...... #
 __device.......... 8
 __blksize......... 1#24
 __maxreclen....... 1#24
 __dsname.......... HEALY.MEMORY.DATA
 __reserve4........ #

FILE pointer........ #DEBEA1C

Buffer at current file position: #DEBED4#
+###### #DEBED4# A2969485 4#8481A3 81A29694 854#9496 99854#84 81A38185 A585954# 94969985 |some datasome more dataeven more|
+####2# #DEBED6# 4#8481A3 81###### ######## ######## ######## ######## ######## ######## | data...........................|
+####4# #DEBED8# ######## ######## ######## ######## ######## ######## ######## ######## |................................|
+####6# #DEBEDA# - +###3FF #DEBF13F same as above

Saved Buffer........ NULL

File Control Block: #DEBD#38
+###### #DEBD#38 #DEBD234 ######## #####4## #DEBD1#8 #DEBD128 8####### #DEBD158 ######11 |..K...........J...J.......J.....|
+####2# #DEBD#58 ######14 ######## ######## #DB67#1C #DEBEA3# #DEBD#38 ######## E2E8E2F# |............................SYS#|
+####4# #DEBD#78 F#F2F7F2 FFFFFFFF ######3C #DEBD178 #DEBD14C #DE789B8 #DE768F# #DE81178 |#272..........J...J<.Xi..X.#.Y..|
+####6# #DEBD#98 #DE7F988 #DE8553# ######## #####4#4 ####18## #DEBEA#A ######## ####18#1 |.X9h.Y..........................|
+####8# #DEBD#B8 #DEBD2#8 #DEBD234 #DEBD234 ######## ######## ######## ######## ######## |..K...K...K.....................|
+####A# #DEBD#D8 ######1B ######## ######## ######## #DE#174# ######## ######## ######## |...................|
+####C# #DEBD#F8 4312##2# 2844#### ######## #DB66DDC 58FF###8 #7FF#### #DE#11F8 ######## |.............._............8....|
+####E# #DEBD118 ######## ######## ######## ######## 58FF###8 #7FF#### #DE6F3E8 ######## |.........................W3Y....|
+###1## #DEBD138 ######## ######## ######## ######## ######## ######## 8#####2# #DEBD### |................................|

Figure 40 (Part 6 of 9). Example Dump from Sample C Routine

 Chapter 4. Debugging C/C++ Routines 149

fldata FOR FILE: 'HEALY.MYFILE.DATA'
 __recfmF:1........ #
 __recfmV:1........ 1
 __recfmU:1........ #
 __recfmS:1........ #
 __recfmBlk:1...... 1
 __recfmASA:1...... #
 __recfmM:1........ #
 __recfmPO:1....... #
 __dsorgPDSmem:1... #
 __dsorgPDSdir:1... #
 __dsorgPS:1....... 1
 __dsorgConcat:1... #
 __dsorgMem:1...... #
 __dsorgHiper:1.... #
 __dsorgTemp:1..... #
 __dsorgVSAM:1..... #
 __dsorgHFS:1...... #
 __openmode:2...... #
 __modeflag:4...... 2
 __dsorgPDSE:1..... #
 __reserve2:8...... #
 __device.......... #
 __blksize......... 6144
 __maxreclen....... 1#24
 __dsname.......... HEALY.MYFILE.DATA
 __reserve4........ #

FILE pointer........ #DEBD#24
 ddname.............. SYS##272

Buffer at current file position: #DEBD2#8
+###### #DEBD2#8 ##28#### ###C#### 99858396 99844#F1 ###C#### 99858396 99844#F2 ###C#### |........record 1....record 2....|
+####2# #DEBD228 99858396 99844#F3 ###4#### ######## ######## ######## ######## ######## |record 3........................|
+####4# #DEBD248 ######## ######## ######## ######## ######## ######## ######## ######## |................................|
+####6# #DEBD268 - +###3FF #DEBD6#7 same as above

Saved Buffer........ NULL

Figure 40 (Part 7 of 9). Example Dump from Sample C Routine

150 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Write Data Control Block: ###52#2#
+###### ###52#2# ###52E2# ######## #######8 ##EFD#8C ##2FE5A2 #######1 ####4### ####CE38 |..................Vs......|
+####2# ###52#4# 86#5223A 5##52DAD #1582424 ##89A#44 12BEE1B# ##C129D8 #A#521B8 ####18## |f...&........i.......A.Q........|
+####4# ###52#6# 3##13#3# ####CEA8 #1D448F8 ##D448F8 #####4#4 ##D4547# 47F#F#26 #1C3C5C5 |.......y.M.8.M.8.....M...##..CEE|

read/update DCB..... NULL
Write Data Control Block Extension: ###52E2#
+###### ###52E2# C4C3C2C5 ##38#### ###52#2# ######## C#C8#### ######## ######## ######## |DCBE.............H..............|
+####2# ###52E4# ######## ######## ######## ######## ######## #####1## 8#####B8 ###52### |................................|

read/update DCBE.... NULL

Job File Control Block: ###52E6#
+###### ###52E6# C8C5C1D3 E84BD4E8 C6C9D3C5 4BC4C1E3 C14#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# |HEALY.MYFILE.DATA |
+####2# ###52E8# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 8###1F1D ######## ######## ||
+####4# ###52EA# #####2## ######## ######## ######## 61##49## ######4# ######## ######## |................/......|
+####6# ###52EC# ######## ######## ######## ######## ######## ###1E2D4 E2F#F#F6 4#4#4#4# |......................SMS##6 |
+####8# ###52EE# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# ##89DDA# ######5# ####18## | .i.....&....|
+####A# ###52F## ######## ######## ######## 2####1## 8#####38 ###52### ###52F18 #DEBD2#8 |..............................K.|

[8] __amrc_type structure: ###31B18
+###### ###31B18 ######## ######## #######7 ######## ######## ######## ######## ######## |................................|
+####2# ###31B38 ######## ######## ######## ######## ######## ######## ######## ######## |................................|
+####4# ###31B58 - +####BF ###31BD7 same as above
+####C# ###31BD8 ######## ######## ######## ######## ######## ######## ######## ######DC |................................|

amrc __code union fields
 __error................. #(#)
 __abend.__syscode....... #(#)
 __abend.__rc............ #(#)
 __feedback.rc........... #(#)
 __feedback.__ftncd...... #(#)
 __feedback.__fdbk....... #(#)
 __alloc.__svc99_info.... #(#)
 __alloc.__svc99_error... #(#)

 __RBA............... #(#)
 __last_op........... 7(7)
 __msg.__str......... NULL
 __msg.__parmr#...... #(#)
 __msg.__parmr1...... #(#)
 __msg.__str2........ NULL

__amrc2_type structure: ###31A1C
+###### ###31A1C ######## ######## ######## ######## ######## ######## ######## ######## |................................|

 __error2............ #(#)
 __fileptr........... NULL

Figure 40 (Part 8 of 9). Example Dump from Sample C Routine

 Chapter 4. Debugging C/C++ Routines 151

Process Control Blocks:

 PCB: ###22558
+###### ###22558 C3C5C5D7 C3C24#4# #3#3#398 ######## ######## ######## ###22788 #DC294C8 |CEEPCB ...q...............h.BmH|
+####2# ###22578 #DC27A5# #DC2A338 #DC2A81# #DB58928 ###21918 ######## ######## ###228B# |.B:&.Bt..By...i.................|
+####4# ###22598 #DC2A47# 7C###### ######## ######## ######## ######## ######## ######## |.Bu.@...........................|

 MEML: ###22788
+###### ###22788 ######## ######## #DBBB#B8 ######## ######## ######## #DBBB#B8 ######## |................................|
+####2# ###227A8 ######## ######## #DBBB#B8 ######## #DB66DDC ######## 8DC2B6B8 ######## |.................._......B......|
+####4# ###227C8 ######## ######## #DBBB#B8 ######## ######## ######## #DBBB#B8 ######## |................................|
+####6# ###227E8 - +###11F ###228A7 same as above

Additional Language Specific Information:
[9] errno information :
Thread Id 8############### Errno ######## Errnojr ########

Figure 40 (Part 9 of 9). Example Dump from Sample C Routine

Finding C/C++ Information in a Language Environment Dump
When a Language Environment traceback or dump is generated for a C/C++
routine, information is provided that is unique to C/C++ routines. C/C++-specific
information includes:

� Control block information for active routines
� Condition information for active routines
� Enclave level data

Each of the unique C/C++ sections of the Language Environment dump are
described.

[1] Storage for Active Routines

The Storage for Active Routines section of the dump shows the DSAs for the active
C and C++ routines. To relate a DSA frame to a particular function name, use the
address associated with the frame to find the corresponding DSA. In this example,
the function func1 DSA address is X'00030440'.

[2] Control Blocks Associated with the Active Thread

In the Control Blocks Associated with the Thread section of the dump, the following
information appears:

� C/C++ fields from the CAA
 � C/C++Specific CAA
 � Signal information

[2A] C/C++ CAA Fields

The CAA contains several fields that the C/C++ programmer can use to find infor-
mation about the run-time environment. For each C/C++ program, there is a C-C++
Specific Thread area and a C-C++ Specific Enclave area.

[2B] C-C++ Specific CAA

The C-C++ specific CAA fields that are of interest to users are described below.

152 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

errno value
A variable used to display error information. Its value can be set to a positive
number that corresponds to an error message. The functions perror() and
strerror() print the error message that corresponds to the value of errno.

Memory file control block
You can use the memory file control block (MFCB) to locate additional informa-
tion about memory files. This control block resides at the C/C++ thread level.
See 154 for more information about the MFCB.

Open FCB chain
A pointer to the start of a linked list of open file control blocks (FCBs). For
more information about FCBs, see 154.

[3] Signal Information

When the POSIX(OFF) run-time option is specified, signal information is provided in
the dump to aid you in debugging. For each signal that is disabled with SIG_IGN, an
entry value of 00000001 is made in the first field of the Signal Information field for
the specified signal name.

For each signal that has a handler registered, the signal name and the handler
name are listed. If the handler is a fetched C function, the value @@FECB is entered
as the function name and the address of the fetched pointer is in the first field.

If you compile a C routine as NORENT, the WSA address is not available (N/A). See
OS/390 C/C++ Programming Guide for more information about the signal function.

[4] WSA Address

The WSA Address is the base address of the writable static area which is available
for all C and C++ programs except C programs compiled with the NORENT compile
option.

[5] atexit() Information

The atexit() information lists the functions registered with the atexit() function
that would be run at normal termination. The functions are listed in chronological
order of registration.

If you compile a C routine as NORENT, the WSA address is not available (N/A). See
OS/390 C/C++ Run-Time Library Reference for more information about the
atexit() function.

[6] fetch() Information

The fetch() information shows information about modules that you have dynam-
ically loaded using fetch(). For each module that was fetched, the fetch() pointer
and the function pointer are included.

ptr1 = fetch("MOD");

If you compile a C routine as NORENT, the WSA address is not available (N/A). See
OS/390 C/C++ Programming Guide for more information about the fetch() func-
tion.

 Chapter 4. Debugging C/C++ Routines 153

[7] File Control Block Information

This section of the dump includes the file control block (FCB) information for each
C/C++ file. The FCB contains file status and attributes for files open during C/C++
active routines. You can use this information to find the data set or file name.

The FCB is a handle that points to the following file information, which is displayed
when applicable, for the file:

� Access method control block (ACB) address
� Data control block (DCB) address
� Data control block extension (DCBE) address
� Job file control block (JFCB) address

 � RPL address
� Current buffer address
� Saved buffer address

 � ddname

Not all FCB fields are always filled in. For example, RPLs are used only for VSAM
data sets. The ddname field contains blanks if it is not used.

The save block buffer represents auxiliary buffers that are used to save the con-
tents of the main buffers. Such saving occurs only when a reposition is performed
and there is new data; for example, an incomplete text record or an incomplete
fixed-block standard (FBS) block in the buffers that cannot be flushed out of the
system.

Because the main buffers represent the current position in the file, while the save
buffers merely indicate a save has occurred, check the save buffers only if data
appears to be missing from the external device and is not found in the main
buffers. Also, do not infer that the presence of save buffers means that data
present there belongs at the end of the file. (The buffers remain, even when the
data is eventually written.)

For information about the job file control block, refer to OS/390 MVS Data Areas,
Vol 3 (IVT-RCWK).

Memory File Control Block

This section of the dump holds the memory file control block information for each
memory file the routine uses. A sample memory file control block is shown in
Figure 41.

Memory File Control Block: #46F5CD#
+###### #46F5CD# #46F5D4# #######1 ######## ######## #46F5BA8 ###1#### #46F5E48 ######13 |.?)?$y.....?;.....|
+####2# #46F5CF# ######14 ######## ######## ######## ######## #46F5BA8 ######## ######## |.....................?$y........|
+####4# #46F5D1# #46F5CD# ######## ######## ######## ######## ######## ######## #46F5D4# |.?C..........................?) |
+####6# #46F5D3# ###1#### ######## ######## ######## ######## ######## #46F5E68 #######1 |.........................?;.....|

memory file name......... TSOID.MEMORY.DATA
First memory data space: #46F5E68
+###### #46F5E68 93899585 4#F19389 95854#F2 93899585 4#F3#### ######## ######## ######## |line 1line 2line 3..............|

Figure 41. Memory File Control Block

Memory file name
The name assigned to this memory file.

154 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

First memory data space
A dump of the first 1K maximum of actual user data associated with this
memory file.

[8] Information for __amrc

__amrc is a structure defined in the stdio.h header file to assist in determining
errors resulting from I/O operations. The contents of __amrc can be checked for
system information, such as the return code for VSAM. Certain fields of the __amrc
structure can provide useful information about what occurred previously in your
routine.

For more information about __amrc refer to “Debugging C/C++ Input/Output
Programs” on page 121 and to OS/390 C/C++ Programming Guide.

[9] Errno Information

The Errno information shows the thread id of the thread that generated the dump
and the settings of the errno and errnojr variables for that thread.

Both the errno and the errnojr variables contain the return code of the last failing
OS/390 UNIX system service call. These variables provide OS/390 UNIX applica-
tion programs access to diagnostic information returned from an underlying OS/390
UNIX callable service. Refer to OS/390 UNIX System Services Messages and
Codes for more information on these return and reason codes.

Additional Floating-Point Registers
The Language Environment dump formats Additional Floating Point (AFP) registers
and Floating Point Control (FPC) registers when the APF suboption of the FLOAT
C/C++ compiler option is specified and the registers are needed. These floating-
point registers are displayed in three sections of the CEEDUMP; Registers on Entry
to CEE3DMP; Parameters, Registers, and Variables; and Condition Information for
Active Routines. Samples of each section are given. See OS/390 C/C++ User's
Guide for information on the FLOAT C/C++ compiler option.

Registers on Entry to CEE3DMP: This section of the Language Environment
dump displays the twelve floating-point registers. A sample output is shown.

 Chapter 4. Debugging C/C++ Routines 155

CEE3DMP V2 R7.#: Sample dump produced by calling CEE3DMP 11/11/98 5:19:52 PM
CEE3DMP called by program unit ./celdll.c (entry point dump_n_perc) at statement 34 (offset +#####17A).

Registers on Entry to CEE3DMP:

 PM....... #1##
 GPR#..... 183F8BE8 GPR1..... ###23D38 GPR2..... ###23E98 GPR3..... 184#E792
 GPR4..... ###23D98 GPR5..... 183F8CD# GPR6..... ###23D48 GPR7..... ###2297F
 GPR8..... 17F4553D GPR9..... 183F687# GPR1#.... 17F4353F GPR11.... 17FA#55#
 GPR12.... ###1592# GPR13.... ###23CA# GPR14.... 8##18#E2 GPR15.... 97F57FE8
 FPC...... 4##84###
 FPR#..... 4#26#### ######## FPR1..... 41#86A## ########
 FPR2..... ######## ######## FPR3..... 3F8CAC#8 3126E979
 FPR4..... 3FF33333 33333333 FPR5..... 4#C194## ########
 FPR6..... 3F661E4F 765FD8AE FPR7..... 3FF#6666 66666666
 FPR8..... 3FF33333 33333333 FPR9..... ######## ########
 FPR1#.... 3FF33333 33333333 FPR11.... ######## ########
 FPR12.... 4#26#### ######## FPR13.... ######## ########
 FPR14.... 4#22#### ######## FPR15.... ######## ########

...

Figure 42. Registers on Entry to CEE3DMP

Parameters, Registers, and Variables for Active Routines: This section of the
Language Environment dump displays the non-volatile floating-point registers that
are saved in the stack frame. The registers are only displayed if the program
owning the stack frame saved them. Dashes are displayed in the registers when
the register values are not saved. A sample output is shown.

Parameters, Registers, and Variables for Active Routines:
...
goo (DSA address ###213B#):

 Saved Registers:
 GPR#..... 183F6CC# GPR1..... ###21278 GPR2..... 183F687# GPR3..... 17F#1DC2
 GPR4..... ######F8 GPR5..... 183F6968 GPR6..... 17F#24#8 GPR7..... ###212EC
 GPR8..... ###212F# GPR9..... 8####### GPR1#.... 98125#22 GPR11.... 8###7F98
 GPR12.... ###1592# GPR13.... ###213B# GPR14.... 97F#1E1E GPR15.... ######2F
 FPR8..... 3FF33333 33333333 FPR9..... -------- --------
 FPR1#.... 3FF33333 33333333 FPR11.... -------- --------
 FPR12.... 4#26#### ######## FPR13.... -------- --------
 FPR14.... 4#22#### ######## FPR15.... -------- --------
 GPREG STORAGE:

Storage around GPR# (183F6CC#)
...

Figure 43. Parameters, Registers, and Variables for Active Routines

Condition Information for Active Routines: This section of the Language Envi-
ronment dump displays the floating-point registers when they are saved in the
machine state. A sample output is shown.

156 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

...
Condition Information for Active Routines
Condition Information for ./celsamp.c (DSA address ###213B#)
CIB Address: ###21F9#

 Current Condition:
CEE3224S The system detected an IEEE division-by-zero exception.

 Location:
Program Unit: ./celsamp.c
Program Unit:Entry: goo Statement: 78 Offset: +######BA

 Machine State:
ILC..... ###4 Interruption Code..... ###7
PSW..... #78D#4## 97F#1E46

 GPR#..... 183F6CC# GPR1..... ###21278 GPR2..... 183F687# GPR3..... 17F#1DC2
 GPR4..... ######F8 GPR5..... 183F6968 GPR6..... 17F#24#8 GPR7..... ###212EC
 GPR8..... ###212F# GPR9..... 8####### GPR1#.... 98125#22 GPR11.... 8###7F98
 GPR12.... ###1592# GPR13.... ###213B# GPR14.... 97F#1E1E GPR15.... ######2F
 FPC...... 4##84###
 FPR#..... 4#26#### ######## FPR1..... 41#86A## ########
 FPR2..... ######## ######## FPR3..... 3F8CAC#8 3126E979
 FPR4..... 3FF33333 33333333 FPR5..... 4#C194## ########
 FPR6..... 3F661E4F 765FD8AE FPR7..... 3FF#6666 66666666
 FPR8..... 3FF33333 33333333 FPR9..... ######## ########
 FPR1#.... 3FF33333 33333333 FPR11.... ######## ########
 FPR12.... 4#26#### ######## FPR13.... ######## ########
 FPR14.... 4#22#### ######## FPR15.... ######## ########

Storage dump near condition, beginning at location: 17F#1E32
+###### 17F#1E32 682#1##8 581#D#F# 684#1#1# B31B##24 B31D###2 B3#5#### 582#D#F4 584#31C2#.4. .B

...

Figure 44. Condition Information for Active Routines

| Sample Language Environment Dump with XPLINK-Specific
| Information
| The programs tranmain shown in Figure 45 on page 158 and trandll shown in
| Figure 46 on page 159 were used to produce a Language Environment dump. The
| dump shows XPLINK-compiled routines calling NOXPLINK-compiled routines, and
| NOXPLINK-compiled routines calling XPLINK-compiled routines. The program
| tranmain was compiled XPLINK and trandll was compiled NOXPLINK. Each was
| link-edited as a separate program object with the sidedeck from the other. The Lan-
| guage Environment dump produced by running these program is shown in
| Figure 47 on page 160. Explanations for some of the sections are in “Finding
| XPLINK Information in a Language Environment Dump” on page 162.

 Chapter 4. Debugging C/C++ Routines 157

| #pragma runopts(TRACE(ON,1M,NODUMP,LE=1),XPLINK(ON),TERMTHDACT(UADUMP))
| #include <stdio.h>
| #pragma export(tran2)

| int tran1(int, int, int, long double, int);
| int tran3(int, int, int, long double, int);

| void main(void) {

| int parm1 = #x11111111;
| int parm2 = #x22222222;
| int parm3 = #x33333333;
| long double parm4 = 1234.56789;
| int parm5 = #x55555555;
| int retval;

| printf("Main: Call Tran1\n");
| retval = tran1(parm1,parm2,parm3,parm4,parm5);
| printf("Main: Return value from Tran1 = %d\n",retval);

| }
| int tran2(int parm1,int parm2,int parm3,long double parm4,int parm5) {

| int retval;

| printf("Tran2: Call Tran3\n");
| retval = tran3(parm1,parm2,parm3,parm4,parm5);
| printf("Tran2: Return value from Tran3 = %d\n",retval);
| return retval;

| }

| Figure 45. Sample XPLINK-compiled Program (tranmain) Which Calls a
| NOXPLINK-compiled Program

|

158 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

| #include <stdio.h>
| #include <ctest.h>
| #include <leawi.h>
| #pragma export(tran1)
| #pragma export(tran3)

| int tran2(int, int, int, long double, int);

| int tran1(int parm1,int parm2,int parm3,long double parm4,int parm5) {

| int retval;

| printf("Tran1: Call Tran2\n");
| retval = tran2(parm1,parm2,parm3,parm4,parm5);
| printf("Tran1: Return value from Tran2 = %d\n",retval);
| return retval;

| }
| int tran3(int parm1,int parm2,int parm3,long double parm4,int parm5) {

| _INT4 code, timing;

| code = 1##1; /C Abend code to issue C/
| timing = 1;
| printf("Tran3: About to ABEND\n");
| CEE3ABD(&code,&timing);

| return parm1 + parm2 + parm3;

| }

| Figure 46. Sample NOXPLINK-compiled Program (trandll) Which Calls an XPLINK-compiled
| Program

 Chapter 4. Debugging C/C++ Routines 159

| CEE3DMP V2 R1#.#: Condition processing resulted in the unhandled condition. #5/#5/## 3:59:#7 PM Page: 1

| Information for enclave main

| Information for thread 8###############

| [1] Traceback:
| DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
| 23ED4C18 CEEHDSPR 23BA6538 +####38DA CEEHDSPR 23BA6538 +####38DA CEEPLPKA Call
| 23ED4998 CEEHABD 23AD34A# +#####12A CEEHABD 23AD34A# +#####12A CEEPLPKA Exception
| 23ED48E# ./trandll.c 24#848C# +######D6 tran3 24#848C# +######D6 26 XNTDLL Call
| 23ED473# CEEVRONU 23BB#47# +#####7#6 CEEVRONU 23BB#47# +#####7#6 CEEPLPKA Call
| 24#7753# ./tranmain.c 23A###E8 +######7# tran2 23A###E8 +######7# 27 XNTRAN Call
| 24#775B# 23BAEE38 +#####9A4 CEEVROND 23BAEE9# +#####94C CEEPLPKA Call
| 23ED44E8 ./trandll.c 24#84A4# +######F2 tran1 24#84A4# +######F2 14 XNTDLL Call
| 23ED4338 CEEVRONU 23BB#47# +#####7#6 CEEVRONU 23BB#47# +#####7#6 CEEPLPKA Call
| 24#7768# ./tranmain.c 23A##218 +######8C main 23A##218 +######8C 18 XNTRAN Call
| 24#7772# 23BAEE38 +#####9A4 CEEVROND 23BAEE9# +#####94C CEEPLPKA Call
| 23ED4#E# EDCZHINV 23E8EC28 +######9A EDCZHINV 23E8EC28 +######9A CELHV##3 Call
| 23ED4#18 CEEBBEXT ####82A8 +#####1A6 CEEBBEXT ####82A8 +#####1A6 CEEBINIT Call

| Condition Information for Active Routines
| Condition Information for CEEHABD (DSA address 23ED4998)
| CIB Address: 23ED5438
| Current Condition:
| CEE#198S The termination of a thread was signaled due to an unhandled condition.
| Original Condition:
| CEE325#C The system or user abend U1##1 R=######## was issued.
| Location:
| Program Unit: CEEHABD Entry: CEEHABD Statement: Offset: +#####12A
| Machine State:
| ILC..... ###2 Interruption Code..... ###D
| PSW..... #78D14## A3AD35CA
| GPR#..... 84###### GPR1..... 84###3E9 GPR2..... 23ED4984 GPR3..... 24#848FA
| GPR4..... 23ED498# GPR5..... ###159D# GPR6..... ######## GPR7..... ########
| GPR8..... A3A###F2 GPR9..... 23A1BE8# GPR1#.... 23ED498# GPR11.... A3AD34A#
| GPR12.... ###16AC# GPR13.... 23ED4998 GPR14.... A4#84998 GPR15.... ########
| ABEND code: #####3E9 Reason code: ########
| Storage dump near condition, beginning at location: 23AD35BA
| +###### 23AD35BA 881####8 41####84 89####18 161##A#D 47F#B1B6 584#C2F# 95#64##B 477#B1A# h......di........#... B#n.

| [2] Parameters, Registers, and Variables for Active Routines:

| .| .| .

| tran3 (DSA address 23ED48E#):
| UPSTACK DSA
| Parameters:
| parm5 signed int 1431655765
| parm4 long double 1.2345678899999999771353#3197E+#3
| parm3 signed int 858993459
| parm2 signed int 5726623#6
| parm1 signed int 286331153
| Saved Registers:
| GPR#..... 23A1BD7# GPR1..... 23ED4978 GPR2..... 23ED4984 GPR3..... 24#848FA
| GPR4..... 23ED498# GPR5..... 23A1BE1# GPR6..... ######## GPR7..... ########
| GPR8..... A3A###F2 GPR9..... 23A1BE8# GPR1#.... 24#848C# GPR11.... A3BB#4FA
| GPR12.... ###16AC# GPR13.... 23ED48E# GPR14.... A4#84998 GPR15.... A3AD34A#

| .| .| .

| Local Variables:
| timing signed long int 1
| code signed long int 1##1

| Figure 47 (Part 1 of 3). Example Dump of Calling Between XPLINK and non-XPLINK Programs

160 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

| +###48# Time 2#.52.46.673373 Date 1998.#3.26 Thread ID... 8###############
| CEEVRONU (DSA address 23ED473#):
| TRANSITION DSA
| Saved Registers:
| GPR#..... 23A1BD7# GPR1..... 24#77D7# GPR2..... 23ED4818 GPR3..... ######1#
| GPR4..... 24#7753# GPR5..... 23FF58D# GPR6..... ######## GPR7..... ########
| GPR8..... A3A###F2 GPR9..... 23A1BE8# GPR1#.... 24#848C# GPR11.... A3BB#4FA
| GPR12.... ###16AC# GPR13.... 23ED473# GPR14.... A3BB#B78 GPR15.... 24#848C#

| .| .| .

| tran2 (DSA address 24#7753#):
| DOWNSTACK DSA
| Parameters:
| parm5 signed int 1431655765
| parm4 long double 1.2345678899999999771353#3197E+#3
| parm3 signed int 858993459
| parm2 signed int 5726623#6
| parm1 signed int 286331153
| Saved Registers:
| GPR#..... 55555555 GPR1..... 11111111 GPR2..... 22222222 GPR3..... 33333333
| GPR4..... 24#7753# GPR5..... 23FF58D# GPR6..... 23BB#4D8 GPR7..... A3A##15A
| GPR8..... A3A###F2 GPR9..... 23A1BE8# GPR1#.... 23A###B8 GPR11.... 23BAEE38
| GPR12.... ###16AC# GPR13.... 23ED45B# GPR14.... 23A###B8 GPR15.... #######C

| .| .| .

| Local Variables:
| retval signed int -455613482
| CEEVROND (DSA address 24#775B#):
| TRANSITION DSA
| Saved Registers:
| GPR#..... CCCCCCCC GPR1..... CCCCCCCC GPR2..... CCCCCCCC GPR3..... CCCCCCCC
| GPR4..... 24#775B# GPR5..... 23A1BE8# GPR6..... 23A###E8 GPR7..... A3BAF7DE
| GPR8..... 23A###B8 GPR9..... 23BAFE37 GPR1#.... CCCCCCCC GPR11.... CCCCCCCC
| GPR12.... CCCCCCCC GPR13.... CCCCCCCC GPR14.... CCCCCCCC GPR15.... CCCCCCCC

| .| .| .

| tran1 (DSA address 23ED44E8):
| UPSTACK DSA
| Saved Registers:
| GPR#..... 23FF5#98 GPR1..... 23ED458# GPR2..... 55555555 GPR3..... 24#84A7A
| GPR4..... 33333333 GPR5..... 23A1BE1# GPR6..... 22222222 GPR7..... 11111111
| GPR8..... A3A##222 GPR9..... 23A##32# GPR1#.... 24#84A4# GPR11.... A3BB#4FA
| GPR12.... ###16AC# GPR13.... 23ED44E8 GPR14.... A4#84B34 GPR15.... 23BAEE38

| .| .| .

| Figure 47 (Part 2 of 3). Example Dump of Calling Between XPLINK and non-XPLINK Programs

 Chapter 4. Debugging C/C++ Routines 161

| [3] Control Blocks for Active Routines:

| .| .| .

| DSA for tran3: 23ED48E#
| +###### FLAGS.... 1#A# member... 1D8C BKC...... 23ED473# FWC...... 23ED4998 R14...... A4#84998
| +####1# R15...... A3AD34A# R#....... 23A1BD7# R1....... 23ED4978 R2....... 23ED4984 R3....... 24#848FA
| +####24 R4....... 23ED498# R5....... 23A1BE1# R6....... ######## R7....... ######## R8....... A3A###F2
| +####38 R9....... 23A1BE8# R1#...... 24#848C# R11...... A3BB#4FA R12...... ###16AC# reserved. ###1763#
| +####4C NAB...... 23ED4998 PNAB..... ######## reserved. ######## ######## ######## ########
| +####64 reserved. ######## reserved. 23A##### MODE..... 23A#1438 reserved. 8####### ########
| +####78 reserved. 23A##1D# reserved. 23A##48#
| DSA for CEEVRONU: 23ED473#
| +###### FLAGS.... #### member... #### BKC...... FFFFFFFF FWC...... E3D9C1D5 R14...... A3BB#B78
| +####1# R15...... 24#848C# R#....... 23A1BD7# R1....... 24#77D7# R2....... 23ED4818 R3....... ######1#
| +####24 R4....... 24#7753# R5....... 23FF58D# R6....... ######## R7....... ######## R8....... A3A###F2
| +####38 R9....... 23A1BE8# R1#...... 24#848C# R11...... A3BB#4FA R12...... ###16AC# reserved. ###1763#
| +####4C NAB...... 23ED48E# PNAB..... 23ED48E# reserved. ######## ######## ######## ########
| +####64 reserved. 23ED47B# reserved. ######## MODE..... ######## reserved. ######## ########
| +####78 reserved. ######## reserved. ########
| DSA for CEEVRONU: 23ED47B#
| +###### EYE...... DOWNTOUP TRTYPE... #######3 BOS...... ######## STACKFLR. ######## SSTOPD... 24#7768#
| +####18 SSDSAU... 23ED473# TRANEP... 23BB#47# TR_R#.... 55555555 TR_R1.... 11111111 TR_R2.... 22222222
| +####2C TR_R3.... 33333333 TR_R4.... 24#7753# TR_R5.... 23FF58D# TR_R6.... 23BB#4D8 TR_R7.... A3A##15A
| +####4# TR_R8.... A3A###F2 TR_R9.... 23A1BE8# TR_R1#... 23A###B8 TR_R11... 23BAEE38 TR_R12... ###16AC#
| +####54 TR_R13... 23ED45B# TR_R14... 23A###B8 TR_R15... #######C CRENT.... ######## ROND_DSA. 23ED45B#
| +####68 INTF_MAP. #18F1###
| DSA for tran2: 24#77D3#
| +###### R4....... 24#775B# R5....... 23A1BE8# R6....... 23A###E8 R7....... A3BAF7DE R8....... 23A###B8
| +####14 R9....... 23BAFE37 R1#...... 23A###B8 R11...... 23BAEE38 R12...... ###16AC# R13...... 23ED45B#
| +####28 R14...... 23A###B8 R15...... #######C reserved. #####A68 reserved. 23BFB78B HPTRAN... ########
| +####3C reserved. 55555555 reserved. 11111111
| DSA for CEEVROND: 24#77DB#
| +###### R4....... E3D9C1D5 R5....... ######## R6....... 23BAEE9# R7....... ######## R8....... 23ED486#
| +####14 R9....... ######## R1#...... ######## R11...... A3B6931C R12...... ######## R13...... ########
| +####28 R14...... 24#77E1# R15...... ######## reserved. 23A1BE1C reserved. 23ED45A8 HPTRAN... 24#77E1#
| +####3C reserved. FFFFFFFF reserved. 11111111
| DSA for CEEVROND: 24#77E1#
| +###### EYE...... UPTODOWN TRTYPE... #######2 BOS...... ######## STACKFLR. ######## SSTOPD... 24#7768#
| +####18 SSDSAU... 23ED4338 TRANEP... 23BAEE9# TR_R#.... ######## TR_R1.... ######## TR_R2.... ########
| +####2C TR_R3.... ######## TR_R4.... 23ED44E8 TR_R5.... ######## TR_R6.... ######## TR_R7.... A4#84B34
| +####4# TR_R8.... ######## TR_R9.... ######## TR_R1#... ######## TR_R11... ######## TR_R12... ########
| +####54 TR_R13... ######## TR_R14... ######## TR_R15... ######## CRENT.... 23BAEE38 ROND_DSA. ########
| +####68 INTF_MAP. ########
| DSA for tran1: 23ED44E8
| +###### FLAGS.... 1### member... 59D# BKC...... 23ED4338 FWC...... 23ED486# R14...... A4#84B34
| +####1# R15...... 23BAEE38 R#....... 23FF5#98 R1....... 23ED458# R2....... 55555555 R3....... 24#84A7A
| +####24 R4....... 33333333 R5....... 23A1BE1# R6....... 22222222 R7....... 11111111 R8....... A3A##222
| +####38 R9....... 23A##32# R1#...... 24#84A4# R11...... A3BB#4FA R12...... ###16AC# reserved. ###1763#
| +####4C NAB...... 23ED45B# PNAB..... A3B91#4C reserved. 23ED44#8 #######1 23A#1CF# #######C
| +####64 reserved. ######## reserved. 23A#1D38 MODE..... ##1###28 reserved. ######## ########
| +####78 reserved. 23A#1BB# reserved. A3B9#CF8

| .| .| .

| Figure 47 (Part 3 of 3). Example Dump of Calling Between XPLINK and non-XPLINK Programs

| Finding XPLINK Information in a Language Environment Dump
| [1] Traceback

| When an XPLINK-compiled routine calls a NOXPLINK-compiled routine, a glue
| routine gets control to convert the linkage conventions of the XPLINK caller to
| those of the NOXPLINK callee. In the sample dump, this routine is CEEVRONU
| and it appears between main() and tran1() and again between tran2() and
| tran3().

| When a NOXPLINK-compiled routine calls an XPLINK-compiled routine, a glue
| routine gets control to convert the linkage conventions of the NOXPLINK caller to
| those of the XPLINK callee. In the sample dump, this routine is CEEVROND and it
| appears between EDCZHINV and main() and again between tran1() and tran2().

162 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

| [2] Parameters, Registers, and Variables for Active Routines

| In this section, each DSA is identified as one of the following:

| UPSTACK DSA
| The DSA format is that for a NOXPLINK-compiled program that uses an
| upward growing stack.

| DOWNSTACK DSA
| The DSA format is that for ax XPLINK-compiled program that uses an down-
| ward growing stack.

| TRANSITION DSA
| The DSA format is that of its callee. A transition DSA can occur between an
| UPSTACK DSA and a DOWNSTACK DSA where it represents a transition
| from one linkage convention to another. A transition DSA can also occur
| between two DOWNSTACK DSAs where it represents a transition from one
| stack segment to another (a stack overflow).

| [3] Control Blocks for Active Routines

| In this section, DSAs are formatted. Those previously identified as UPSTACK DSAs
| will have one format and those identified as DOWNSTACK DSAs will have a dif-
| ferent format. Those identified as TRANSITION DSAs will have two parts — the
| first will be either the downstack or upstack format, the second is unique to transi-
| tion DSAs and contains information about the transition.

| It is important to understand that the registers saved in an upstack DSA are those
| saved by a routine that the DSA-owning routine called. Typically register 15 is the
| entry point of the routine that was called, and register 14 is the return address into
| the DSA-owning routine. In contrast, the registers saved in an upstack DSA are
| those saved by the DSA-owning routine on entry. Register 7 is the return address
| back to the caller of the DSA-owning routine. Register 6 may be the entry point of
| the DSA-owning routine. (This is not true when the Branch Relative and Save
| instruction is used to implement the call.)

C/C++ Contents of the Language Environment Trace Tables
Language Environment provides four C/C++ trace table entry types that contain
character data:

� Trace entry 1 occurs when a base C library function is called.
� Trace entry 2 occurs when a base C library function returns.
� Trace entry 3 occurs when a POSIX C library function is called.
� Trace entry 4 occurs when a POSIX C library function returns.

| � Trace entry 5 occurs when an XPLINK base C or POSIX C library function is
| called.
| � Trace entry 6 occurs when an XPLINK base C or POSIX C library function
| returns.

The format for trace table entry 1 is:

| NameOfCallingFunction
| ––>(xxx) NameOfCalledFunction

or, for called functions calloc, free, malloc, and realloc:

 Chapter 4. Debugging C/C++ Routines 163

| NameOfCallingFunction
| ––>(xxx) NameOfCalledFunction<(input_parameters)>

In addition, when the call is due to one of these C++ operators:

| -new,
| -new[],
| -delete,
| -delete[]

then the C++ operator will appear and the format becomes:

| NameOfCallingFunction
| ––>(xxx) NameOfCalledFunction<(input_parameters)>
|
| NameOfC++Operator

The format for trace table entry 2 is:

<––(xxx) R15=value ERRNO=value

The format for trace table entry 3 is:

 NameOfCallingFunction
 ––>(xxx) NameOfCalledFunction

The format for trace table entry 4 is:

<––(xxx) R15=value ERRNO=value ERRNO2=value

| The format for trace table entry 5 is:

| NameOfCallingFunction
| -->(xxxx) NameOfCalledFunction<(input_parameters)>

| Trace table entry 5 is just like trace table entry 1. The input_parameters and
| NameOfC++Operator only appear for the appropriate functions. The angle brackets
| (<>) indicate that this information does not always appear.

| The format for trace table entry 6 is:

| <--(xxxx) R1=xxxxxxxx R2=xxxxxxxx R3=xxxxxxxx ERRNO=xxxxxxxx ERRNO2=xxxxxxxx

| In all six entry types, (xxx) and (xxxx) are numbers associated with the called
| library function and are used to associate a specific entry record with its corre-
| sponding return record.

| For entry types 5 and 6, the number will be the same as the number of the function
| as seen in the C run-time library definition side-deck, SCEELIB dataset member
| CELHS003, on the IMPORT statement for that function.

| Figure 48 on page 165 shows a non-XPLINK trace which has examples of C/C++
| trace table entry types 1 thru 4.

| Figure 49 on page 167 shows an XPLINK trace which has examples of the trace
| entries 5 and 6.

164 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

...
Language Environment Trace Table:

Most recent trace entry is at displacement: #2D5##

Displacement Trace Entry in Hexadecimal Trace Entry in EBCDIC
 ------------ -- --------------------------------

+###### Time 2#.52.46.66628# Date 1998.#3.26 Thread ID... 8###############
+####1# Member ID.... #3 Flags..... ###### Entry Type..... #######1
+####18 94818995 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# main
+####38 6#6#6E4D F1F3F95D 4#A2A399 8397A84D 5D4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# -->(139) strcpy()
+####58 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4#

 +####78 4#4#4#4# 4#4#4#4#

+####8# Time 2#.52.46.666286 Date 1998.#3.26 Thread ID... 8###############
+####9# Member ID.... #3 Flags..... ###### Entry Type..... #######2
+####98 4C6#6#4D F1F3F95D 4#D9F1F5 7EF2F4C2 F7F3F1C4 F84#C5D9 D9D5D67E F#F#F#F# <--(139) R15=24B731D8 ERRNO=####
+####B8 F#F#F#F# ######## ######## ######## ######## ######## ######## ######## ####............................
+####D8 ######## ######## ######## ######## ######## ######## ######## ########

 +####F8 ######## ########

+###1## Time 2#.52.46.666289 Date 1998.#3.26 Thread ID... 8###############
+###11# Member ID.... #3 Flags..... ###### Entry Type..... #######1
+###118 94818995 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# main
+###138 6#6#6E4D F1F3F95D 4#A2A399 8397A84D 5D4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# -->(139) strcpy()
+###158 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4#

 +###178 4#4#4#4# 4#4#4#4#

+###18# Time 2#.52.46.666293 Date 1998.#3.26 Thread ID... 8###############
+###19# Member ID.... #3 Flags..... ###### Entry Type..... #######2
+###198 4C6#6#4D F1F3F95D 4#D9F1F5 7EF2F4C2 F7F3F2F2 F84#C5D9 D9D5D67E F#F#F#F# <--(139) R15=24B73228 ERRNO=####
+###1B8 F#F#F#F# ######## ######## ######## ######## ######## ######## ######## ####............................
+###1D8 ######## ######## ######## ######## ######## ######## ######## ########

 +###1F8 ######## ########

+###2## Time 2#.52.46.6663#3 Date 1998.#3.26 Thread ID... 8###############
+###21# Member ID.... #3 Flags..... ###### Entry Type..... #######3
+###218 C98785A3 97819994 A24#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# Igetparms
+###238 6#6#6E4D F#F5F25D 4#89A281 A3A3A84D 5D4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# -->(#52) isatty()
+###258 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4####### ########

 +###278 ######## ########

+###28# Time 2#.52.46.673289 Date 1998.#3.26 Thread ID... 8###############
+###29# Member ID.... #3 Flags..... ###### Entry Type..... #######4
+###298 4C6#6#4D F#F5F25D 4#D9F1F5 7EF#F#F# F#F#F#F# F#4#C5D9 D9D5D67E F#F#F#F# <--(#52) R15=######## ERRNO=####
+###2B8 F#F#F7F1 4#C5D9D9 D5D6F27E F#F5C6C3 F#F1F1C3 ######## ######## ######## ##71 ERRNO2=#5FC#11C............
+###2D8 ######## ######## ######## ######## ######## ######## ######## ########

 +###2F8 ######## ########

+###3## Time 2#.52.46.673296 Date 1998.#3.26 Thread ID... 8###############
+###31# Member ID.... #3 Flags..... ###### Entry Type..... #######3
+###318 C98785A3 97819994 A24#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# Igetparms
+###338 6#6#6E4D F#F5F25D 4#89A281 A3A3A84D 5D4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# -->(#52) isatty()
+###358 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4####### ########

 +###378 ######## ########

+###38# Time 2#.52.46.673334 Date 1998.#3.26 Thread ID... 8###############
+###39# Member ID.... #3 Flags..... ###### Entry Type..... #######4
+###398 4C6#6#4D F#F5F25D 4#D9F1F5 7EF#F#F# F#F#F#F# F#4#C5D9 D9D5D67E F#F#F#F# <--(#52) R15=######## ERRNO=####
+###3B8 F#F#F7F1 4#C5D9D9 D5D6F27E F#F5C6C3 F#F1F1C3 ######## ######## ######## ##71 ERRNO2=#5FC#11C............
+###3D8 ######## ######## ######## ######## ######## ######## ######## ########

 +###3F8 ######## ########

+###4## Time 2#.52.46.673338 Date 1998.#3.26 Thread ID... 8###############
+###41# Member ID.... #3 Flags..... ###### Entry Type..... #######3
+###418 C98785A3 97819994 A24#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# Igetparms
+###438 6#6#6E4D F#F5F25D 4#89A281 A3A3A84D 5D4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# -->(#52) isatty()
+###458 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4####### ########

 +###478 ######## ########

Figure 48 (Part 1 of 2). Trace Table with C/C++ Trace Table Entry Types 1 thru 4

 Chapter 4. Debugging C/C++ Routines 165

+###48# Time 2#.52.46.673373 Date 1998.#3.26 Thread ID... 8###############
+###49# Member ID.... #3 Flags..... ###### Entry Type..... #######4
+###498 4C6#6#4D F#F5F25D 4#D9F1F5 7EF#F#F# F#F#F#F# F#4#C5D9 D9D5D67E F#F#F#F# <--(#52) R15=######## ERRNO=####
+###4B8 F#F#F7F1 4#C5D9D9 D5D6F27E F#F5C6C3 F#F1F1C3 ######## ######## ######## ##71 ERRNO2=#5FC#11C............
+###4D8 ######## ######## ######## ######## ######## ######## ######## ########

 +###4F8 ######## ########

+###5## Time 2#.52.46.673379 Date 1998.#3.26 Thread ID... 8###############
+###51# Member ID.... #3 Flags..... ###### Entry Type..... #######1
+###518 C98785A3 97819994 A24#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# Igetparms
+###538 6#6#6E4D F1F2F95D 4#8785A3 8595A54D 5D4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# -->(129) getenv()
+###558 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4#

 +###578 4#4#4#4# 4#4#4#4#

+###58# Time 2#.52.46.673392 Date 1998.#3.26 Thread ID... 8###############
+###59# Member ID.... #3 Flags..... ###### Entry Type..... #######2
+###598 4C6#6#4D F1F2F95D 4#D9F1F5 7EF#F#F# F#F#F#F# F#4#C5D9 D9D5D67E F#F#F#F# <--(129) R15=######## ERRNO=####
+###5B8 F#F#F7F1 ######## ######## ######## ######## ######## ######## ######## ##71............................
+###5D8 ######## ######## ######## ######## ######## ######## ######## ########

 +###5F8 ######## ########

+###6## Time 2#.52.46.6734#1 Date 1998.#3.26 Thread ID... 8###############
+###61# Member ID.... #3 Flags..... ###### Entry Type..... #######1
+###618 C9A285A3 A4974#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# Isetup
+###638 6#6#6E4D F1F9F15D 4#8685A3 83884D5D 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# -->(191) fetch()
+###658 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4#

 +###678 4#4#4#4# 4#4#4#4#

+###68# Time 2#.52.47.553343 Date 1998.#3.26 Thread ID... 8###############
+###69# Member ID.... #3 Flags..... ###### Entry Type..... #######2
+###698 4C6#6#4D F1F9F15D 4#D9F1F5 7EF2F4C2 F7F6F#F6 F#4#C5D9 D9D5D67E F#F#F#F# <--(191) R15=24B76#6# ERRNO=####
+###6B8 F#F#F7F1 ######## ######## ######## ######## ######## ######## ######## ##71............................
+###6D8 ######## ######## ######## ######## ######## ######## ######## ########

 +###6F8 ######## ########

+###7## Time 2#.52.47.553355 Date 1998.#3.26 Thread ID... 8###############
+###71# Member ID.... #3 Flags..... ###### Entry Type..... #######1
+###718 C9A285A3 A4974#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# Isetup
+###738 6#6#6E4D F1F2F45D 4#948193 9396834D F2F#F6F8 5D4#4#4# 4#4#4#4# 4#4#4#4# -->(124) malloc(2#68)
+###758 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4#

 +###778 4#4#4#4# 4#4#4#4#

+###78# Time 2#.52.47.553366 Date 1998.#3.26 Thread ID... 8###############
+###79# Member ID.... #3 Flags..... ###### Entry Type..... #######2
+###798 4C6#6#4D F1F2F45D 4#D9F1F5 7EF2F4C2 F7F6F2F3 F#4#C5D9 D9D5D67E F#F#F#F# <--(124) R15=24B7623# ERRNO=####
+###7B8 F#F#F7F1 ######## ######## ######## ######## ######## ######## ######## ##71............................
+###7D8 ######## ######## ######## ######## ######## ######## ######## ########

 +###7F8 ######## ########

...

Figure 48 (Part 2 of 2). Trace Table with C/C++ Trace Table Entry Types 1 thru 4

Figure 49 on page 167 shows an XPLINK trace which has examples of the trace
entries 5 and 6.

166 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

...
Language Environment Trace Table:

Most recent trace entry is at displacement: ###D8#

Displacement Trace Entry in Hexadecimal Trace Entry in EBCDIC
 ------------ -- --------------------------------

+###### Time 22.41.35.433944 Date 2###.#3.31 Thread ID... 26C7#D##########
+####1# Member ID.... #3 Flags..... ###### Entry Type..... #######6
+####18 4C6#6#4D F#F#F5F9 5D4#D9F1 7EF2F3C6 C6C3C1C2 F#4#D9F2 7EF2F3C3 F5F8F9C4 <--(##59) R1=23FFCAB# R2=23C589D
+####38 F#4#D9F3 7EF2F3C6 C6C4F#F# F#4#C5D9 D9D5D67E F#F#F#F# F#F#F7F4 4#C5D9D9 # R3=23FFD### ERRNO=######74 ERR
+####58 D5D6F27E F#F#F#F# F#F#F#F# ######## ######## ######## ######## ######## NO2=########....................

 +####78 ######## ########

+####8# Time 22.41.35.433948 Date 2###.#3.31 Thread ID... 26C7#D##########
+####9# Member ID.... #3 Flags..... ###### Entry Type..... #######5
+####98 C9D9E3D3 D985A296 A4998385 7A7AA1C9 D9E3D3D9 85A296A4 9983854D 5D4#4#4# IRTLResource::.IRTLResource()
+####B8 6#6#6E4D F#F2F#F4 5D4#97A3 88998581 846D94A4 A385A76D 8485A2A3 9996A84D -->(#2#4) pthread_mutex_destroy(
+####D8 5D4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4#)

 +####F8 4#4#4#4# 4#4#4#4#

+###1## Time 22.41.35.433952 Date 2###.#3.31 Thread ID... 26C7#D##########
+###11# Member ID.... #3 Flags..... ###### Entry Type..... #######6
+###118 4C6#6#4D F#F2F#F4 5D4#D9F1 7EF2F3C6 C6C3C1F3 C34#D9F2 7EF2F3C3 F5F8F9C4 <--(#2#4) R1=23FFCA3C R2=23C589D
+###138 F#4#D9F3 7EF#F#F# F#F#F#F# F#4#C5D9 D9D5D67E F#F#F#F# F#F#F7F4 4#C5D9D9 # R3=######## ERRNO=######74 ERR
+###158 D5D6F27E F#F#F#F# F#F#F#F# ######## ######## ######## ######## ######## NO2=########....................

 +###178 ######## ########

+###18# Time 22.41.35.433957 Date 2###.#3.31 Thread ID... 26C7#D##########
+###19# Member ID.... #3 Flags..... ###### Entry Type..... #######5
+###198 C9D9E3D3 D985A296 A4998385 7A7AA1C9 D9E3D3D9 85A296A4 9983854D 5D4#4#4# IRTLResource::.IRTLResource()
+###1B8 6#6#6E4D F#F#F5F9 5D4#8699 85854DF# A7F2F4F# F#F4C3F2 F#5D4#4# 4#4#4#4# -->(##59) free(#x24##4C2#)
+###1D8 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4#

 +###1F8 84859385 A3854#4# delete

+###2## Time 22.41.35.433959 Date 2###.#3.31 Thread ID... 26C7#D##########
+###21# Member ID.... #3 Flags..... ###### Entry Type..... #######6
+###218 4C6#6#4D F#F#F5F9 5D4#D9F1 7EF2F3C6 C6C3C1C2 F#4#D9F2 7EF2F3C3 F5F8F9C4 <--(##59) R1=23FFCAB# R2=23C589D
+###238 F#4#D9F3 7EF2F3C6 C6C4F#F# F#4#C5D9 D9D5D67E F#F#F#F# F#F#F7F4 4#C5D9D9 # R3=23FFD### ERRNO=######74 ERR
+###258 D5D6F27E F#F#F#F# F#F#F#F# ######## ######## ######## ######## ######## NO2=########....................

 +###278 ######## ########

+###28# Time 22.41.35.433963 Date 2###.#3.31 Thread ID... 26C7#D##########
+###29# Member ID.... #3 Flags..... ###### Entry Type..... #######5
+###298 C9D9E3D3 D985A296 A4998385 7A7AA1C9 D9E3D3D9 85A296A4 9983854D 5D4#4#4# IRTLResource::.IRTLResource()
+###2B8 6#6#6E4D F#F2F#F4 5D4#97A3 88998581 846D94A4 A385A76D 8485A2A3 9996A84D -->(#2#4) pthread_mutex_destroy(
+###2D8 5D4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4#)

 +###2F8 4#4#4#4# 4#4#4#4#

+###3## Time 22.41.35.433967 Date 2###.#3.31 Thread ID... 26C7#D##########
+###31# Member ID.... #3 Flags..... ###### Entry Type..... #######6
+###318 4C6#6#4D F#F2F#F4 5D4#D9F1 7EF2F3C6 C6C3C1F3 C34#D9F2 7EF2F3C3 F5F8F9C4 <--(#2#4) R1=23FFCA3C R2=23C589D
+###338 F#4#D9F3 7EF#F#F# F#F#F#F# F#4#C5D9 D9D5D67E F#F#F#F# F#F#F7F4 4#C5D9D9 # R3=######## ERRNO=######74 ERR
+###358 D5D6F27E F#F#F#F# F#F#F#F# ######## ######## ######## ######## ######## NO2=########....................

 +###378 ######## ########

+###38# Time 22.41.35.433972 Date 2###.#3.31 Thread ID... 26C7#D##########
+###39# Member ID.... #3 Flags..... ###### Entry Type..... #######5
+###398 C9D9E3D3 D985A296 A4998385 7A7AA1C9 D9E3D3D9 85A296A4 9983854D 5D4#4#4# IRTLResource::.IRTLResource()
+###3B8 6#6#6E4D F#F#F5F9 5D4#8699 85854DF# A7F2F4F# F#F4C3F3 F85D4#4# 4#4#4#4# -->(##59) free(#x24##4C38)
+###3D8 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4#

 +###3F8 84859385 A3854#4# delete

+###4## Time 22.41.35.433974 Date 2###.#3.31 Thread ID... 26C7#D##########
+###41# Member ID.... #3 Flags..... ###### Entry Type..... #######6
+###418 4C6#6#4D F#F#F5F9 5D4#D9F1 7EF2F3C6 C6C3C1C2 F#4#D9F2 7EF2F3C3 F5F8F9C4 <--(##59) R1=23FFCAB# R2=23C589D
+###438 F#4#D9F3 7EF2F3C6 C6C4F#F# F#4#C5D9 D9D5D67E F#F#F#F# F#F#F7F4 4#C5D9D9 # R3=23FFD### ERRNO=######74 ERR
+###458 D5D6F27E F#F#F#F# F#F#F#F# ######## ######## ######## ######## ######## NO2=########....................

 +###478 ######## ########
...

Figure 49. Trace Table with XPLINK Trace Table Entries 5 and 6.

For more information about the Language Environment trace table format, see
“Understanding the Trace Table Entry (TTE)” on page 113.

 Chapter 4. Debugging C/C++ Routines 167

Debugging Examples of C/C++ Routines
This section contains examples that demonstrate the debugging process for C/C++
routines. Important areas of the output are highlighted. Data unnecessary to the
debugging examples has been replaced by ellipses.

 Divide-by-Zero Error
Figure 50 illustrates a C program that contains a divide-by-zero error. The code
was compiled with RENT so static and external variables need to be calculated from
the WSA field. The code was compiled with XREF, LIST and OFFSET to generate a
listing, which is used to calculate addresses of functions and data. The code was
processed by the binder with MAP to generate a binder map, which is used to calcu-
late the addresses of static and external variables.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
int statint = 73;
int fa;
void funcb(int Cpp);

int main(void) {
int aa, bb=1;
aa = bb;

 funcb(&aa);
 return(99);
}

void funcb(int Cpp) {
 int result;
fa = Cpp;
result = fa/(statint-73);

 return;
}

Figure 50. C Routine with a Divide-by-Zero Error

To debug this routine, use the following steps:

1. Locate the Current Condition message in the Condition Information for Active
Routines section of the dump. In this example, the message is CEE32#9S. The
system detected a fixed—point divide exception. This message indicates the
error was caused by an attempt to divide by zero. See Chapter 9, “Language
Environment Run-Time Messages” on page 265 for additional information
about CEE3209S.

The traceback section of the dump indicates that the exception occurred at
offset X'7E' within function funcb. This information is used along with the
compiler-generated Pseudo Assembly Listing to determine where the problem
occurred.

If the TEST compiler option is specified, variable information is in the dump. If
the GONUMBER compiler option is specified, statement number information is in
the dump. Figure 51 on page 169 shows the generated traceback from the
dump.

168 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Information for enclave main

Information for thread #B672E68########

 Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
###15#18 CEEHDSP #88AFB## +####25D2 CEEHDSP #88AFB## +####25D2 CEEPLPKA UQ13157 Call
###17288 #B3#9C18 +######7E funcb #B3#9C18 +######7E CPATHNAM Exception
###171E# #B3#9B28 +######6E main #B3#9B28 +######6E CPATHNAM Call
###17#C8 #876ED36 -#8765998 EDCZMINV #876ED36 -#8765998 CEEEV##3 Call
###17#18 CEEBBEXT ##CA#5#8 +#####13C CEEBBEXT ##CA#5#8 +#####13C CEEBINIT UQ#9246 Call

Condition Information for Active Routines
Condition Information for (DSA address ###17288)
CIB Address: ###15498

 Current Condition:
CEE#198S The termination of a thread was signaled due to an unhandled condition.

 Original Condition:
CEE32#9S The system detected a fixed-point divide exception.

 Location:
Program Unit: Entry: funcb Statement: Offset: +######7E

 Machine State:
ILC..... ###2 Interruption Code..... ###9
PSW..... #78D24## 8B3#9C98

 GPR#..... ###1733# GPR1..... ###1728# GPR2..... 8876EDEA GPR3..... 8B3#9C62
 GPR4..... 8#CA#5EC GPR5..... #B3#76C8 GPR6..... ######## GPR7..... #######1
 GPR8..... ######## GPR9..... 8####### GPR1#.... 8876ED2A GPR11.... 8#CA#5#8
 GPR12.... ####891# GPR13.... ###17288 GPR14.... ###17288 GPR15.... #B3#9C18

Storage dump near condition, beginning at location: #B3#9C86
+###### #B3#9C86 4B8#3#52 586#3#4A 58656### 8E6###2# 1D685#7# D#A#58D# D##458E# D##C9838-....-..-....&...........q.

...

Figure 51. Sections of the Dump from Example C/C++ Routine

2. Locate the instruction with the divide-by-zero error in the Pseudo Assembly
Listing in Figure 52 on page 170.

The offset (within funcb) of the exception from the traceback (X'7E') reveals
the divide instruction: DR r6,r8 at that location. Instructions X'66' through
X'80' refer to the result = fa/(statint-73); line of the C/C++ routine.

 Chapter 4. Debugging C/C++ Routines 169

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

 C
###15 funcb DS #D
47F# F#26 ###15 B 38(,r15)
#####4 #1C3 C5C5 CEE eyecatcher
#####8 #### ##A8 DSA size
#####C CCCC CCCC =A(PPA1-funcb)
####1# 47F# F##1 ###15 B 1(,r15)
 ####14 183F ###15 LR r3,r15
####16 58F# C31C ###15 L r15,796(,r12)
 ####1A 184E ###15 LR r4,r14
 ####1C #5EF ###15 BALR r14,r15
####1E #### #### =F'#'
####22 47F# 3#3A ###15 B 58(,r3)
####26 9#E8 D##C ###15 STM r14,r8,12(r13)
####2A 58E# D#4C ###15 L r14,76(,r13)
####2E 41## E#A8 ###15 LA r#,168(,r14)
####32 55## C314 ###15 CL r#,788(,r12)
####36 472# F#14 ###15 BH 2#(,r15)
####3A 5### E#4C ###15 ST r#,76(,r14)
####3E 921# E### ###15 MVI #(r14),16
####42 5#D# E##4 ###15 ST r13,4(,r14)
 ####46 18DE ###15 LR r13,r14
 ####48 #53# ###15 BALR r3,r#
 ####4A End of Prolog

###15 C void funcb(int Cpp) {
####4A 5#1# D#98 ###15 ST r1,152(,r13)
####4E 585# C1F4 ###15 L r5,5##(,r12)
 C int result;

###17 C fa = Cpp;
####52 586# D#98 ###17 L r6,152(,r13)
####56 586# 6### ###17 L r6,#(,r6)
####5A 587# CCCC ###17 L r7,=Q(fa)
####5E 586# 6### ###17 L r6,#(,r6)
####62 5#65 7### ###17 ST r6,#(r5,r7)

###18 C result = fa/(statint-73);
####66 588# CCCC ###18 L r8,=Q(statint)
####6A 5885 8### ###18 L r8,#(r5,r8)
####6E 4B8# CCCC ###18 SH r8,=H'73'
####72 586# CCCC ###18 L r6,=Q(fa)
####76 5865 6### ###18 L r6,#(r5,r6)
####7A 8E6# ##2# ###18 SRDA r6,32
 ####7E 1D68 ###18 DR r6,r8
####8# 5#7# D#A# ###18 ST r7,16#(,r13)
 ###19 C return;
 ###2# C }
 ####84 Start of Epilog
####84 58D# D##4 ###2# L r13,4(,r13)
####88 58E# D##C ###2# L r14,12(,r13)
####8C 9838 D#2# ###2# LM r3,r8,32(r13)
 ####9# #51E ###2# BALR r1,r14
 ####92 #7#7 ###2# NOPR r7
 ####94 Start of Literals
####94 #### #### =Q(fa)
####98 #### #### =Q(statint)
 ####9C ##49 =H'73'
 ####9E End of Literals

PPA1: Entry Point Constants
####9E 1#CE A1#6 =F'281977#94' Flags
####A2 FFFF FF9C =A(PPA2-funcb)
####A6 #### #### =F'#' No PPA3
####AA #### #### =F'#' No EPD
####AE FFE# #### =F'-2#97152' Register save mask
####B2 #### #### =F'#' Member flags
 ####B6 9# AL1(144) Flags
####B7 #### ## AL3(#) Callee's DSA use/8
 ####BA #24# =H'576' Flags
 ####BC ##14 =H'2#' Offset/2 to CDL
####BE ###5 CCCC AL2(5),C'funcb'
####C6 5### ##49 =F'1342177353' CDL function length/2
####CA FFFF FF62 =F'-158' CDL function EP offset
####CE 3825 #### =F'941948928' CDL prolog
####D2 4##7 ##42 =F'1#742##642' CDL epilog
 ####D6 #### =H'#' CDL end
 PPA1 End
 .
 .
 .

Figure 52. Pseudo Assembly Listing

3. Verify the value of the divisor statint. The procedure specified below is to be
used for determining the value of static variables only. If the divisor is an auto-
matic variable, there is a different procedure for finding the value of the vari-
able. See “Finding Automatic Variables” on page 132 for more information
about finding automatic variables in a dump.

170 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Because this routine was compiled with the RENT option, find the WSA
address in the Enclave Control Blocks section of the dump. In this example,
this address is X'0B3076C8'. Figure 53 on page 171 shows the WSA
address.

Enclave Control Blocks:

...
WSA address................. �B3�76C8

...

Figure 53. C/C++ CAA Information in Dump

4. Routines compiled with the RENT option must also be processed by the binder.
The binder prodcues the Writable Static Map. Find the offset of statint in the
Writable Static Map in Figure 54. In this example, the offset is X'4'.

...
==
| CCC MODULE MAP CCC |
==

...

 CLASS C_WSA LENGTH = 6# ATTRIBUTES = MRG, DEFER , RMODE=ANY ALIGN = DBLWORD

 CLASS
 OFFSET NAME TYPE LENGTH SECTION

 # fa PART 4 fa
 4 statint PART 4 statint

...

Figure 54. Writable Static Map

5. Add the WSA address of X'0B3076C8' to the offset of statint. The result is
X'0B3076CC'. This is the address of the variable statint, which is in the writ-
able static area. The writable static area is storage allocated by the C/C++ run-
time for the C/C++ user, so it is in the user heap. The heap content is
displayed in the Enclave Storage section of the dump, shown in Figure 55 on
page 172.

6. To find the variable statint in the heap, locate the closest address listed that
is before the address of statint. In this case, that address is X'0B3076CB'.
Count across X'04' to location X'0B3076CC'. The value at that location is
X'49' (that is, statint is 73), and hence the fixed point divide exception.

 Chapter 4. Debugging C/C++ Routines 171

...
 Enclave Storage:

Initial (User) Heap : #B325###
...

WSA for Program Object(s)
 WSA: #B3#76C8

+###### #B3#76C8 #######1 ######49 #B31B6F# ######## ######## ######## ######## #########....................
+####2# #B3#76E8 #######1 #######1 ######## ######## ####465# #######1 ######## #B31EEEC&............
+####4# #B3#77#8 ######## ######## #B31F#18 #B31EDC# ######## ######## #B31F85C #B31F866#...............8C..8.

...

Figure 55. Enclave Storage Section of Dump

| Calling a Nonexistent Non-XPLINK Function
Figure 56 demonstrates the error of calling a nonexistent function. This routine was
compiled with the compiler options LIST and RENT and was run with the option
TERMTHDACT(DUMP).

This routine was not compiled with the TEST(ALL) compile option. As a result,
arguments and variables do not appear in the dump.

The only prelinker option used was MAP.

 #include <stdio.h>
 #include <stdlib.h>
 #include <errno.h>
 #include <signal.h>
 void funca(intC aa);
 int (Cfunc_ptr)(void)=#;
 int main(void) {
 int aa;
 funca(&aa);

printf("result of funca = %d\n",aa);
 return;
 }
 void funca(intC aa) {

Caa = func_ptr();
 return;
 }

Figure 56. C/C++ Example of Calling a Nonexistent Subroutine

To debug this routine, use the following steps:

1. Locate the Current Condition message in the Condition Information for Active
Routines section of the dump, shown in Figure 57 on page 173. In this
example, the message is CEE32#1S The system detected an operation
exception (System Completion Code=#C1). This message suggests that the
error was caused by an attempt to branch to an unknown address. See
Chapter 9, “Language Environment Run-Time Messages” on page 265 for
additional information about CEE3201S.

The traceback section of the dump indicates that the exception occurred at
offset X'-04500616' within function funca. The negative offset indicates that
the offset cannot be used to locate the instruction that caused the error.
Another indication of bad data is the value of X'80000004' in the instruction

172 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

address of the PSW. This address indicates that an instruction in the routine
branched outside the bounds of the routine.

Information for enclave main

Information for thread 8###############

Registers on Entry to CEE3DMP:

 PM....... #1##
 GPR#..... ######## GPR1..... ###77448 GPR2..... #53AD9AF GPR3..... 853AD514
 GPR4..... #######1 GPR5..... #53AD314 GPR6..... 8##77454 GPR7..... ########
 GPR8..... #######1 GPR9..... 8####### GPR1#.... ###7747# GPR11.... ###F749#
 GPR12.... ###6A52# GPR13.... ###773C8 GPR14.... 8##6#712 GPR15.... 853F7918
 FPR#..... 4D###### ###43C31 FPR2..... ######## ########
 FPR4..... ######## ######## FPR6..... ######## ########

...

 Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
###6B#18 CEEHDSP ###1A5B8 +####1A18 CEEHDSP ###1A5B8 +####1A18 CEEPLPKA Call
###75278 #45##618 -#45##616 funca #45##618 -#45##616 Exception
###751D8 #45##558 +######68 main #45##558 +######68 Call
###75#C8 #46ABBAE +######B# @@MNINV #46ABBAE +######B# CEEEV##3 Call
###75#18 CEEBBEXT ####7768 +#####138 CEEBBEXT ####7768 +#####138 CEEBINIT Call

Condition Information for Active Routines
Condition Information for (DSA address ###75278)
CIB Address: ###6B3C8

 Current Condition:
CEE#198S The termination of a thread was signalled.

 Original Condition:
CEE32�1S The system detected an operation exception (System Completion Code=�C1).

 Location:
Program Unit: Entry: funca Statement: Offset: -#45##616

 Machine State:
ILC..... ###2 Interruption Code..... ###1
PSW..... �78D���� 8������4

 GPR#..... ###753#8 GPR1..... ###7527# GPR2..... ###75278 GPR3..... 845##666
 GPR4..... #46E5618 GPR5..... #46E562# GPR6..... ###75268 GPR7..... ########
 GPR8..... #45##698 GPR9..... 8####### GPR1#.... 846ABBA2 GPR11.... 8###7768
 GPR12.... ###6852# GPR13.... ###75278 GPR14.... 845##68# GPR15.... ########

...

Parameters, Registers, and Variables for Active Routines:
CEEHDSP (DSA address ###6B#18):

 Saved Registers:
 GPR#..... ###1BE62 GPR1..... ###6B32C GPR2..... #######3 GPR3..... ###6BEC8
 GPR4..... ######## GPR5..... ###5D8C# GPR6..... ###1C8BB GPR7..... #######3
 GPR8..... #######1 GPR9..... ###1C5B6 GPR1#.... ###1B5B7 GPR11.... ###1A5B8
 GPR12.... ###6852# GPR13.... ###6B#18 GPR14.... 8##5E712 GPR15.... 846FC918

...
funca (DSA address ###75278):
 Saved Registers:
 GPR#..... ###753#8 GPR1..... ###7527# GPR2..... ###75278 GPR3..... 845##666
 GPR4..... #46E5618 GPR5..... #46E562# GPR6..... ###75268 GPR7..... ########
 GPR8..... #45##698 GPR9..... 8####### GPR1#.... 846ABBA2 GPR11.... 8###7768
 GPR12.... ###6852# GPR13.... ###75278 GPR14.... 845##68# GPR15.... ########

...

Figure 57. Sections of the Dump from Example C Routine

2. Find the branch instructions for funca in the listing in Figure 58 on page 174.
Notice the BALR r14,r15 instruction at offset X'126'. This branch is part of the
instruction.

 Chapter 4. Debugging C/C++ Routines 173

####C# 92 funca DS #F
...

 ###1#C #53# 1#7 BALR r3,r#
 ###1#E End of Prolog
###1#E 584# C1F4 1#9 L r4,5##(,r12)
###112 5#1# D#88 11# ST r1,136(,r13)
 C return;
 C }
 C

###16 | C void funca(int Caa) {
###17 | C Caa = func_ptr();

###116 587# D#88 116 L r7,136(,r13)
###11A 586# 7### 117 L r6,#(,r7)
###11E 587# CCCC 118 L r7,=Q(func_ptr)
###122 58F4 7### 119 L r15,#(r4,r7)
 ���126 �5EF 12� BALR r14,r15
###128 5#F# 6### 125 ST r15,#(,r6)
...

Figure 58. Pseudo Assembly Listing

3. Find the offset of FUNC@PTR in the Writable Static Map, shown in Figure 59, as
produced by the prelinker.

...
==
| Writable Static Map |
==

 OFFSET LENGTH FILE ID INPUT NAME

� 4 ����1 FUNC@PTR
8 18 ####1 @STATIC

...

Figure 59. Writable Static Map

4. Add the offset of FUNC@PTR (X'0') to the address of WSA (X'46E5618'). The
result (X'46E5618') is the address of the function pointer func_ptr in the writ-
able static storage area within the heap. This value is 0, indicating the variable
is uninitialized.

Figure 60 shows the sections of the dump.

Enclave Control Blocks:

...
WSA address................. �46E5618

...
 Enclave Storage:

Initial (User) Heap: #46E4###
...

+##16## #46E56## C#5FA15A 7B4F5B7C 79###### ######## #46E4### ######28 �������� ######## |.⅛.!#|$@.........>|
+##162# #46E562# 9985A2A4 93A34#96 864#86A4 9583814# 7E4#6C84 15###### ######## ######## |result of funca = %d............|
+##164# #46E564# ######## ######## #46E4### ######1# ######## 8##54152 #46E4### ######18 |.........>>|
+##166# #46E566# ######## ######## ######## ######## #46E5638 ######## ######1# ######## |.................>..............|
+##168# #46E568# ######## ######## ######## ######## ######## ######## ######## ######## |................................|

...

Figure 60. Enclave Control Blocks and Storage sections in Dump

174 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

| Calling a Nonexistent XPLINK Function
| Figure 61 demonstrates the error of calling a nonexistent function. This routine was
| compiled with the compiler options XPLINK, LIST and RENT and was run with the
| option TERMTHDACT(DUMP).

| This routine was not compiled with the TEST(ALL) compile option. As a result,
| arguments and variables do not appear in the dump.

| #include <stdio.h>
| #include <stdlib.h>
| #include <errno.h>
| #include <signal.h>
| void funca(intC aa);
| int (Cfunc_ptr)(void)=#;
| int main(void) {
| int aa;
| funca(&aa);
| printf("result of funca = %d\n",aa);
| return;
| }
| void funca(intC aa) {
| Caa = func_ptr();
| return;
| }

| Figure 61. C/C++ Example of Calling a Nonexistent Subroutine

| To debug this routine, use the following steps:

| 1. Locate the Current Condition message in the Condition Information for Active
| Routines section of the dump, shown in Figure 62 on page 176. In this
| example, the message is CEE32#1S The system detected an operation
| exception (System Completion Code=#C1). This message suggests that the
| error was caused by an attempt to branch to an unknown address. See
| Chapter 9, “Language Environment Run-Time Messages” on page 265 for
| additional information about CEE3201S.

| The traceback section of the dump indicates that the exception occurred at
| offset X'-23B553DE7' within function funca. The negative offset indicates that
| the offset cannot be used to locate the instruction that caused the error.
| Another indication of bad data is the value of X'80000004' in the instruction
| address of the PSW. This address indicates that an instruction in the routine
| branched outside the bounds of the routine.

 Chapter 4. Debugging C/C++ Routines 175

| Information for enclave main

| Information for thread 8###############

| Traceback:
| DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
| 241694E8 CEEHDSPR 23D7D3F8 +####38DA CEEHDSPR 23D7D3F8 +####38DA CEEPLPKA Call
| 24169338 CEEHRNUH 23E78#28 +######82 CEEHRNUH 23E78#28 +######82 CEEPLPKA Call
| 242#962# 23B553E# -23B553DE funca 23B553E# -23B553DE XEXIST Exception
| 242#96A# 23B55358 +######12 main 23B55358 +######12 XEXIST Call
| 242#972# 23E7AD1# +#####9A4 CEEVROND 23E7AD68 +#####94C CEEPLPKA Call
| 24169#E# EDCZHINV 2413BFC# +######9A EDCZHINV 2413BFC# +######9A CELHV##3 Call
| 24169#18 CEEBBEXT ###7338# +#####1A6 CEEBBEXT ###7338# +#####1A6 CEEBINIT Call

| Condition Information for Active Routines
| Condition Information for (DSA address 242#962#)
| CIB Address: 24169D#8
| Current Condition:
| CEE#198S The termination of a thread was signaled due to an unhandled condition.
| Original Condition:
| CEE32�1S The system detected an operation exception (System Completion Code=�C1).

| Location:
| Program Unit: Entry: funca Statement: Offset: -23B553DE
| Machine State:
| ILC..... ###2 Interruption Code..... ###1
| PSW..... �78D23�� 8������4
| GPR#..... 23C7BFC# GPR1..... 242#9F## GPR2..... 24169128 GPR3..... 2416912C
| GPR4..... 242#962# GPR5..... ##FCD178 GPR6..... ######## GPR7..... A3B553FE
| GPR8..... A3B55362 GPR9..... 23E7BD#F GPR1#.... ######## GPR11.... A3E7AD1#
| GPR12.... ###7FAC# GPR13.... 241691B8 GPR14.... 23E7AD68 GPR15.... ########
| Storage dump near condition, beginning at location: ########
| +###### ######## Inaccessible storage.

| Information for enclave main

| Information for thread 8###############

| Traceback:
| DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
| 241694E8 CEEHDSPR 23D7D3F8 +####38DA CEEHDSPR 23D7D3F8 +####38DA CEEPLPKA Call
| 24169338 CEEHRNUH 23E78#28 +######82 CEEHRNUH 23E78#28 +######82 CEEPLPKA Call
| 242#962# 23B553E# -23B553DE funca 23B553E# -23B553DE XEXIST Exception
| 242#96A# 23B55358 +######12 main 23B55358 +######12 XEXIST Call
| 242#972# 23E7AD1# +#####9A4 CEEVROND 23E7AD68 +#####94C CEEPLPKA Call
| 24169#E# EDCZHINV 2413BFC# +######9A EDCZHINV 2413BFC# +######9A CELHV##3 Call
| 24169#18 CEEBBEXT ###7338# +#####1A6 CEEBBEXT ###7338# +#####1A6 CEEBINIT Call

| Condition Information for Active Routines
| Condition Information for (DSA address 242#962#)
| CIB Address: 24169D#8
| Current Condition:
| CEE#198S The termination of a thread was signaled due to an unhandled condition.
| Original Condition:
| CEE32#1S The system detected an operation exception (System Completion Code=#C1).

| Location:
| Program Unit: Entry: funca Statement: Offset: -23B553DE
| Machine State:
| ILC..... ###2 Interruption Code..... ###1
| PSW..... #78D23## 8######4
| GPR#..... 23C7BFC# GPR1..... 242#9F## GPR2..... 24169128 GPR3..... 2416912C
| GPR4..... 242#962# GPR5..... ##FCD178 GPR6..... ######## GPR7..... A3B553FE
| GPR8..... A3B55362 GPR9..... 23E7BD#F GPR1#.... ######## GPR11.... A3E7AD1#
| GPR12.... ###7FAC# GPR13.... 241691B8 GPR14.... 23E7AD68 GPR15.... ########
| Storage dump near condition, beginning at location: ########
| +###### ######## Inaccessible storage.

| Figure 62 (Part 1 of 2). Sections of the Dump from Example C Routine

176 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

| Parameters, Registers, and Variables for Active Routines:
| CEEHDSPR (DSA address 241694E8):
| UPSTACK DSA
| Saved Registers:
| GPR#..... 23C7BFC# GPR1..... 241699#4 GPR2..... 2416AF4# GPR3..... #######3
| GPR4..... 23CA7D2# GPR5..... #######2 GPR6..... 23CB29D# GPR7..... ########
| GPR8..... A3D8#A78 GPR9..... 2416A4E7 GPR1#.... 23D817FC GPR11.... 23D7D3F8
| GPR12.... ###7FAC# GPR13.... 241694E8 GPR14.... A3D8#CD4 GPR15.... A3D615D8
| FPR8..... CCCCCCCC CCCCCCCC FPR9..... CCCCCCCC CCCCCCCC
| FPR1#.... CCCCCCCC CCCCCCCC FPR11.... CCCCCCCC CCCCCCCC
| FPR12.... CCCCCCCC CCCCCCCC FPR13.... CCCCCCCC CCCCCCCC
| FPR14.... CCCCCCCC CCCCCCCC FPR15.... CCCCCCCC CCCCCCCC

| .
| .
| .

| CEEHRNUH (DSA address 24169338):
| TRANSITION DSA
| Saved Registers:
| GPR#..... 23C7BFC# GPR1..... ######## GPR2..... 23CB1CA# GPR3..... 23CB1D38
| GPR4..... 242#962# GPR5..... 24169338 GPR6..... 23CB29D# GPR7..... 242#962#
| GPR8..... 94#C1### GPR9..... ######## GPR1#.... 23CB1D2# GPR11.... 23E78#28
| GPR12.... ###7FAC# GPR13.... 24169338 GPR14.... A3E78#AC GPR15.... 23D7D3F8
| FPR8..... CCCCCCCC CCCCCCCC FPR9..... CCCCCCCC CCCCCCCC
| FPR1#.... CCCCCCCC CCCCCCCC FPR11.... CCCCCCCC CCCCCCCC
| FPR12.... CCCCCCCC CCCCCCCC FPR13.... CCCCCCCC CCCCCCCC
| FPR14.... CCCCCCCC CCCCCCCC FPR15.... CCCCCCCC CCCCCCCC

| .
| .
| .

| funca (DSA address 242#962#):
| DOWNSTACK DSA
| Saved Registers:
| GPR#..... 23C7BFC# GPR1..... 242#9F## GPR2..... 24169128 GPR3..... 2416912C
| GPR4..... 242#962# GPR5..... ##FCD178 GPR6..... ######## GPR7..... A3B553FE
| GPR8..... A3B55362 GPR9..... 23E7BD#F GPR1#.... ######## GPR11.... A3E7AD1#
| GPR12.... ###7FAC# GPR13.... 241691B8 GPR14.... 23E7AD68 GPR15.... ########
| FPR8..... CCCCCCCC CCCCCCCC FPR9..... CCCCCCCC CCCCCCCC
| FPR1#.... CCCCCCCC CCCCCCCC FPR11.... CCCCCCCC CCCCCCCC
| FPR12.... CCCCCCCC CCCCCCCC FPR13.... CCCCCCCC CCCCCCCC
| FPR14.... CCCCCCCC CCCCCCCC FPR15.... CCCCCCCC CCCCCCCC

| Figure 62 (Part 2 of 2). Sections of the Dump from Example C Routine

| 2. Find the branch instructions for funca in the listing in Figure 63 on page 178.
| Notice the BASR r7,r6 instruction at offset X'001C'. This branch is part of the
| instruction.

 Chapter 4. Debugging C/C++ Routines 177

| ###15 C void funca(intC aa) {| .| .| .
| ####2# @2L# DS #D
| ####2# ##C3##C5 =F'12779717' XPLink entrypoint marker
| ####24 ##C5##F1 =F'1291#833'
| ####28 FFFFFFE# =F'-32'
| ####2C ######8# =F'128'
| ###### ###15 funca DS #D
| ###### 9#57 4784 ###15 STM r5,r7,1924(r4)
| #####4 A74A FF8# ###15 AHI r4,H'-128'
| #####8 End of Prolog

| #####8 5#1# 48C# ###15 ST r1,aa(,r4,224#)
| ###16 C Caa = func_ptr();
| #####C 586# 48#4 ###16 L r6,#Save_ADA_Ptr_2(,r4,2#52)
| ####1# 586# 6#18 ###16 L r6,=A(func_ptr)(,r6,24)
| ####14 586# 6### ###16 L r6,func_ptr(,r6,#)
| ####18 9856 6#1# ###16 LM r5,r6,&ADA_&EPA(r6,16)
| ����1C �D76 ���16 BASR r7,r6
| ####1E 47## ###4 ###16 NOP 4
| ####22 18#3 ###16 LR r#,r3
| ####24 586# 48C# ###16 L r6,aa(,r4,224#)
| ####28 5### 6### ###16 ST r#,(C)int(,r6,#)
| ###17 C return;
| ###18 C }
| ####2C ###18 @2L3 DS #H

| ####2C Start of Epilog
| ####2C 587# 48#C ###18 L r7,2#6#(,r4)
| ####3# 414# 4#8# ###18 LA r4,128(,r4)
| ####34 #7F7 ###18 BR r7| .| .| .

| Figure 63. Pseudo Assembly Listing

| 3. Find the offset of func_ptr in the Writable Static Map, shown in Figure 64.

| .| .| .
| ---------------
| CLASS C_WSA LENGTH = 3C ATTRIBUTES = MRG, DEFER , RMODE=ANY
OFFSET = # IN SEGMENT ##2 ALIGN = DBLWORD

| CLASS
| OFFSET NAME TYPE LENGTH SECTION

| # $PRIV####11 PART 1#
| 1# exist PART 28 EXIST
| 38 func_ptr PART 4 func_ptr

| .| .| .

| Figure 64. Writable Static Map

| 4. Add the offset of func_ptr (X'38') to the address of WSA (X'23C7BFC0').
| The result (X'23C7BFF8') is the address of the function pointer func_ptr in
| the writable static storage area within the heap. This value is 0, indicating the
| variable is uninitialized.

| Figure 65 on page 179 shows the sections of the dump.

178 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

| Enclave Control Blocks:| .| .| .
| DLL Information:
| WSA Addr Module Addr Thread ID Use Count Name
| 23C7BFC# #######1 main

| WSA address.................23C7BFC�

| .| .| .

| Enclave Storage:

| .| .| .

| WSA for Program Object(s)
| WSA: 23C7BFC�
| +###### 23C7BFC# C36DE6E2 C14#4#4# 4#4#4#4# 4#4#4#4# 9985A2A4 93A34#96 864#86A4 9583814# C_WSA result of funca
| +####2# 23C7BFE# 7E4#6C84 15###### 23C7BFF8 ######## ######6# 23EA78A# �������� ######## =%d.....G.8.......-......>......

| .| .| .

| Figure 65. Enclave Control Blocks and Storage sections in Dump

Handling Dumps Written to the OS/390 UNIX File System
When an OS/390 UNIX C application program is running in an address space
created as a result of a call to spawnp(), vfork, or one of the exec family of func-
tions, the SYSMDUMP DD allocation information is not inherited. Even though the
SYSMDUMP allocation is not inherited, a SYSMDUMP allocation must exist in the
parent in order to obtain a HFS core dump. If the program terminates abnormally
while running in this new address space, the kernel causes an unformatted core
dump to be written to an HFS file in the user's working directory or a VM/ESA BFS
file. The file is placed in the current working directory or into /tmp if the current
working directory is not defined. The file name has the following format:

/directory/coredump.pid

where directory is the current working directory or tmp, and pid is the hexadecimal
process ID (PID) for the process that terminated. See “Generating a System Dump
in an OS/390 UNIX Shell” on page 78 for details on how to generate the system
dump.

To debug the dump, use the MVS Interactive Problem Control System (IPCS). If
the dump was written to an HFS file, you must allocate an OS/390 data set that is
large enough and has the correct attributes for receiving a copy of the HFS file. For
example, from the ISPF DATA SET UTILITY panel you can specify a volume serial
and data set name to allocate. Doing so brings up the DATA SET INFORMATION
panel for specifying characteristics of the data set to be allocated. The following
filled-in panel shows the characteristics defined for the
URCOMP.JRUSL.COREDUMP dump data set:

 Chapter 4. Debugging C/C++ Routines 179

d e
-------------------------- DATA SET INFORMATION ----------------------
Command ===>

Data Set Name . . . : URCOMP.JRUSL.COREDUMP

General Data Current Allocation
 Management class . . : STANDARD Allocated cylinders : 3#
 Storage class . . . : OS39# Allocated extents . : 1
Volume serial . . . : DPXDU1
Device type : 338#

 Data class :
 Organization . . . : PS Current Utilization

Record format . . . : FB Used cylinders. . . : #
Record length . . . : 416# Used extents . . . : #
Block size : 416#
1st extent cylinders: 3#
Secondary cylinders : 1#
Data set name type :

Creation date . . . : 1997/#9/18
Expiration date . . : CCCNoneCCC

F1=Help F2=Split F3=End F4=Return F5=Rfind F6=Rchange
F7=Up F8=Down F9=Swap F1#=Left F11=Right F12=Cancel

f g

Fill in the information for your data set as shown, and estimate the number of cylin-
ders required for the dump file you are going to copy.

Use the TSO/E OGET or OCOPY command with the BINARY keyword to copy the
file into the data set. For example, to copy the HFS core dump file
coredump.###6###7 into the OS/390 data set URCOMP.JRUSL.COREDUMP just
allocated, a user with the user ID URCOMP enters the following command:

OGET '/u/urcomp/coredump.###6###7' 'urcomp.jrusl.coredump' BINARY

See OS/390 UNIX System Services User's Guide for more information on using the
copy commands.

After you have copied the core dump file to the data set, you can use IPCS to
analyze the dump. Refer to “Formatting and Analyzing System Dumps on OS/390”
on page 78 for information about formatting Language Environment control blocks.

 Multithreading Consideration
Certain control blocks are locked while a dump is in progress. For example, a
csnap() of the file control block would prevent another thread from using or
dumping the same information. An attempt to do so causes the second thread to
wait until the first one completes before it can continue.

Understanding C/C++ Heap Information in Storage Reports
Storage reports that contain specific C/C++ heap information can be generated in
two ways:

� By setting the Language Environment RPTSTG(ON) run-time option for Lan-
guage Environment created heaps

180 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

� By issuing a stand-alone call to the C function, __uheapreport() for
user–created heaps.

Details on how to request and interpret the reports are provided in the following
sections.

Language Environment Storage Report with HeapPools Statistics
To request a Language Environment storage report set RPTSTG(ON). If the C/C++
application specified the HEAPPOOLS(ON) run-time option, then the storage report
displays HeapPools statistics. See Figure 66 for a sample storage report showing
HeapPools statistics for a multithreaded C/C++ application.

Immediately following the report, the C/C++ specific heap pool information is
described.

| Storage Report for Enclave main #5/24/## 4:16:17 PM
| Language Environment V#2 R1#.##

| STACK statistics:
| Initial size: 4#96
| Increment size: 4#96
| Maximum used by all concurrent threads: 3#32
| Largest used by any thread: 3#32
| Number of segments allocated: 1
| Number of segments freed: #
| THREADSTACK statistics:
| Initial size: 4#96
| Increment size: 4#96
| Maximum used by all concurrent threads: 6688
| Largest used by any thread: 2464
| Number of segments allocated: 6
| Number of segments freed: #
| XPLINK STACK statistics:
| Initial size: 524288
| Increment size: 131#72
| Largest used by any thread: 4736
| Number of segments allocated: 1
| Number of segments freed: #
| XPLINK THREADSTACK statistics:
| Initial size: 131#72
| Increment size: 131#72
| Largest used by any thread: 2976
| Number of segments allocated: 6
| Number of segments freed: #
| LIBSTACK statistics:
| Initial size: 4#96
| Increment size: 4#96
| Maximum used by all concurrent threads: 816
| Largest used by any thread: 816
| Number of segments allocated: 1
| Number of segments freed: #
| THREADHEAP statistics:
| Initial size: 4#96
| Increment size: 4#96
| Maximum used by all concurrent threads: #
| Largest used by any thread: #
| Successful Get Heap requests: #
| Successful Free Heap requests: #
| Number of segments allocated: #
| Number of segments freed: #
| HEAP statistics:
| Initial size: 32768
| Increment size: 32768
| Total heap storage used (sugg. initial size): 5#3#4
| Successful Get Heap requests: 31
| Successful Free Heap requests: 13
| Number of segments allocated: 2
| Number of segments freed: #
| HEAP24 statistics:
| Initial size: 8192
| Increment size: 4#96
| Total heap storage used (sugg. initial size): #
| Successful Get Heap requests: #
| Successful Free Heap requests: #
| Number of segments allocated: #
| Number of segments freed: #

| Figure 66 (Part 1 of 3). Language Environment Storage Report with HeapPools Statistics

 Chapter 4. Debugging C/C++ Routines 181

| ANYHEAP statistics:
| Initial size: 16384
| Increment size: 8192
| Total heap storage used (sugg. initial size): 1#6776
| Successful Get Heap requests: 41
| Successful Free Heap requests: 2#
| Number of segments allocated: 8
| Number of segments freed: 7
| BELOWHEAP statistics:
| Initial size: 8192
| Increment size: 4#96
| Total heap storage used (sugg. initial size): 34512
| Successful Get Heap requests: 6
| Successful Free Heap requests: 6
| Number of segments allocated: 6
| Number of segments freed: 5
| Additional Heap statistics:
| Successful Create Heap requests: 1
| Successful Discard Heap requests: 1
| Total heap storage used: 4912
| Successful Get Heap requests: 3
| Successful Free Heap requests: 3
| Number of segments allocated: 2
| Number of segments freed: 2
| HeapPools Statistics:
| Pool 1 size: 8
| Successful Get Heap requests: 1- 8 8
| Pool 2 size: 32
| Successful Get Heap requests: 9- 16 3
| Successful Get Heap requests: 17- 24 5
| Successful Get Heap requests: 25- 32 3
| Pool 3 size: 128
| Successful Get Heap requests: 33- 4# 3
| Successful Get Heap requests: 41- 48 3
| Successful Get Heap requests: 49- 56 3
| Successful Get Heap requests: 57- 64 4
| Successful Get Heap requests: 65- 72 3
| Successful Get Heap requests: 73- 8# 4
| Successful Get Heap requests: 81- 88 5
| Successful Get Heap requests: 89- 96 4
| Successful Get Heap requests: 97- 1#4 4
| Successful Get Heap requests: 113- 12# 5
| Successful Get Heap requests: 121- 128 4
| Pool 4 size: 256
| Successful Get Heap requests: 129- 136 6
| Successful Get Heap requests: 137- 144 3
| Successful Get Heap requests: 145- 152 4
| Successful Get Heap requests: 153- 16# 2
| Successful Get Heap requests: 161- 168 8
| Successful Get Heap requests: 169- 176 5
| Successful Get Heap requests: 177- 184 4
| Successful Get Heap requests: 185- 192 6
| Successful Get Heap requests: 193- 2## 3
| Successful Get Heap requests: 2#1- 2#8 4
| Successful Get Heap requests: 2#9- 216 2
| Successful Get Heap requests: 217- 224 3
| Successful Get Heap requests: 225- 232 4
| Successful Get Heap requests: 233- 24# 2
| Successful Get Heap requests: 241- 248 2
| Successful Get Heap requests: 249- 256 1

| Figure 66 (Part 2 of 3). Language Environment Storage Report with HeapPools Statistics

182 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

| Pool 5 size: 1#24
| Successful Get Heap requests: 257- 264 5
| Successful Get Heap requests: 265- 272 1
| Successful Get Heap requests: 273- 28# 2
| Successful Get Heap requests: 281- 288 2
| Successful Get Heap requests: 289- 296 2
| Successful Get Heap requests: 3#5- 312 6
| Successful Get Heap requests: 313- 32# 5
| Successful Get Heap requests: 321- 328 4
| Successful Get Heap requests: 329- 336 2
| Successful Get Heap requests: 337- 344 3
| Successful Get Heap requests: 353- 36# 2
| Successful Get Heap requests: 361- 368 4
| Successful Get Heap requests: 369- 376 5
| Successful Get Heap requests: 377- 384 2
| Successful Get Heap requests: 385- 392 2
| Successful Get Heap requests: 393- 4## 2
| Successful Get Heap requests: 4#1- 4#8 5
| Successful Get Heap requests: 4#9- 416 3
| Successful Get Heap requests: 417- 424 2
| Successful Get Heap requests: 425- 432 1
| Successful Get Heap requests: 433- 44# 2
| Successful Get Heap requests: 441- 448 4
| Successful Get Heap requests: 457- 464 1
| Successful Get Heap requests: 465- 472 1
| Successful Get Heap requests: 473- 48# 2
| Successful Get Heap requests: 481- 488 1
| Successful Get Heap requests: 489- 496 2
| Successful Get Heap requests: 497- 5#4 5
| Successful Get Heap requests: 5#5- 512 2
| Successful Get Heap requests: 545- 552 1
| Successful Get Heap requests: 577- 584 1
| Successful Get Heap requests: 641- 648 2
| Successful Get Heap requests: 825- 832 1
| Successful Get Heap requests: 913- 92# 1
| Pool 6 size: 2#48
| Successful Get Heap requests: 1169-1176 1
| Successful Get Heap requests: 1185-1192 1
| Successful Get Heap requests: 1217-1224 2
| Successful Get Heap requests: 1257-1264 1
| Successful Get Heap requests: 1377-1384 1
| Successful Get Heap requests: 14#1-14#8 1
| Successful Get Heap requests: 1521-1528 1
| Successful Get Heap requests: 1537-1544 1
| Successful Get Heap requests: 1545-1552 1
| Successful Get Heap requests: 1569-1576 1
| Successful Get Heap requests: 1665-1672 1
| Successful Get Heap requests: 1761-1768 1
| Successful Get Heap requests: 1785-1792 1
| Successful Get Heap requests: 1929-1936 1
| Successful Get Heap requests: 1937-1944 1
| Successful Get Heap requests: 1953-196# 1
| Requests greater than the largest cell size: 19
| HeapPools Summary:
| Cell Extent Cells Per Extents Maximum Cells In
Size Percent Extent Allocated Cells Used Use
8 1# 2#4 1 3 #
32 1# 81 1 3 1
128 1# 24 1 7 4
256 1# 12 1 1# 4
1#24 1# 3 5 13 12
2#48 1# 1 3 3 2
--
Suggested Percentages for current Cell Sizes:
HEAPP(ON,8,1,32,1,128,3,256,9,1#24,41,2#48,19)
Suggested Cell Sizes:
HEAPP(ON,1#4,,2#8,,376,,512,,1264,,196#,)
Largest number of threads concurrently active: 4
End of Storage Report

| Figure 66 (Part 3 of 3). Language Environment Storage Report with HeapPools Statistics

HeapPools Storage Statistics
The HEAPPOOLS run-time option controls usage of the heap pools storage algo-
rithm at the enclave level. The heap pools algorithm allows for the definition of one
to six heap pools, each consisting of a number of storage cells of a specified
length.

 HeapPools Statistics

� Pool p size: ssss

– p — the number of the pool

 Chapter 4. Debugging C/C++ Routines 183

– ssss — the cell size specified for the pool.

� Successful Get Heap requests: xxxx-yyyy n

– xxxx — the low side of the 8 byte range
– yyyy — the high side of the 8 byte range
– n — the number of requests in the 8 byte range.

� Requests greater than the largest cell size — the number of storage requests
that are not satisfied by heap pools.

Note: Values displayed in the HeapPools Statistics report are not serialized when
collected, therefore the values are not necessarily exact.

HeapPools Summary: The HeapPools Summary displays a report of the
HeapPool Statistics and provides suggested percentages for current cell sizes as
well as suggested cell sizes.

� Cell Size — the size of the cell specified in the HEAPPOOLS run-time option

� Extent Percent — the cell pool percent specified by the HEAPPOOLS run-time
option

� Cells Per Extent — the number of cells per extent. This number is calculated
using the following formula:

Initial Heap Size C (Extent Percent/1##))/(8 + Cell Size)

with a minimum of one cell.

Note: Having only one cell per extent is not recommended since the pool
could allocate many extents, which would cause the HeapPool algorithm
to perform inefficiently.

� Extents Allocated — the number of times that each pool allocated an extent.

In order to optimize storage usage, the extents allocated should be either one
or two. If the number of extents allocated is too high, then increase the per-
centage for the pool.

� Maximum Cells Used — the maximum number of cells used for each pool.

� Cells In Use — the number of cells that were never freed.

Note: A large number in this field could indicate a storage leak.

� Suggested Percentages for current Cell Sizes — percentages calculated to find
the optimal size of the cell pool extent. The calculation is based on the fol-
lowing formula:

(Maximum Cells Used C (Cell Size + 8) C 1##) / Initial Heap Size
With a minimum of 1% and a maximum of 9#%

Make sure that your cell pool extents are neither too large nor too small. If
your percentages are too large then additional, unreferenced virtual storage will
be allocated, thereby causing the program to exhaust the region size. If the
percentages are too small (only one cell per extent — the worst case scenario)
then the HeapPools algorithm will run inefficiently.

� Suggested Cell Sizes — sizes that are calculated to optimally use storage
(assuming that the application will malloc/free with the same frequency).

184 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Note: The suggested cell sizes are given with no percentages because the
usage of each new cell pool size is not known. If there are less than 6
pool sizes calculated then the last pool will be set at 2048.

See OS/390 Language Environment Programming Guide for more information
about stack and heap storage.

C Function, __uheapreport, Storage Report
To generate a user-created heap storage report use the C function,
__uheapreport(). Use the information in the report to assist with tuning your applica-
tion's use of the user-created heap. See “HeapPools Storage Statistics” on
page 183 for a description of the information contained in the report.

For more information on the __uheapreport() function, see OS/390 C/C++ Run-
Time Library Reference. For tuning tips, see OS/390 Language Environment Pro-
gramming Guide.

A sample storage report generated by __uheapreport() is shown in Figure 67.

Storage Report for Enclave #3/17/99 11:42:23 AM
Language Environment V2 R8.#

 HeapPools Statistics:
Pool 1 size: 32
Successful Get Heap requests: 1- 32 1125#

Pool 2 size: 128
Successful Get Heap requests: 97- 128 33#6

Pool 3 size: 512
Successful Get Heap requests: 481- 512 864

Pool 4 size: 2#48
Successful Get Heap requests: 2#17- 2#48 216

Pool 5 size: 8192
Successful Get Heap requests: 8161- 8192 54

Pool 6 size: 16384
Successful Get Heap requests: 16353-16384 27

Requests greater than the largest cell size: #
 HeapPools Summary:
 Cell Extent Cells Per Extents Maximum Cells In

Size Percent Extent Allocated Cells Used Use
 --
 32 15 375# 1 375# #
 128 15 11#2 1 11#2 #
 512 15 288 1 288 #
 2#48 15 72 1 72 #
 8192 15 18 1 18 #

16384 15 9 1 9 #
 --

Suggested Percentages for current Cell Sizes:
 32,15,128,15,512,15,2#48,15,8192,15,16384,15

Suggested Cell Sizes:
 32,,128,,512,,2#48,,8192,,16384,
End of Storage Report

Figure 67. storage report generated by __uheapreport()

 Chapter 4. Debugging C/C++ Routines 185

186 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Chapter 5. Debugging COBOL Programs

This chapter provides information for debugging applications that contain one or
more COBOL programs. It includes information about:

� Determining the source of error
� Generating COBOL listings and the Language Environment dump
� Finding COBOL information in a dump
� Debugging example COBOL programs

Determining the Source of Error
The following sections describe how you can determine the source of error in your
COBOL program. They explain how to simplify the process of debugging COBOL
programs by using features such as the DISPLAY statement, declaratives, and file
status keys. The following methods for determining errors are covered:

� Tracing program logic
� Finding and handling input/output errors

 � Validating data
� Assessing switch problems
� Generating information about procedures

After you have located and fixed any problems in your program, you should delete
all debugging aids and recompile it before running it in production. Doing so helps
the program run more efficiently and use less storage.

Tracing Program Logic
You can add DISPLAY statements to help you trace through the logic of the
program in a non-CICS environment. If, for example, you determine that the
problem appears in an EVALUATE statement or in a set of nested IF statements,
DISPLAY statements in each path tell you how the logic flows. You can also use
DISPLAY statements to show you the value of interim results.

For example, to check logic flow, you might insert:

DISPLAY "ENTER CHECK PROCEDURE".
 .

. (checking procedure routine)
 .
DISPLAY "FINISHED CHECK PROCEDURE".

to determine whether you started and finished a particular procedure. After you are
sure that the program works correctly, comment out the DISPLAY statement lines
by putting asterisks in position 7 of the appropriate lines. See COBOL Language
Reference for a detailed description of the DISPLAY statement.

Scope terminators can also help you trace the logic of your program because they
clearly indicate the end of a statement. See COBOL for OS/390 & VM Program-
ming Guide or COBOL for MVS & VM Programming Guide for a detailed
description of scope terminators.

 Copyright IBM Corp. 1991, 2000 187

Finding Input/Output Errors
VSAM file status keys can help you determine whether routine errors are due to the
logic of your routine or are I/O errors occurring on the storage media.

To use file status keys as a debugging aid, include a test after each I/O statement
to check for a value other than 0 in the file status key. If the value is other than 0,
you can expect to receive an error message. You can use a nonzero value to indi-
cate how the I/O procedures in the routine were coded. You can also include pro-
cedures to correct the error based on the file status key value.

The file status key values and their associated meanings are described in COBOL
Language Reference.

Handling Input/Output Errors
If you have determined that the problem lies in one of the I/O procedures in your
program, you can include the USE EXCEPTION/ERROR declarative to help debug
the problem. If the file does not open, the appropriate USE EXCEPTION/ERROR
declarative is activated. You can specify the appropriate declarative for the file or
for the different open attributes—INPUT, OUTPUT, I/O, or EXTEND.

Code each USE AFTER STANDARD ERROR statement in a separate section
immediately after the Declarative Section keyword of the Procedure Division. See
the rules for coding such usage statements in COBOL Language Reference.

Validating Data (Class Test)
If you suspect that your program is trying to perform arithmetic on nonnumeric data
or is somehow receiving the wrong type of data on an input record, you can use
the class test to validate the type of data. See COBOL for OS/390 & VM Program-
ming Guide or COBOL for MVS & VM Programming Guide for a detailed discussion
of how to use the class test to check for incompatible data.

Assessing Switch Problems
Using INITIALIZE or SET statements to initialize a table or data item is useful when
you suspect that a problem is caused by residual data left in those fields. If your
problem occurs intermittently and not always with the same data, the problem could
be that a switch is not initialized, but is generally set to the right value (0 or 1). By
including a SET statement to ensure that the switch is initialized, you can determine
whether or not the uninitialized switch is the cause of the problem. See COBOL for
OS/390 & VM Programming Guide or COBOL for MVS & VM Programming Guide
for a detailed discussion of how to use the INITIALIZE and SET statements.

Generating Information about Procedures
You can use the USE FOR DEBUGGING declarative to include COBOL statements
in a COBOL program and specify when they should run. Use these statements to
generate information about your program and how it is running.

For example, to check how many times a procedure is run, include a special proce-
dure for debugging (in the USE FOR DEBUGGING declarative) that adds 1 to a
counter each time control passes to that procedure. The adding-to-a-counter tech-
nique can be used as a check for:

188 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

� How many times a PERFORM ran. This shows you whether the control flow
you are using is correct.

� How many times a loop routine actually runs. This tells you whether the loop is
running and whether the number you have used for the loop is accurate.

Code each USE FOR DEBUGGING declarative in a separate section in the
DECLARATIVES SECTION of the PROCEDURE DIVISION. See the rules for
coding them in COBOL Language Reference.

You can use debugging lines, debugging statements, or both in your program.
Debugging lines are placed in your program, and are identified by a D in position 7.
Debugging statements are coded in the DECLARATIVES SECTION of the PROCE-
DURE DIVISION.

� The USE FOR DEBUGGING declaratives must:

– Be only in the DECLARATIVES SECTION
– Follow a DECLARATIVES header USE FOR DEBUGGING

With USE FOR DEBUGGING, the TEST compiler option must have the NONE
hook-location suboption specified or the NOTEST compiler option must be
specified. The TEST compiler option and the DEBUG run-time option are mutu-
ally exclusive, with DEBUG taking precedence.

� Debugging lines must have a D in position 7 to identify them.

To use debugging lines and statements in your program, you must include both:

� WITH DEBUGGING MODE in the SOURCE-COMPUTER paragraph in the
ENVIRONMENT DIVISION

� The DEBUG run-time option

Figure 68 shows how to use the DISPLAY statement and the USE FOR DEBUG-
GING declarative to debug a program.

Environment Division
Source Computer . . . With Debugging Mode.

...
Data Division.

...
 File Section.

 Working-Storage Section.

 C(among other entries you would need:)

 #1 Trace-Msg PIC X(3#)
Value " Trace for Procedure-Name : ".

 #1 Total PIC 99 Value Zeros.

 C(balance of Working-Storage Section)

Figure 68 (Part 1 of 2). Example of Using the WITH DEBUGGING MODE Clause

 Chapter 5. Debugging COBOL Programs 189

Procedure Division.
Declaratives.
Debug-Declar Section.

Use For Debugging On 5#1-Some-Routine.
Debug-Declar-Paragraph.

Display Trace-Msg, Debug-Name, Total.
Debug-Declar-End.
 Exit.

End Declaratives.

Begin-Program Section.
...
 Perform 5#1-Some-Routine.

C(within the module where you want to test, place:)

Add 1 To Total

C (whether you put a period at the end depends on
C where you put this statement.)

Figure 68 (Part 2 of 2). Example of Using the WITH DEBUGGING MODE Clause

In the example in Figure 68 on page 189, portions of a program are shown to illus-
trate the kind of statements needed to use the USE FOR DEBUGGING declarative.
The DISPLAY statement specified in the DECLARATIVES SECTION issues the:

Trace For Procedure-Name : 5#1-Some-Routine nn

message every time the PERFORM 501-SOME-ROUTINE runs. The total shown,
nn, is the value accumulated in the data item named TOTAL.

Another use for the DISPLAY statement technique shown above is to show the flow
through your program. You do this by changing the USE FOR DEBUGGING declar-
ative in the DECLARATIVES SECTION to:

USE FOR DEBUGGING ON ALL PROCEDURES.

and dropping the word TOTAL from the DISPLAY statement.

Using COBOL Listings
When you are debugging, you can use one or more of the following listings:

� Sorted Cross-Reference listing
� Data Map listing
� Verb Cross-Reference listing
� Procedure Division Listings

This section gives an overview of each of these listings and specifies the compiler
option you use to obtain each listing. For a detailed description of available listings,
sample listings, and a complete description of COBOL compiler options, see
COBOL for OS/390 & VM Programming Guide or COBOL for MVS & VM Program-
ming Guide.

190 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Name Contents
Compiler
Option

Sorted Cross-Reference
Listings

Provides sorted cross-reference listings of DATA DIVISION,
PROCEDURE DIVISION, and program names. The listings
provide the location of all references to this information.

XREF

Data Map listing Provides information about the locations of all DATA DIVI-
SION items and all implicitly declared variables. This option
also supplies a nested program map, which indicates where
the programs are defined and provides program attribute
information.

MAP

Verb Cross-Reference listing Produces an alphabetic listing of all the verbs in your
program and indicates where each is referenced.

VBREF

Procedure Division listings Tells the COBOL compiler to generate a listing of the PRO-
CEDURE DIVISION along with the assembler coding
produced by the compiler. The list output includes the assem-
bler source code, a map of the task global table (TGT), infor-
mation about the location and size of WORKING-STORAGE
and control blocks, and information about the location of
literals and code for dynamic storage usage.

LIST

Procedure Division listings Instead of the full PROCEDURE DIVISION listing with
assembler expansion information, you can use the OFFSET
compiler option to get a condensed listing that provides infor-
mation about the program verb usage, global tables,
WORKING-STORAGE, and literals. The OFFSET option
takes precedence over the LIST option. That is, OFFSET and
LIST are mutually exclusive; if you specify both, only
OFFSET takes effect.

OFFSET

Generating a Language Environment Dump of a COBOL Program
The two sample programs shown in Figure 69 on page 192 and Figure 70 on
page 192 generate Language Environment dumps with COBOL-specific informa-
tion.

COBOL Program that Calls Another COBOL Program
In this example, program COBDUMP1 calls COBDUMP2, which in turn calls the
Language Environment dump service CEE3DMP.

 Chapter 5. Debugging COBOL Programs 191

 CBL TEST(STMT,SYM),RENT
 IDENTIFICATION DIVISION.
 PROGRAM-ID. COBDUMP1.

AUTHOR. USER NAME

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.
 #1 SOME-WORKINGSTG.

#5 SUB-LEVEL PIC X(8#).

 #1 SALARY-RECORDA.
 #2 NAMEA PIC X(1#).
 #2 DEPTA PIC 9(4).

#2 SALARYA PIC 9(6).

 PROCEDURE DIVISION.
 START-SEC.

DISPLAY "STARTING TEST COBDUMP1".
MOVE "THIS IS IN WORKING STORAGE" TO SUB-LEVEL.
CALL "COBDUMP2" USING SALARY-RECORDA.
DISPLAY "END OF TEST COBDUMP1"

 STOP RUN.
END PROGRAM COBDUMP1.

Figure 69. COBOL Program COBDUMP1 Calling COBDUMP2

COBOL Program that Calls the Language Environment CEE3DMP
Callable Service

In the example in Figure 70, program COBDUMP2 calls the Language Environment
dump service CEE3DMP.

 CBL TEST(STMT,SYM),RENT
 IDENTIFICATION DIVISION.
 PROGRAM-ID. COBDUMP2.

AUTHOR. USER NAME

 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.

SELECT OPTIONAL IOFSS1 ASSIGN AS-ESDS1DD
ORGANIZATION SEQUENTIAL ACCESS SEQUENTIAL.

Figure 70 (Part 1 of 2). COBOL Program COBDUMP2 Calling the Language Environment
Dump Service CEE3DMP

192 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 DATA DIVISION.
 FILE SECTION.
 FD IOFSS1 GLOBAL.

1 IOFSS1R PIC X(4#).

 WORKING-STORAGE SECTION.
 #1 TEMP4.

#5 A-1 OCCURS 2 TIMES.
1# A-2 OCCURS 2 TIMES.

15 A-3V PIC X(3).
 15 A-6 PIC X(3).

77 DMPTITLE PIC X(8#).
 77 OPTIONS PIC X(255).
 77 FC PIC X(12).

 LINKAGE SECTION.
 #1 SALARY-RECORD.
 #2 NAME PIC X(1#).
 #2 DEPT PIC 9(4).

#2 SALARY PIC 9(6).

PROCEDURE DIVISION USING SALARY-RECORD.
 START-SEC.

DISPLAY "STARTING TEST COBDUMP2"
MOVE "COBOL DUMP" TO DMPTITLE.
MOVE "XXX" TO A-6(1, 1).
MOVE "YYY" TO A-6(1, 2).
MOVE "ZZZ" TO A-6(2, 1).
MOVE " BLOCKS STORAGE PAGE(55) FILES" TO OPTIONS.
CALL "CEE3DMP" USING DMPTITLE, OPTIONS, FC.
DISPLAY "END OF TEST COBDUMP2"

 GOBACK.
END PROGRAM COBDUMP2.

Figure 70 (Part 2 of 2). COBOL Program COBDUMP2 Calling the Language Environment
Dump Service CEE3DMP

Sample Language Environment Dump with COBOL-Specific
Information

The call in program COBDUMP2 to CEE3DMP generates a Language Environment
dump, shown in Figure 71 on page 194. The dump includes a traceback section,
which shows the names of both programs; a section on register usage at the time
the dump was generated; and a variables section, which shows the storage and
data items for each program. Character fields in the dump are indicated by single
quotes. For an explanation of these sections of the dump, see “Finding COBOL
Information in a Dump” on page 196.

 Chapter 5. Debugging COBOL Programs 193

...
CEE3DMP V2 R9.#: COBOL DUMP 11/#4/99 11:49:15 AM Page: 1

CEE3DMP called by program unit COBDUMP2 at statement 4# (offset +#####43#).

Registers on Entry to CEE3DMP:

 PM....... ####
 GPR#..... #D41F838 GPR1..... ###27158 GPR2..... #D4232C8 GPR3..... #D3#23#2
 GPR4..... #D3#1FA# GPR5..... ###47#38 GPR6..... ######## GPR7..... ##FCAB##
 GPR8..... #D42316# GPR9..... #D41F7## GPR1#.... #D3#2#7# GPR11.... #D3#2234
 GPR12.... ###16A48 GPR13.... ###27#C# GPR14.... 8##1E#E2 GPR15.... 8D353858
 FPR#..... ######## ######## FPR2..... ######## ########
 FPR4..... ######## ######## FPR6..... ######## ########
 GPREG STORAGE:

Storage around GPR# (#D41F838)
-##2# #D41F818 ######## ######## ######## #D42311# #D42316# ######## #D423#D8 ###4C#38-.......Q...|
+#### #D41F838 ######## ######## #D3#245# #7FE#7FE ######## ######## ####1FFF #7FE####&...................|
+##2# #D41F858 ######## ######## ######## ######## ######## ######## ######## ########|

...

Information for enclave COBDUMP1

Information for thread 8###############

Registers on Entry to CEE3DMP:
 PM....... ####
 GPR#..... #D41F838 GPR1..... ###27158 GPR2..... #D4232C8 GPR3..... #D3#23#2
 GPR4..... #D3#1FA# GPR5..... ###47#38 GPR6..... ######## GPR7..... ##FCAB##
 GPR8..... #D42316# GPR9..... #D41F7## GPR1#.... #D3#2#7# GPR11.... #D3#2234
 GPR12.... ###16A48 GPR13.... ###27#C# GPR14.... 8##1E#E2 GPR15.... 8D353858
 FPR#..... ######## ######## FPR2..... ######## ########
 FPR4..... ######## ######## FPR6..... ######## ########
 GPREG STORAGE:

Storage around GPR# (#D41F838)
-##2# #D41F818 ######## ######## ######## #D42311# #D42316# ######## #D423#D8 ###4C#38-.......Q...
+#### #D41F838 ######## ######## #D3#245# #7FE#7FE ######## ######## ####1FFF #7FE####&...................
+##2# #D41F858 ######## ######## ######## ######## ######## ######## ######## ########

...

 Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
###27#C# COBDUMP2 #D3#1F68 +#####43# COBDUMP2 #D3#1F68 +#####43# 4# GO Call
###27#18 COBDUMP1 #D3##1## +#####33E COBDUMP1 #D3##1## +#####33E 23 GO Call

Parameters, Registers, and Variables for Active Routines: COBDUMP2 (DSA address ###27#C#):
 Saved Registers:
 GPR#..... #D41F838 GPR1..... ###27158 GPR2..... #D4232C8 GPR3..... #D3#23#2
 GPR4..... #D3#1FA# GPR5..... ###47#38 GPR6..... ######## GPR7..... ##FCAB##
 GPR8..... #D42316# GPR9..... #D41F7## GPR1#.... #D3#2#7# GPR11.... #D3#2234
 GPR12.... ###16A48 GPR13.... ###27#C# GPR14.... 8##1E#E2 GPR15.... 8D353858
 GPREG STORAGE:

Storage around GPR# (#D41F838)
-##2# #D41F818 ######## ######## ######## #D42311# #D42316# ######## #D423#D8 ###4C#38-.......Q...
+#### #D41F838 ######## ######## #D3#245# #7FE#7FE ######## ######## ####1FFF #7FE####&...................
+##2# #D41F858 ######## ######## ######## ######## ######## ######## ######## ########

...

Figure 71 (Part 1 of 3). Sections of the Language Environment Dump Called from COBDUMP2

194 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 Local Variables:
13 IOFSS1 FILE SPECIFIED AS: OPTIONAL, ORGANIZATION=VSAM SEQUENTIAL,

ACCESS MODE=SEQUENTIAL, RECFM=FIXED. CURRENT STATUS OF
FILE IS: NOT OPEN, VSAM STATUS CODE=##, VSAM FEEDBACK=###,
VSAM RET CODE=###, VSAM FUNCTION CODE=###.

14 #1 IOFSS1R X(4#) DISP ' '
17 #1 TEMP4 AN-GR
18 #2 A-1 AN-GR OCCURS 2
19 #3 A-2 AN-GR OCCURS 2

 2# #4 A-3V XXX
 SUB(1,1) DISP ' '

SUB(1,2) to SUB(2,2) elements same as above.
 21 #4 A-6 XXX
 SUB(1,1) DISP 'XXX'
 SUB(1,2) 'YYY'
 SUB(2,1) 'ZZZ'
 SUB(2,2) ' '

22 77 DMPTITLE X(8#) DISP 'COBOL DUMP
 '

23 77 OPTIONS X(255) DISP ' BLOCKS STORAGE PAGE(55) FILES

 '
24 77 FC X(12) DISP ' '
27 #1 SALARY-RECORD AN-GR

 28 #2 NAME X(1#) DISP ' '
 29 #2 DEPT 9999 DISP
 3# #2 SALARY 9(6) DISP

COBDUMP1 (DSA address ###27#18):
 Saved Registers:
 GPR#..... #D41F1A8 GPR1..... ###27#B# GPR2..... #D423#D8 GPR3..... #D3##3EA
 GPR4..... #D3##138 GPR5..... ###15AE8 GPR6..... ######## GPR7..... ########
 GPR8..... #D423#88 GPR9..... #D41F#78 GPR1#.... #D3##2#8 GPR11.... #D3##328
 GPR12.... ###16A48 GPR13.... ###27#18 GPR14.... 8D3##44# GPR15.... #D3#1F68
 GPREG STORAGE:

Storage around GPR# (#D41F1A8)
-##2# #D41F188 ######## #D423#88 ######## ######## ######## #D423#38 #D423#88 ########h...................h...
+#### #D41F1A8 ###4737# ######## #D3##528 #7FE#7FE ######## ######## ####1FFF #7FE####
+##2# #D41F1C8 ######## ######## ######## ######## ######## ######## ######## ########

Figure 71 (Part 2 of 3). Sections of the Language Environment Dump Called from COBDUMP2

 Chapter 5. Debugging COBOL Programs 195

 Local Variables:
1# #1 SOME-WORKINGSTG AN-GR
11 #2 SUB-LEVEL X(8#) DISP 'THIS IS IN WORKING STORAGE

 '
13 #1 SALARY-RECORDA AN-GR

 14 #2 NAMEA X(1#) DISP ' '
 15 #2 DEPTA 9999 DISP
 16 #2 SALARYA 9(6) DISP

...

Figure 71 (Part 3 of 3). Sections of the Language Environment Dump Called from COBDUMP2

Finding COBOL Information in a Dump
Like the standard Language Environment dump format, dumps generated from
COBOL programs contain:

� Control block information for active programs
� Storage for each active program

 � Enclave-level data
 � Process-level data

Control Block Information for Active Routines
The Control Blocks for Active Routines section of the dump, shown in Figure 72 on
page 197, displays the following information for each active COBOL program:

 � DSA
� Program name and date/time of compile
� COBOL compiler Version, Release, Modification, and User Level
� COBOL control blocks TGT and CLLE

196 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

...
Control Blocks for Active Routines:

DSA for COBDUMP2: ���27�C�
 +###### FLAGS.... ##1# member... 4##1 BKC...... ###27#18 FWC...... ###27168 R14...... 8##1E#E2
 +####1# R15...... 8D353858 R#....... #D41F838 R1....... ###27158 R2....... #D4232C8 R3....... #D3#23#2
 +####24 R4....... #D3#1FA# R5....... ###47#38 R6....... ######## R7....... ##FCAB## R8....... #D42316#
 +####38 R9....... #D41F7## R1#...... #D3#2#7# R11...... #D3#2234 R12...... ###16A48 reserved. ########

+####4C NAB...... ###27168 PNAB..... ######## reserved. ######## ###27#C# #D41F7## ##1#1##1
 +####64 reserved. ###27#18 reserved. ###27#E4 MODE..... 8D3#239A reserved. ###27#EC ###27#F4
 +####78 reserved. ###27#F# reserved. ###27#F8

...
Program COBDUMP2 was compiled 11/�4/99 11:49:�9 AM

COBOL Version = �2 Release = �1 Modification = �1 User Level = ' '
TGT for COBDUMP2: �D41F7��
+###### #D41F7## ######## ######## ######## ######## ######## ######## ######## ########
+####2# #D41F72# - +####3F #D41F73F same as above
+####4# #D41F74# ######## ######## F3E3C7E3 ######## #5###### 42#3#22# ###47#38 ###187FC3TGT..................g.
+####6# #D41F76# #D41F92# #######1 #####174 ######## ######## #D4231## ######## ######## ..9.............................
+####8# #D41F78# ###16A48 #####21C ######## ######## ######## #######1 E2E8E2D6 E4E34#4#SYSOUT
+####A# #D41F7A# C9C7E9E2 D9E3C3C4 ######## ######## ######## ######## ######## ######## IGZSRTCD........................
+####C# #D41F7C# ######## ######## ######## ######## ######## ######## ######## ########
+####E# #D41F7E# ######## ######## #D3#2#64 #######1 #D41F9#8 ###4737# #D3#2#F3 #D41F83C9........3..8.
+###1## #D41F8## #D3#1F68 #D3#2#78 #D41F9#4 #D3#2#6C #D41F9#4 #D42316# ######## ########9....%..9....-........
+###12# #D41F82# ######## #D42311# #D42316# ######## #D423#D8 ###4C#38 ######## ########-.......Q............
+###14# #D41F84# #D3#245# #7FE#7FE ######## ######## ####1FFF #7FE#### ######## ######## ...&............................
+###16# #D41F86# ######## ######## ######## ######## ######## ######## ######## ########
+###18# #D41F88# - +###1FF #D41F8FF same as above
+###2## #D41F9## ######## #D41F95# 4####### ######## ######## #D41FA5# #######1 ########9&&........

...
CLLE for COBDUMP2: ���4737�
+###### ###4737# C3D6C2C4 E4D4D7F2 #####1## ######## 8481#### #D3#1F68 #D41F7## ######## COBDUMP2........da........7.....
+####2# ###4739# ######## #D41F5AC #D41F6B8 ###47328 ###47### ######C8 ######C# ########5...6............H........

...

Figure 72. Control Block Information for Active COBOL Routines

Storage for Each Active Routines
The Storage for Active Routines section of the dump, shown in Figure 73 on
page 198, displays the following information for each COBOL program:

 � Program name

� Contents of the base locators for files, WORKING-STORAGE, LINKAGE
SECTION, LOCAL-STORAGE SECTION, variably-located areas, and
EXTERNAL data.

� File record contents.

� WORKING-STORAGE, including the base locator for WORKING-STORAGE
(BLW) and program class storage.

 Chapter 5. Debugging COBOL Programs 197

...
Storage for Active Routines:

 COBDUMP2:
Contents of base locators for files are:

 #-###4C#38

Contents of base locators for working storage are:
 #-#D42316#

Contents of base locators for the linkage section are:
 #-######## 1-#D423#D8

No variably located areas were used in this program.

No EXTERNAL data was used in this program.

No object instance data were used in this program.

No local storage was used in this program.

No DSA indexes were used in this program.

No indexes were used in this program.
File record contents for COBDUMP2

 ESDS1DD (BLF-#): ###4C#38
+###### ###4C#38 ######## ######## ######## ######## ######## ######## ######## ########
+####2# ###4C#58 - +####3F ###4C#77 same as above

Working storage for COBDUMP2
 BLW-#: #D42316#

+###### #D42316# ######E7 E7E7#### ##E8E8E8 ######E9 E9E9#### ######## C3D6C2D6 D34#C4E4 ...XXX...YYY...ZZZ......COBOL DU
+####2# #D42318# D4D74#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# MP
+####4# #D4231A# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4#
+####6# #D4231C# 4#4#4#4# 4#4#4#4# 4#C2D3D6 C3D2E24# E2E3D6D9 C1C7C54# D7C1C7C5 4DF5F55D BLOCKS STORAGE PAGE(55)
+####8# #D4231E# 4#C6C9D3 C5E24#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# FILES
+####A# #D4232## 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4#
+####C# #D42322# - +###15F #D4232BF same as above
+###16# #D4232C# 4#4#4#4# 4#4#4### ######## ######## ######## ######## ######## ########

Program class storage: �D4231��
+###### #D4231## #####1DB ######## ######## #D41F94# ######## ######## ######## ########9
+####2# #D42312# C9C7E9E2 D9E3C3C4 ######## ######## ######## ######## ######## ######## IGZSRTCD........................
+####4# #D42314# E2E8E2D6 E4E34#4# ######## ######## #E###### ######## #F###### ######## SYSOUT
+####6# #D42316# ######E7 E7E7#### ##E8E8E8 ######E9 E9E9#### ######## C3D6C2D6 D34#C4E4 ...XXX...YYY...ZZZ......COBOL DU
+####8# #D42318# D4D74#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# MP
+####A# #D4231A# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4#
+####C# #D4231C# 4#4#4#4# 4#4#4#4# 4#C2D3D6 C3D2E24# E2E3D6D9 C1C7C54# D7C1C7C5 4DF5F55D BLOCKS STORAGE PAGE(55)
+####E# #D4231E# 4#C6C9D3 C5E24#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# FILES
+###1## #D4232## 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4#
+###12# #D42322# - +###1BF #D4232BF same as above
+###1C# #D4232C# 4#4#4#4# 4#4#4### ######## ######## ######## ######## ######## ########

Program class storage: #D41F94#
+###### #D41F94# #####1BE ######## #D4231## ###4C#28 C6C3C2## #1#2#### FFFFFFFF FFFFFFFFFCB.............
+####2# #D41F96# FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF ######## ######## ########
+####4# #D41F98# ######## ######## ######## 8##1B9E# 8##1B9E# 8##1B9E# 8D414938 8##1B9E#
+####6# #D41F9A# 8##1B9E# 8##1B9E# 8D414938 ######## ######## ######## ######## ########
+####8# #D41F9C# ######## ######## ######## ######## ######## ######## C3D6C2C4 E4D4D7F2COBDUMP2
+####A# #D41F9E# C5E2C4E2 F1C4C44# ######## ######## ######## #D3#2194 ######## ######## ESDS1DDm........
+####C# #D41FA## ######## ######## ######## ######## ######## ######## ####88## ########h.....
+####E# #D41FA2# ######## ######## ######28 ######## ######## ######## ######## ########
+###1## #D41FA4# ######## ######## ######## ######## ######## ######## ######## ########
+###12# #D41FA6# - +###1BF #D41FAFF same as above

Program class storage: ###4C#28
+###### ###4C#28 ######3F ######## #D41F94# ######## ######## ######## ######## ########9
+####2# ###4C#48 ######## ######## ######## ######## ######## ######## ######## ########

...

Figure 73. Storage for Active COBOL Programs

198 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 Enclave-Level Data
The Enclave Control Blocks section of the dump, shown in Figure 74, displays the
following information:

� RUNCOM enclave control block
� Storage for all run units
� COBOL control blocks FCB, FIB, and GMAREA

Enclave Control Blocks:

...
 RUNCOM: ���47�38

+###### ###47#38 C3F3D9E4 D5C3D6D4 #####2D8 #486#### ###159C8 #######1 ####5F78 ######## C3RUNCOM...Q.f.....H......¬.....
+####2# ###47#58 ######## #D3##1## ###47328 ######## ###15AE8 ######## ######## ########!Y............
+####4# ###47#78 ###18A8# ###181BC ######## ###187FC ######## ######## ###16A48 ########a.......g.................
+####6# ###47#98 ######## ###473A8 ######## ######## ######## F#F#F#F# F#F#F#F# #D41F6B8y............########..6.

...

 Enclave Storage:

...
Rununit class storage: ���473A8
+###### ###473A8 ######C# ######## ######## #D41F6F# ######## ######## ######## ########6#................
+####2# ###473C8 ######## ######## ######## ######## ######## ######## ######## ########
+####4# ###473E8 - +####BF ###47467 same as above
Rununit class storage: #D41F6F#
+###### #D41F6F# #####248 ######## ###473A8 ###4736# ######## ######## ######## ########y...-................
+####2# #D41F71# ######## ######## ######## ######## ######## ######## ######## ########
+####4# #D41F73# ######## ######## ######## ######## ######## ######## F3E3C7E3 ########3TGT....
+####6# #D41F75# #5###### 42#3#22# ###47#38 ###187FC #D41F92# #######1 #####174 ########g...9.............

...
Rununit class storage: ###4736#
+###### ###4736# ######4# ######## #D41F6F# #D41F2A# C3D6C2C4 E4D4D7F2 #####1## ########6#..2.COBDUMP2........
+####2# ###4738# 8481#### #D3#1F68 #D41F7## ######## ######## #D41F5AC #D41F6B8 ###47328 da........7...........5...6.....
Rununit class storage: #D41F2A#
+###### #D41F2A# #####448 ######## ###4736# #D41F#68 C8C1E34# #####1## ######## ########-..#.HAT
+####2# #D41F2C# ######## ######## ######## ######## ######## ######## ######## ########
+####4# #D41F2E# - +###31F #D41F5BF same as above

...
Rununit class storage: #D41F#68
+###### #D41F#68 #####22C ######## #D41F2A# ###47318 ######## ######## ######## ########2.....................
+####2# #D41F#88 ######## ######## ######## ######## ######## ######## ######## ########
+####4# #D41F#A8 ######## ######## ######## ######## ######## ######## F3E3C7E3 ########3TGT....
+####6# #D41F#C8 #5###### 6##3#22# ###47#38 ###187FC #D41F288 ######## ######64 ########-.........g...2h............

...
Rununit class storage: ###47318
+###### ###47318 ######4# ######## #D41F#68 ######## C3D6C2C4 E4D4D7F1 #####1## #########.....COBDUMP1........
+####2# ###47338 9481#### 8D3##1## #D41F#78 ######## ######## #D41F5A8 #D41F6B8 ######## ma........#...........5y..6.....

File Control Blocks:
FCB for file ESDS1DD in program COBDUMP2: �D41F95�
+###### #D41F95# C6C3C2## #1#2#### FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FCB.............................
+####2# #D41F97# FFFFFFFF ######## ######## ######## ######## ######## ######## 8##1B9E#
+####4# #D41F99# 8##1B9E# 8##1B9E# 8D414938 8##1B9E# 8##1B9E# 8##1B9E# 8D414938 ########
+####6# #D41F9B# ######## ######## ######## ######## ######## ######## ######## ########
+####8# #D41F9D# ######## ######## C3D6C2C4 E4D4D7F2 C5E2C4E2 F1C4C44# ######## ########COBDUMP2ESDS1DD
+####A# #D41F9F# ######## #D3#2194 ######## ######## ######## ######## ######## ########m........................
+####C# #D41FA1# ######## ######## ####88## ######## ######## ######## ######28 ########h.....................
+####E# #D41FA3# ######## ######## ######## ######## ######## ######## ######## ########

FIB for file ESDS1DD in program COBDUMP2: �D3�2194
+###### #D3#2194 C6C9C2## #1#3C5E2 C4E2F1C4 C44###88 8#8#A### ####8### ######## ######28 FIB...ESDS1DD .h................
+####2# #D3#21B4 ###1#### ######## ######## ######## ######## ######## #D3#218D ########
+####4# #D3#21D4 ######## ######## ######## ######## ######## ######## ######## ########
+####6# #D3#21F4 - +####7F #D3#2213 same as above
+####8# #D3#2214 ####C9D6 C6E2E2F1 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# ..IOFSS1

GMAREA for file ESDS1DD in program COBDUMP2: ��������
 +###### ######## Inaccessible storage.

Figure 74. Enclave-Level Data for COBOL Programs

 Chapter 5. Debugging COBOL Programs 199

 Process-Level Data
The Process Control Block section of the dump, shown in Figure 75, displays
COBOL process-level control blocks THDCOM, COBCOM, COBVEC, and ITBLK.

In a non-CICS environment, the ITBLK control block only appears when a VS
COBOL II program is active. In a CICS environment, the ITBLK control block
always appears.

 Process Control Blocks:

...
 THDCOM: ���18A8�

+###### ###18A8# C3F3E3C8 C4C3D6D4 #####1E8 81###### #####1## ######## ###181#8 ###181BC C3THDCOM...Ya.............a...a.
+####2# ###18AA# ###47#38 ######## C3D6C2C4 E4D4D7F1 ######## ######## ######## ########COBDUMP1................
+####4# ###18AC# ######## ######## ######## ######## ######## ######## ######## ########
+####6# ###18AE# - +####7F ###18AFF same as above

...
 COBCOM: ���181�8

+###### ###181#8 C3F3C3D6 C2C3D6D4 #####978 F#F2F#F9 F#F##### ######## ######## ######## C3COBCOM....#2#9##..............
+####2# ###18128 ######## ######## ######## ######## ######## ######## ######## ########
+####4# ###18148 ######## ######## ######## ######## ######## ######## 9#6###D6 ###181BC-.O..a.
+####6# ###18168 ###187FC #####1## ##82#### ######## ####8### #8###### ###18A8# ######## ..g......b......................

...
 COBVEC: ���181BC

+###### ###181BC ###1843C ###18442 ###18448 ###1844E ###18454 ###1845A ###1846# ###18466 ..d...d...d...d+..d...d!..d-..d.
+####2# ###181DC ###1846C ###18472 ###18478 ###1847E ###18484 ###1848A ###1849# ###18496 ..d%..d...d...d=..dd..d...d...do
+####4# ###181FC ###1849C ###184A2 ###184A8 ###184AE ###184B4 ###184BA ###184C# ###184C6 ..d...ds..dy..d...d...d...d...dF
+####6# ###1821C ###184CC ###184D2 ###184D8 ###184DE ###184E4 ###184EA ###184F# ###184F6 ..d...dK..dQ..d...dU..d...d#..d6

...

Figure 75. Process-Level Control Blocks for COBOL Programs

Debugging Example COBOL Programs
The following examples help demonstrate techniques for debugging COBOL pro-
grams. Important areas of the dump output are highlighted. Data unnecessary to
debugging has been replaced by ellipses.

Subscript Range Error
Figure 76 on page 201 illustrates the error of using a subscript value outside the
range of an array. This program was compiled with LIST, TEST(STMT,SYM), and
SSRANGE. The SSRANGE compiler option causes the compiler to generate code
that checks (during run time) for data that has been stored or referenced outside of
its defined area because of incorrect indexing and subscripting. The SSRANGE
option takes effect during run time, unless you specify CHECK(OFF) as a run-time
option.

The program was run with TERMTHDACT(TRACE) to generate the traceback infor-
mation shown in Figure 77 on page 201.

200 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CBL LIST,SSRANGE,TEST(STMT,SYM)
 ID DIVISION.
 PROGRAM-ID. COBOLX.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

77 J PIC 9(4) USAGE COMP.
 #1 TABLE-X.

#2 SLOT PIC 9(4) USAGE COMP OCCURS 8 TIMES.
 PROCEDURE DIVISION.

MOVE 9 TO J.
MOVE 1 TO SLOT (J).

 GOBACK.

Figure 76. COBOL Example of Moving a Value Outside an Array Range

To understand the traceback information and debug this program, use the following
steps:

1. Locate the current error message in the Condition Information for Active Rou-
tines section of the Language Environment traceback, shown in Figure 77. The
message is IGZ###6S The reference to table SLOT by verb number #1 on
line ####11 addressed an area outside the region of the table. The
message indicates that line 11 was the current COBOL statement when the
error occurred. For more information about this message, see Chapter 15,
“COBOL Run-Time Messages” on page 741.

2. Statement 11 in the traceback section of the dump occurred in program
COBOLX.

CEE3DMP V2 R9.#: Condition processing resulted in the unhandled condition. 11/#4/99 11:48:58 AM Page: 1

Information for enclave COBOLX

Information for thread 8###############

 Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
###2A768 CEEHDSP #D3386F# +####3#32 CEEHDSP #D3386F# +####3#32 CEEPLPKA Call
###2A5D# CEEHSGLT #D34425# +######5C CEEHSGLT #D34425# +######5C CEEPLPKA Exception
###2A#B8 IGZCMSG #D4##BF8 +#####38C IGZCMSG #D4##BF8 +#####38C IGZCPAC Call
���2A�18 COBOLX ����78�8 +�����286 COBOLX ����78�8 +�����286 11 GO Call

Condition Information for Active Routines
Condition Information for CEEHSGLT (DSA address ###2A5D#)
CIB Address: ###2ADE#

 Current Condition:
IGZ���6S The reference to table SLOT by verb number �1 on line ����11 addressed an area outside the region of the table.

 Location:
Program Unit: CEEHSGLT Entry: CEEHSGLT Statement: Offset: +######5C

Storage dump near condition, beginning at location: #D34429C
+###### #D34429C F#1#D2#B D#8#1### 58A#C2B8 58F#A#1C #5EFD2#B D#98B1#8 41A#D#98 5#A#D#8C #.K.......B..#....K..q.....q&...

Figure 77 (Part 1 of 2). Sections of Language Environment Dump for COBOLX

 Chapter 5. Debugging COBOL Programs 201

Parameters, Registers, and Variables for Active Routines:
CEEHDSP (DSA address ###2A768):

 Saved Registers:
 GPR#..... #D33BB6C GPR1..... ###2AB8# GPR2..... #######1 GPR3..... #######3
 GPR4..... #######8 GPR5..... ###2ADE# GPR6..... ###2##38 GPR7..... ###2B767
 GPR8..... #D33B6ED GPR9..... #D33A6EE GPR1#.... #D3396EF GPR11.... 8D3386F#
 GPR12.... ###19A48 GPR13.... ###2A768 GPR14.... 8##21#E2 GPR15.... 8D34E858
 GPREG STORAGE:

Storage around GPR# (#D33BB6C)
-##2# #D33BB4C #D33BB78 #D33BBBC #D33BB8# #D33BBC# #D33BBB# ######## #######1 #######2
+#### #D33BB6C #######3 #######4 #######6 #######7 #######8 #######9 #######A #######B
+##2# #D33BB8C #######D #######E ######1# ######15 ######17 ######64 ######69 ######8#

...
CEEHSGLT (DSA address ###2A5D#):

 Saved Registers:
 GPR#..... ####79B8 GPR1..... ###2A29# GPR2..... ###2A29# GPR3..... ########
 GPR4..... ###2##38 GPR5..... ###2##38 GPR6..... ###2A3D4 GPR7..... #######5
 GPR8..... ###1BA8# GPR9..... ####914# GPR1#.... ###2##38 GPR11.... 8D34425#
 GPR12.... ###19A48 GPR13.... ###2A5D# GPR14.... 8##21#CE GPR15.... 8D343AA8
 GPREG STORAGE:

Storage around GPR# (####79B8)
-##2# ####7998 #8#####4 ##224### #######6 C####14# ###4#8## ###4##28 #24####2 #8#####4
+#### ####79B8 ##1F#3C# ###6#8## ###4##1C 4####### ##4#C### #14####6 #8#####4 ##22#2C#
+##2# ####79D8 ###6#8## ###4##22 183F41## 1#A#55## C##C#5F# 47D#F##C 58F#C3## #5EF181F#..#..#C.....

...
IGZCMSG (DSA address ###2A#B8):

 Saved Registers:
 GPR#..... ####79B8 GPR1..... ###2A29# GPR2..... ###2A29# GPR3..... ########
 GPR4..... ###2##38 GPR5..... ###2##38 GPR6..... ###2A3D4 GPR7..... #######5
 GPR8..... ###1BA8# GPR9..... ####914# GPR1#.... ###4A#38 GPR11.... 8D4##BF8
 GPR12.... ###19A48 GPR13.... ###2A#B8 GPR14.... 8##2463E GPR15.... 8D34425#
 GPREG STORAGE:

Storage around GPR# (####79B8)
-##2# ####7998 #8#####4 ##224### #######6 C####14# ###4#8## ###4##28 #24####2 #8#####4
+#### ####79B8 ##1F#3C# ###6#8## ###4##1C 4####### ##4#C### #14####6 #8#####4 ##22#2C#
+##2# ####79D8 ###6#8## ###4##22 183F41## 1#A#55## C##C#5F# 47D#F##C 58F#C3## #5EF181F#..#..#C.....

...
COBOLX (DSA address ###2A#18):

 Saved Registers:
 GPR#..... ###2A#B8 GPR1..... ####799E GPR2..... ######1# GPR3..... ###1B7FC
 GPR4..... ####784# GPR5..... ###18AE8 GPR6..... ######## GPR7..... ########
 GPR8..... ####93A# GPR9..... ####914# GPR1#.... ####791# GPR11.... ####7A3E
 GPR12.... ####79#4 GPR13.... ###2A#18 GPR14.... 8###7A9# GPR15.... 8D4##BF8
 GPREG STORAGE:

Storage around GPR# (###2A#B8)
-##2# ###2A#98 #D3##21C #D3##218 #D3##22# ###179A4 ######## ######## ######## ########u................
+#### ###2A#B8 ##1#1##1 ###2A#18 ###2A5D# 8##2463E 8D34425# ####79B8 ###2A29# ###2A29#v........&......s...s.
+##2# ###2A#D8 ######## ###2##38 ###2##38 ###2A3D4 #######5 ###1BA8# ####914# ###4A#38tM..........j

...
 Local Variables:

6 77 J 9999 COMP ����9
7 #1 TABLE-X AN-GR

 8 �2 SLOT 9999 OCCURS 8
 SUB(1) COMP #####

Figure 77 (Part 2 of 2). Sections of Language Environment Dump for COBOLX

3. Find the statement on line 11 in the listing for program COBOLX, shown in
Figure 78 on page 203. This statement moves the 1 value to the array SLOT
(J).

202 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

PP 5648-A25 IBM COBOL for OS/39# & VM 2.1.1 COBOLX Date 11/#4/1999 Time 11:48:54 Page 3
 LineID PL SL ----+-CA-1-B--+----2----+----3----+----4----+----5----+----6----+----7- --+----8 Map and Cross Reference
/C COBOLX
 #####1 ID DIVISION.
 #####2 PROGRAM-ID. COBOLX.
 #####3 ENVIRONMENT DIVISION.
 #####4 DATA DIVISION.
 #####5 WORKING-STORAGE SECTION.
#####6 77 J PIC 9(4) USAGE COMP.

 #####7 #1 TABLE-X.
#####8 #2 SLOT PIC 9(4) USAGE COMP OCCURS 8 TIMES.

 #####9 PROCEDURE DIVISION.
####1# MOVE 9 TO J.
����11 MOVE 1 TO SLOT (J).

 ####12 GOBACK.
C/ COBOLX
...

Figure 78. COBOL Listing for COBOLX

4. Find the values of the local variables in the Parameters, Registers, and Vari-
ables for Active Routines section of the traceback, shown in Figure 77 on
page 201. J, which is of type PIC 9(4) with usage COMP, has a 9 value. J is
the index to the array SLOT.

The array SLOT contains eight positions. When the program tries to move a
value into the J or 9th element of the 8-element array named SLOT, the error
of moving a value outside the area of the array occurs.

Calling a Nonexistent Subroutine
Figure 79 demonstrates the error of calling a nonexistent subroutine in a COBOL
program. In this example, the program COBOLY was compiled with the compiler
options LIST, MAP and XREF. The TEST option was also specified with the sub-
options NONE and SYM. Figure 79 shows the program.

 CBL LIST,MAP,XREF,TEST(NONE,SYM)
 ID DIVISION.
 PROGRAM-ID. COBOLY.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

77 SUBNAME PIC X(8) USAGE DISPLAY VALUE 'UNKNOWN'.
 PROCEDURE DIVISION.
 CALL SUBNAME.
 GOBACK.

Figure 79. COBOL Example of Calling a Nonexistent Subroutine

To understand the traceback information and debug this program, use the following
steps:

1. Locate the error message for the original condition under the Condition Infor-
mation for Active Routines section of the dump, shown in Figure 80 on
page 204. The message is CEE35#1S The module UNKNOWN was not found. For
more information about this message, see Chapter 9, “Language Environment
Run-Time Messages” on page 265.

2. Note the sequence of calls in the Traceback section of the dump. COBOLY
called IGZCFCC; IGZCFCC (a COBOL library subroutine used for dynamic
calls) called IGZCLDL; then IGZCLDL (a COBOL library subroutine used to

 Chapter 5. Debugging COBOL Programs 203

load library routines) called CEESGLT, a Language Environment condition han-
dling routine.

This sequence indicates that the exception occurred in IGZCLDL when
COBOLY was attempting to make a dynamic call. The call statement in
COBOLY is located at offset +00000338.

CEE3DMP V2 R9.#: Condition processing resulted in the unhandled condition. 11/#8/99 5:17:4# PM Page: 1

Information for enclave COBOLY

Information for thread 8###############

 Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
###2A5A8 CEEHDSP #D3386F# +####28DE CEEHDSP #D3386F# +####28DE CEEPLPKA Call
###2A41# CEEHSGLT #D34425# +######5C CEEHSGLT #D34425# +######5C CEEPLPKA Exception
###2A2A8 IGZCLDL #D3FF#98 +#####11A IGZCLDL #D3FF#98 +#####11A IGZCPAC Call
###2A#C# IGZCFCC ###1E128 +#####398 IGZCFCC ###1E128 +#####398 IGZCFCC Call
���2A�18 COBOLY ����77E� +�����338 COBOLY ����77E� +�����338 8 GO Call

Condition Information for Active Routines
Condition Information for CEEHSGLT (DSA address ###2A41#)
CIB Address: ###2AC2#

 Current Condition:
CEE#198S The termination of a thread was signaled due to an unhandled condition.

 Original Condition:
CEE35�1S The module UNKNOWN was not found.

 Location:
Program Unit: CEEHSGLT Entry: CEEHSGLT Statement: Offset: +######5C

Storage dump near condition, beginning at location: #D34429C
+###### #D34429C F#1#D2#B D#8#1### 58A#C2B8 58F#A#1C #5EFD2#B D#98B1#8 41A#D#98 5#A#D#8C #.K.......B..#....K..q.....q&...

...

Figure 80. Sections of Language Environment Dump for COBOLY

3. Use the offset of X'338' from the COBOL listing, shown in Figure 81 on
page 205, to locate the statement that caused the exception in the COBOLY
program. At offset X'338' is an instruction for statement 8. Statement 8 is a
call with the identifier SUBNAME specified.

204 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

...
PP 5648-A25 IBM COBOL for OS/39# & VM 2.1.1 COBOLY Date 11/#8/1999 Time 17:17:35 Page 11
 ###2A8 START EQU C COBOLY
 ###2A8 183F LR 3,15
 ###2AA 41## 1#A8 LA #,168(#,1)
 ###2AE 55## C##C CL #,12(#,12)
 ###2B2 #5F# BALR 15,#
 ###2B4 47D# F##C BC 13,12(#,15)
 ###2B8 58F# C3## L 15,768(#,12)
 ###2BC #5EF BALR 14,15
 ###2BE 181F LR 1,15
 ###2C# 5#D# 1##4 ST 13,4(#,1)
 ###2C4 5### 1#4C ST #,76(#,1)

###2C8 D2#3 1### 3#58 MVC #(4,1),88(3)
 ###2CE 18D1 LR 13,1
 ###2D# 58C# 9#E8 L 12,232(#,9) TGTFIXD+232
 ###2D4 1812 LR 1,2
 ###2D6 5#D# D#58 ST 13,88(#,13)
 ###2DA 5#9# D#5C ST 9,92(#,13)
 ###2DE 58A# C##4 L 1#,4(#,12) CBL=1
 ###2E2 588# 9128 L 8,296(#,9) BLW=#

###2E6 D2#3 9#EC A#1# MVC 236(4,9),16(1#) TGTFIXD+236 PGMLIT AT +8
 ###2EC BF2F 92#8 ICM 2,15,52#(9) IPCB=1+16
 ###2F# 58B# C##8 L 11,8(#,12) PBL=1
 ###2F4 478# B### BC 8,#(#,11) GN=7(###3#6)
 ###2F8 583# 9#5C L 3,92(#,9) TGTFIXD+92
 ###2FC 58F# 3#F4 L 15,244(#,3) V(IGZCMSG)

###3## 411# A18# LA 1,384(#,1#) PGMLIT AT +376
 ###3#4 #5EF BALR 14,15
 ###3#6 GN=7 EQU C

###3#6 5A2# C### A 2,#(#,12) SYSLIT AT +#
 ###3#A 5#2# 92#8 ST 2,52#(#,9) IPCB=1+16
 ###3#E 964# 91F8 OI 5#4(9),X'4#' IPCB=1
#####8 C
�����8 CALL

���312 D2�7 D�98 8��� MVC 152(8,13),�(8) TS2=� SUBNAME
###318 DC#7 D#98 A#1A TR 152(8,13),26(1#) TS2=# PGMLIT AT +18
###31E D2#3 D#A# A15A MVC 16#(4,13),346(1#) TS2=8 PGMLIT AT +338

 ###324 412# D#98 LA 2,152(#,13) TS2=#
 ###328 5#2# D#A4 ST 2,164(#,13) TS2=12
 ###32C 411# D#A# LA 1,16#(#,13) TS2=8
 ###33# 582# 9#5C L 2,92(#,9) TGTFIXD+92
 ###334 58F# 21## L 15,256(#,2) V(IGZCFCC)
 ���338 �5EF BALR 14,15
 ###33A 583# 9124 L 3,292(#,9) BL=1
 ###33E 4#F# 3### STH 15,#(#,3) RETURN-CODE
#####9 GOBACK
 ###342 47F# B#52 BC 15,82(#,11) GN=2(###358)
 ###346 912# 9#54 TM 84(9),X'2#' TGTFIXD+84
 ###34A 47E# B#52 BC 14,82(#,11) GN=2(###358)
 ###34E 58F# 2#F4 L 15,244(#,2) V(IGZCMSG)

###352 411# A16E LA 1,366(#,1#) PGMLIT AT +358
 ###356 #5EF BALR 14,15
 ###358 GN=2 EQU C
 ###358 584# 92#8 L 4,52#(#,9) IPCB=1+16

###35C 5B4# C### S 4,#(#,12) SYSLIT AT +#
 ###36# 5#4# 92#8 ST 4,52#(#,9) IPCB=1+16
 ###364 914# 9#55 TM 85(9),X'4#' TGTFIXD+85
 ###368 47E# B#7# BC 14,112(#,11) GN=8(###376)
 ###36C 411# ###8 LA 1,8(#,#)
 ###37# 58F# 2#2# L 15,32(#,2) V(IGZCCTL)
 ###374 #5EF BALR 14,15
 ###376 GN=8 EQU C
 ###376 9128 9#54 TM 84(9),X'28' TGTFIXD+84
 ###37A 477# B#8A BC 7,138(#,11) GN=9(###39#)
 ###37E 48F# 3### LH 15,#(#,3) RETURN-CODE
 ###382 58D# D##4 L 13,4(#,13)
 ###386 58E# D##C L 14,12(#,13)
 ###38A 98#C D#14 LM #,12,2#(13)
 ###38E #7FE BCR 15,14
 ###39# GN=9 EQU C

###39# D2#B D#98 A14E MVC 152(12,13),334(1#) TS2=# PGMLIT AT +326
 ###396 484# 3### LH 4,#(#,3) RETURN-CODE
 ###39A 5#4# D#A4 ST 4,164(#,13) TS2=12
 ###39E 411# D#98 LA 1,152(#,13) TS2=#
 ###3A2 58F# 2224 L 15,548(#,2) V(IGZETRM)

###3A6 #5EF BALR 14,15
...

Figure 81. COBOL Listing for COBOLY

 Chapter 5. Debugging COBOL Programs 205

4. Find the value of the local variables in the Parameters, Registers, and Vari-
ables for Active Routines section of the dump, shown in Figure 82 on
page 206. Notice that the value of SUBNAME with usage DISP, has a value of
'UNKNOWN'.

Correct the problem by either changing the subroutine name to one that is
defined, or by ensuring that the subroutine is available at compile time.

...
Parameters, Registers, and Variables for Active Routines:
...
COBOLY (DSA address ###2A#18):
 Saved Registers:
 GPR#..... ###2A#C# GPR1..... ###2A#B8 GPR2..... ###1B7FC GPR3..... ####77E#
 GPR4..... ####7818 GPR5..... ###18AE8 GPR6..... ######## GPR7..... ########
 GPR8..... ####93B# GPR9..... ####915# GPR1#.... ####78E8 GPR11.... ####7AE6
 GPR12.... ####78DC GPR13.... ###2A#18 GPR14.... 8###7B1A GPR15.... 8##1E128
 GPREG STORAGE:

Storage around GPR# (###2A#C#)
-##2# ###2A#A# #D3##22# ###179A4 ######## ######## E4D5D2D5 D6E6D54# A2#8#### ###2A#B#u........UNKNOWN s.......
+#### ###2A#C# ##1#2##1 ###2A#18 ######## 8##1E4C2 8D3FF#98 ###2A2A8 ###2A26# ###1B7FCUB..#q..sy..s-....
+##2# ###2A#E# ####77E# ###2A#B8 ###1B7FC ######## ###2A25# ###1BA8# ####915# ###4A#38s&......j&....

...
 Local Variables:

6 77 SUBNAME X(8) DISP 'UNKNOWN '

Figure 82. Parameters, Registers, and Variables for Active Routines Section of Dump for COBOLY

 Divide-by-Zero Error
The following example demonstrates the error of calling an assembler routine that
tries to divide by zero. Both programs were compiled with TEST(STMT,SYM) and
run with the TERMTHDACT(TRACE) run-time option. Figure 83 shows the main
COBOL program (COBOLZ1), the COBOL subroutine (COBOLZ2), and the assem-
bler routine.

 [Main Program]

 CBL TEST(STMT,SYM),DYN,XREF(FULL),MAP
 ID DIVISION.
 PROGRAM-ID. COBOLZ1.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

77 D-VAL PIC 9(4) USAGE COMP VALUE #.
 PROCEDURE DIVISION.

CALL "COBOLZ2" USING D-VAL.
 GOBACK.

Figure 83 (Part 1 of 2). Main COBOL Program, COBOL Subroutine, and Assembler
Routine

206 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 [Subroutine]

 CBL TEST(STMT,SYM),DYN,XREF(FULL),MAP
 ID DIVISION.
 PROGRAM-ID. COBOLZ2.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

77 DV-VAL PIC 9(4) USAGE COMP.
 LINKAGE SECTION.

77 D-VAL PIC 9(4) USAGE COMP.
PROCEDURE DIVISION USING D-VAL.

MOVE D-VAL TO DV-VAL.
CALL "ASSEMZ3" USING DV-VAL.

 GOBACK.

 [Assembler Routine]

 PRINT NOGEN
 ASSEMZ3 CEEENTRY MAIN=NO,PPA=MAINPPA

LA 5,2348 Low order part of quotient
SR 4,4 Hi order part of quitient
L 6,#(1) Get pointer to divisor
LA 6,#(6) Clear hi bit

 D 4,#(6) Do division
CEETERM RC=# Terminate with return code zero

 C
 MAINPPA CEEPPA Constants describing the code block

CEEDSA Mapping of the Dynamic Save Area
CEECAA Mapping of the Common Anchor Area

 END ASSEMZ3

Figure 83 (Part 2 of 2). Main COBOL Program, COBOL Subroutine, and Assembler
Routine

To debug this application, use the following steps:

1. Locate the error message for the current condition in the Condition Information
section of the dump, shown in Figure 84 on page 208. The message is
CEE32#9S The system detected a fixed-point divide exception (System
Completion Code=#C9).

See Chapter 9, “Language Environment Run-Time Messages” on page 265 for
additional information about this message.

2. Note the sequence of calls in the call chain. COBOLZ1 called IGZCFCC, which
is a COBOL library subroutine used for dynamic calls; IGZCFCC called
COBOLZ2; COBOLZ2 then called IGZCFCC; and IGZCFCC called ASSEMZ3.
The exception occurred at this point, resulting in a call to CEEHDSP, a Lan-
guage Environment condition handling routine.

The call to ASSEMZ3 occurred at statement 11 of COBOLZ2. The exception
occurred at offset +64 in ASSEMZ3.

 Chapter 5. Debugging COBOL Programs 207

CEE3DMP V2 R9.#: Condition processing resulted in the unhandled condition. 11/#4/99 12:13:36 PM Page: 1

Information for enclave COBOLZ1

Information for thread 8###############

 Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
###2A5E# CEEHDSP #D3386F# +####3#32 CEEHDSP #D3386F# +####3#32 CEEPLPKA Call
���2A56� ASSEMZ3 �D315�48 +������64 ASSEMZ3 �D315�48 +������64 ASSEMZ3 Exception
###2A378 IGZCFCC ###1E128 +#####27# IGZCFCC ###1E128 +#####27# IGZCFCC Call
���2A2C� COBOLZ2 ���4C758 +�����26E COBOLZ2 ���4C758 +�����26E 11 COBOLZ2 Call
###2A#D8 IGZCFCC ###1E128 +#####27# IGZCFCC ###1E128 +#####27# IGZCFCC Call
###2A#18 COBOLZ1 ####77C# +#####258 COBOLZ1 ####77C# +#####258 8 GO Call

Condition Information for Active Routines
Condition Information for ASSEMZ3 (DSA address ###2A56#)
CIB Address: ###2AC58

 Current Condition:
CEE32�9S The system detected a fixed-point divide exception (System Completion Code=�C9).

 Location:
Program Unit: ASSEMZ3 Entry: ASSEMZ3 Statement: Offset: +######64

 Machine State:
ILC..... ���4 Interruption Code..... ���9
PSW..... �78D���� 8D315�B�

 GPR#..... ###2A5E# GPR1..... ###2A36# GPR2..... #D41AA84 GPR3..... ###4E27C
 GPR4..... ######## GPR5..... #####92C GPR6..... ###4E3B# GPR7..... ###2A36#
 GPR8..... ######## GPR9..... ###4E148 GPR1#.... ###4A#38 GPR11.... 8D315#48
 GPR12.... ###19A48 GPR13.... ###2A56# GPR14.... 8##1E39A GPR15.... 8D315#48

Storage dump near condition, beginning at location: #D315#9C
+###### #D315#9C 1#18415# #92C1B44 5861#### 4166#### 5D46#### 58F#B#F# 58##B#F# 58DD###4 ...&...../......)....#.#...#....

Parameters, Registers, and Variables for Active Routines:
...

COBOLZ2 (DSA address ###2A2C#):
 Saved Registers:
 GPR#..... ###2A378 GPR1..... ###2A368 GPR2..... ###1B7FC GPR3..... ###4E27C
 GPR4..... ###2A36# GPR5..... ###1B1BC GPR6..... ###4A37# GPR7..... ##FCAB##
 GPR8..... ###4E3B# GPR9..... ###4E148 GPR1#.... ###4C86# GPR11.... ###4C96E
 GPR12.... ###4C854 GPR13.... ###2A2C# GPR14.... 8##4C9C8 GPR15.... 8##1E128
 GPREG STORAGE:

Storage around GPR# (###2A378)
-##2# ###2A358 ###2A378 #D41ABA8 8##4E3B# ######## 96#8#### ###4C87# ###4E27C ###2A36# ..t....y..T.....o.....H...S@..t-
+#### ###2A378 ##1#24#1 ###2A2C# ###2A56# 8##1E39A 8D315#48 ###2A56# ###2A36# #D41AA84s...v-..T...&...v-..t-...d
+##2# ###2A398 ###4E27C ###2A368 ###4E27C ###4A3B8 ###2A36# ######## ###4E148 ###4A#38 ..S@..t...S@..t...t-............

...
Local Variables:

6 77 DV-VAL 9999 COMP #####
8 77 D-VAL 9999 COMP #####

...
COBOLZ1 (DSA address ###2A#18):

 Saved Registers:
 GPR#..... ###2A#D8 GPR1..... ###2A#C8 GPR2..... ###1B7FC GPR3..... ####928#
 GPR4..... ###2A#C# GPR5..... ###18AE8 GPR6..... ######## GPR7..... ########
 GPR8..... ####93B# GPR9..... ####915# GPR1#.... ####78C8 GPR11.... ####79CE
 GPR12.... ####78BC GPR13.... ###2A#18 GPR14.... 8###7A1A GPR15.... 8##1E128
 GPREG STORAGE:

Storage around GPR# (###2A#D8)
-##2# ###2A#B8 ######## ######## 8###93B# ######## 96#8#### ####78DC ####928# ###2A#C#l.....o.........k.....
+#### ###2A#D8 ##1#24#1 ###2A#18 ###2A2C# 8##1E39A ###4C758 ###2A2C# ###2A#C# ###1B7FCs...T...G...s.........
+##2# ###2A#F8 ####928# ###2A#C8 ####928# ###4A37# ###2A#C# ######## ####915# ###4A#38 ..k....H..k...t...........j&....

...
 Local Variables:

6 77 D-VAL 9999 COMP #####

...

Figure 84. Sections of Language Environment Dump for Program COBOLZ1

3. Locate statement 11 in the COBOL listing for the COBOLZ2 program, shown in
Figure 85 on page 209. This is a call to the assembler routine ASSEMZ3.

208 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

PP 5648-A25 IBM COBOL for OS/39# & VM 2.1.1 COBOLZ2 Date 11/#4/1999 Time 12:13:28 Page 3
 LineID PL SL ----+-CA-1-B--+----2----+----3----+----4----+----5----+----6----+----7- --+----8 Map and Cross Reference
/C COBOLZ2
 #####1 ID DIVISION.
 #####2 PROGRAM-ID. COBOLZ2.
 #####3 ENVIRONMENT DIVISION.
 #####4 DATA DIVISION.
 #####5 WORKING-STORAGE SECTION.
#####6 77 DV-VAL PIC 9(4) USAGE COMP. BLW=####+### 2C

 #####7 LINKAGE SECTION.
#####8 77 D-VAL PIC 9(4) USAGE COMP. BLL=###1+### 2C
#####9 PROCEDURE DIVISION USING D-VAL. 8
####1# MOVE D-VAL TO DV-VAL. 8 6
����11 CALL "ASSEMZ3" USING DV-VAL. EXT 6

 ####12 GOBACK.
C/ COBOLZ2
...

Figure 85. COBOL Listing for COBOLZ2

4. Check offset +64 in the listing for the assembler routine ASSEMZ3, shown in
Figure 86.

This shows an instruction to divide the contents of register 4 by the variable
pointed to by register 6. You can see the two instructions preceding the divide
instruction load register 6 from the first word pointed to by register 1 and
prepare register 6 for the divide. Because of linkage conventions, you can infer
that register 1 contains a pointer to a parameter list that passed to ASSEMZ3.
Register 6 points to a 0 value because that was the value passed to ASSEMZ3
when it was called by a higher level routine.

Note: To translate assembler instructions, see IBM ESA/390 Principles of
Operation.

IBMC HLASM Option Summary IBMC (PTF R3PLUS9) Page 1
 HLASM R3.# 1999/11/#4 12.13

IBMC External Symbols IBMC Page 2
Symbol Type Id Address Length LD ID Flags Alias-of HLASM R3.# 1999/11/#4 12.13
ASSEMZ3 SD #######1 ######## ######F4 #7
CEESTART ER #######2
CEEBETBL ER #######3

 Page 3
Active Usings: None

 Loc Object Code Addr1 Addr2 Stmt Source Stmt IBMC HLASM R3.# 1999/11/#4 12.13
 1 PRINT NOGEN
47F# F#14 ###14 2 ASSEMZ3 CEEENTRY MAIN=NO,PPA=MAINPPA
####56 415# #92C ##92C 37 LA 5,2348 Low order part of quotient
####5A 1B44 38 SR 4,4 Hi order part of quitient
####5C 5861 #### ##### 39 L 6,#(1) Get pointer to divisor
####6# 4166 #### ##### 4# LA 6,#(6) Clear hi bit
����64 5D46 ���� ����� 41 D 4,�(6) Do division
####68 58F# B#F# ###F# 42 CEETERM RC=# Terminate with return code zero
 49 C
####8# 1# 5# MAINPPA CEEPPA Constants describing the code block

116+C,Time Stamp = 1999/11/#4 12:13:## #1-CEEPP
117+C,Version 1 Release 1 Modification # #1-CEEPP
128 CEEDSA Mapping of the Dynamic Save Area
173 CEECAA Mapping of the Common Anchor Area

376 END ASSEMZ3
####F# ######## 377 =A(#)

Figure 86. Listing for ASSEMZ3

5. Check local variables for COBOLZ2 in the Local Variables section of the dump
shown in Figure 87 on page 210. From the dump and listings, you know that
COBOLZ2 called ASSEMZ3 and passed a parameter in the variable DV-VAL.
The two variables DV-VAL and D-VAL have 0 values.

 Chapter 5. Debugging COBOL Programs 209

...
 Local Variables:

6 77 DV-VAL 9999 COMP �����
8 77 D-VAL 9999 COMP #####

...

Figure 87. Variables Section of Language Environment Dump for COBOLZ2

6. In the COBOLZ2 subroutine, the variable D-VAL is moved to DV-VAL, the
parameter passed to the assembler routine. D-VAL appears in the Linkage
section of the COBOLZ2 listing, shown in Figure 88, indicating that the value
did pass from COBOLZ1 to COBOLZ2.

PP 5648-A25 IBM COBOL for OS/39# & VM 2.1.1 COBOLZ2 Date 11/#4/1999 Time 12:13:28 Page 3
 LineID PL SL ----+-CA-1-B--+----2----+----3----+----4----+----5----+----6----+----7- --+----8 Map and Cross Reference
/C COBOLZ2
 #####1 ID DIVISION.
 #####2 PROGRAM-ID. COBOLZ2.
 #####3 ENVIRONMENT DIVISION.
 #####4 DATA DIVISION.
 #####5 WORKING-STORAGE SECTION.
#####6 77 DV-VAL PIC 9(4) USAGE COMP. BLW=####+### 2C

 �����7 LINKAGE SECTION.
#####8 77 D-VAL PIC 9(4) USAGE COMP. BLL=###1+### 2C
#####9 PROCEDURE DIVISION USING D-VAL. 8
����1� MOVE D-VAL TO DV-VAL. 8 6
����11 CALL "ASSEMZ3" USING DV-VAL. EXT 6

 ####12 GOBACK.
C/ COBOLZ2

Figure 88. Listing for COBOLZ2

7. In the Local Variables section of the dump for program COBOLZ1, shown in
Figure 89, D-VAL has a 0 value. This indicates that the error causing a fixed-
point divide exception in ASSEMZ3 was actually caused by the value of D-VAL
in COBOLZ1.

...
 Local Variables:

6 77 D-VAL 9999 COMP �����
...

Figure 89. Variables Section of Language Environment Dump for COBOLZ1

210 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Chapter 6. Debugging Fortran Routines

This chapter provides information to help you debug applications that contain one
or more Fortran routines. It includes the following topics:

� Determining the source of errors in Fortran routines
� Using Fortran compiler listings
� Generating a Language Environment dump of a Fortran routine
� Finding Fortran information in a dump
� Examples of debugging Fortran routines

Determining the Source of Errors in Fortran Routines
Most errors in Fortran routines can be identified by the information provided in
Fortran run-time messages, which begin with the prefix FOR.

The Fortran compiler cannot identify all possible errors. The following list identifies
several errors not detected by the compiler that could potentially result in problems:

� Failing to assign values to variables and arrays before using them in your
program.

� Specifying subscript values that are not within the bounds of an array. If you
assign data outside the array bounds, you can inadvertently destroy data and
instructions.

� Moving data into an item that is too small for it, resulting in truncation.

� Making invalid data references to EQUIVALENCE items of differing types (for
example, integer or real).

� Transferring control into the range of a DO loop from outside the range of the
loop. The compiler issues a warning message for all such branches if you
specify OPT(2), OPT(3), or VECTOR.

� Using arithmetic variables and constants that are too small to give the precision
you need in the result. For example, to obtain more than 6 decimal digits in
floating-point results, you must use double precision.

� Concatenating character strings in such a way that overlap can occur.

� Trying to access services that are not available in the operating system or hard-
ware.

� Failing to resolve name conflicts between Fortran and C library routines using
the procedures described in OS/390 Language Environment Programming
Guide.

Identifying Run-Time Errors
Fortran has several features that help you find run-time errors. Fortran run-time
messages are discussed in Chapter 13, “Fortran Run-Time Messages” on
page 479. Other debugging aids include the optional traceback map, program inter-
ruption messages, abnormal termination dumps, and operator messages.

� The optional traceback map helps you identify where errors occurred while
running your application. The TERMTHDACT(TRACE) run-time option, which is

 Copyright IBM Corp. 1991, 2000 211

set by default under Language Environment, generates a dump containing the
traceback map.

You can also get a traceback map at any point in your routine by invoking the
ERRTRA subroutine.

� Program interruption messages are generated whenever the program is inter-
rupted during execution. Program interruption messages are written to the Lan-
guage Environment message file.

The program interruption message indicates the exception that caused the ter-
mination; the completion code from the system indicates the specification or
operation exception resulting in termination.

� Program interruptions causing an abnormal termination produce a dump, which
displays the completion code and the contents of registers and system control
fields.

To display the contents of main storage as well, you must request an abnormal
termination (ABEND) dump by including a SYSUDUMP DD statement in the
appropriate job step. The following example shows how the statement can be
specified for IBM-supplied cataloged procedures:

//GO.SYSUDUMP DD SYSOUT=A

� You can request various dumps by invoking any of several dump service rou-
tines while your program runs. These dump service routines are discussed in
“Generating a Language Environment Dump of a Fortran Routine” on
page 214.

� Operator messages are displayed when your program issues a PAUSE or
STOP n statement. These messages help you understand how far execution
has progressed before reaching the PAUSE or STOP statement.

The operator message can take the following forms:

n
String of 1–5 decimal digits you specified in the PAUSE or STOP state-
ment. For the STOP statement, this number is placed in R15.

'message'
Character constant you specified in the PAUSE or STOP statement.

0
Printed when a PAUSE statement containing no characters is executed
(not printed for a STOP statement).

A PAUSE message causes the program to stop running pending an operator
response. The format of the operator's response to the message depends on
the system being used.

� Under Language Environment, error messages produced by Language Environ-
ment and Fortran are written to a common message file. Its ddname is speci-
fied in the MSGFILE run-time option. The default ddname is SYSOUT.

Fortran information directed to the message file includes:

– Error messages resulting from unhandled conditions

– Printed output from any of the dump services (SDUMP, DUMP/PDUMP,
CDUMP/CPDUMP)

– Output produced by a WRITE statement with a unit identifier having the
same value as the Fortran error message unit

212 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

– Output produced by a WRITE statement with * given as the unit identifier
(assuming the Fortran error message unit and standard print unit are the
same unit)

– Output produced by the PRINT statement (assuming the Fortran error
message unit and the standard print unit are the same unit)

For more information about handling message output using the Language Envi-
ronment MSGFILE run-time option, see OS/390 Language Environment Pro-
gramming Guide.

Using Fortran Compiler Listings
Fortran listings provide you with:

� The date of compilation including information about the compiler
� A listing of your source program
� Diagnostic messages telling you of errors in the source program
� Informative messages telling you the status of the compilation

The following table contains a list of the contents of the various compiler-generated
listings that you might find helpful when you use information in dumps to debug
Fortran programs.

Name Contents
Compiler
Option

Diagnostic message listing Error messages detected during compilation. FLAG

Source program Source program statements. SOURCE

Source program Source program statements and error messages. SRCFLG

Storage map and cross refer-
ence

Variable use, statement function, subprogram, or intrinsic
function within a program.

MAP and XREF

Cross reference Cross reference of names with attributes. XREF

Source program map Offsets of automatic and static internal variables (from their
defining base).

MAP

Object code Contents of the program control section in hexadecimal nota-
tion and translated into a pseudo-assembler format. To limit
the size of the object code listing, specify the statement or
range of statements to be listed; for example, LIST(20) or
LIST(10,30).

LIST

Variable map, object code,
static storage

Same as MAP and LIST options above, plus contents of
static internal and static external control sections in
hexadecimal notation with comments.

MAP and LIST

Symbolic dump Internal statement numbers, sequence numbers, and symbol
(variable) information.

SDUMP

 Chapter 6. Debugging Fortran Routines 213

 DUMP/PDUMP

Generating a Language Environment Dump of a Fortran Routine
To generate a dump containing Fortran information, call either DUMP/PDUMP,
CDUMP/CPDUMP, or SDUMP.

DUMP/PDUMP and CDUMP/CPDUMP produce output that is unchanged from the
output generated under Fortran. Under Language Environment, however, the output
is directed to the message file.

When SDUMP is invoked, the output is also directed to the Language Environment
message file. The dump format differs from other Fortran dumps, however,
reflecting a common format shared by the various HLLs under Language Environ-
ment.

You cannot make a direct call to CEE3DMP from a Fortran program. It is possible
to call CEE3DMP through an assembler routine called by your Fortran program.
Fortran programs are currently restricted from directly invoking Language Environ-
ment callable services.

DUMP/PDUMP
Provides a dump of a specified area of storage.

CDUMP/CPDUMP
Provides a dump of a specified area of storage in character format.

SDUMP
Provides a dump of all variables in a program unit.

 DUMP/PDUMP Subroutines
The DUMP/PDUMP subroutine dynamically dumps a specified area of storage to
the system output data set. When you use DUMP, the processing stops after the
dump; when you use PDUMP, the processing continues after the dump.

 Syntax

CALL {DUMP | PDUMP} (a1, b1,k1, a2,b2, k2,...)

a and b
Variables in the program unit. Each indicates an area of storage to be dumped.
Either a or b can represent the upper or lower limit of the storage area.

k The dump format to be used. The values that can be specified for k, and the
resulting dump formats, are:

Value Format Requested
0 Hexadecimal
1 LOGICAL*1
2 LOGICAL*4
3 INTEGER*2
4 INTEGER*4
5 REAL*4
6 REAL*8
7 COMPLEX*8
8 COMPLEX*16
9 CHARACTER

214 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CDUMP/CPDUMP

10 REAL*16
11 COMPLEX*32
12 UNSIGNED*1
13 INTEGER*1
14 LOGICAL*2
15 INTEGER*8
16 LOGICAL*8

Usage Considerations for DUMP/PDUMP
A load module or phase can occupy a different area of storage each time it is exe-
cuted. To ensure that the appropriate areas of storage are dumped, the following
conventions should be observed.

If an array and a variable are to be dumped at the same time, a separate set of
arguments should be used for the array and for the variable. The specification of
limits for the array should be from the first element in the array to the last element.
For example, assume that A is a variable in common, B is a real number, and
TABLE is an array of 20 elements. The following call to the storage dump routine
could be used to dump TABLE and B in hexadecimal format, and stop the program
after the dump is taken:

CALL DUMP(TABLE(1),TABLE(2#),#,B,B,#)

If an area of storage in common is to be dumped at the same time as an area of
storage not in common, the arguments for the area in common should be given
separately. For example, the following call to the storage dump routine could be
used to dump the variables A and B in REAL*8 format without stopping the
program:

CALL PDUMP(A,A,6,B,B,6)

If variables not in common are to be dumped, each variable must be listed sepa-
rately in the argument list. For example, if R, P, and Q are defined implicitly in the
program, the statement

CALL PDUMP(R,R,5,P,P,5,Q,Q,5)

should be used to dump the three variables in REAL*4 format. If the statement

CALL PDUMP(R,Q,5)

is used, all main storage between R and Q is dumped, which might or might not
include P, and could include other variables.

 CDUMP/CPDUMP Subroutines
The CDUMP/CPDUMP subroutine dynamically dumps a specified area of storage
containing character data. When you use CDUMP, the processing stops after the
dump; when you use CPDUMP, the processing continues after the dump.

 Syntax

CALL {CDUMP | CPDUMP} (a1, b1, a2, b2,...)

a and b
Variables in the program unit. Each indicates an area of storage to be dumped.
Either a or b can represent the upper or lower limit of each storage area.

 Chapter 6. Debugging Fortran Routines 215

 SDUMP

The dump is always produced in character format. A dump format type (unlike for
DUMP/PDUMP) must not be specified.

Usage Considerations for CDUMP/CPDUMP
A load module can occupy a different area of storage each time it is executed. To
ensure that the appropriate areas of storage are dumped, the following conventions
should be observed.

If an array and a variable are to be dumped at the same time, a separate set of
arguments should be used for the array and for the variable. The specification of
limits for the array should be from the first element in the array to the last element.
For example, assume that B is a character variable and TABLE is a character array
of 20 elements. The following call to the storage dump routine could be used to
dump TABLE and B in character format, and stop the program after the dump is
taken:

CALL CDUMP(TABLE(1), TABLE(2#), B, B)

 SDUMP Subroutine
The SDUMP subroutine provides a symbolic dump that is displayed in a format dic-
tated by variable type as coded or defaulted in your source. Data is dumped to the
error message unit. The symbolic dump is created by program request, on a
program unit basis, using CALL SDUMP. Variables can be dumped automatically
after abnormal termination using the compiler option SDUMP. For more information
on the SDUMP compiler option, see VS FORTRAN Version 2 Programming Guide
for CMS and MVS.

Items displayed are:

� All referenced, local, named, and saved variables in their Fortran-defined data
representation

� All variables contained in a static common area (blank or named) in their
Fortran-defined data representation

� All variables contained in a dynamic common area in their Fortran-defined data
representation

� Nonzero or nonblank character array elements only

� Array elements with their correct indexes

The amount of output produced can be very large, especially if your program has
large arrays, or large arrays in common blocks. For such programs, you might want
to avoid calling SDUMP.

 Syntax

CALL SDUMP [(rtn1,rtn2,...)]

rtn1,rtn2,...
Names of other program units from which data will be dumped. These names
must be listed in an EXTERNAL statement.

216 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 SDUMP

Usage Considerations for SDUMP
� To obtain symbolic dump information and location of error information, compila-

tion must be done either with the SDUMP option or with the TEST option.

� Calling SDUMP and specifying program units that have not been entered gives
unpredictable results.

� Calling SDUMP with no parameters produces the symbolic dump for the current
program unit.

� An EXTERNAL statement must be used to identify the names being passed to
SDUMP as external routine names.

� At higher levels of optimization (1, 2, or 3), the symbolic dump could show
incorrect values for some variables because of compiler optimization tech-
niques.

� Values for uninitialized variables are unpredictable. Arguments in uncalled sub-
programs or in subprograms with argument lists shorter than the maximum can
cause the SDUMP subroutine to fail.

� The display of data can also be invoked automatically. If the run-time option
TERMTHDACT(DUMP) is in effect and your program abends in a program unit
compiled with the SDUMP option or with the TEST option, all data in that
program unit is automatically dumped. All data in any program unit in the save
area traceback chain compiled with the SDUMP option or with the TEST option
is also dumped. Data occurring in a common block is dumped at each occur-
rence, because the data definition in each program unit could be different.

Examples of calling SDUMP from the main program and from a subprogram follow.
Figure 90 on page 218 shows a sample program calling SDUMP and Figure 91 on
page 219 shows the resulting output that is generated. In the main program, the
statement

EXTERNAL PGM1,PGM2,PGM3

makes the address of subprograms PGM1, PGM2, and PGM3 available for a call to
SDUMP as follows:

CALL SDUMP (PGM1,PGM2,PGM3)

This causes variables in PGM1, PGM2, and PGM3 to be printed.

In the subprogram PGM1, the statement

EXTERNAL PGM2,PGM3

makes PGM2 and PGM3 available. (PGM1 is missing because the call is in
PGM1.) The statements

CALL SDUMP
CALL SDUMP (PGM2,PGM3)

dump variables PGM1, PGM2, and PGM3.

 Chapter 6. Debugging Fortran Routines 217

 SDUMP

OPTIONS IN EFFECT: LIST NOMAP NOXREF NOGOSTMT NODECK SOURCE TERM OBJECT FIXED TRMFLG SRCFLG NODDIM NORENT SDUMP(ISN)
NOSXM NOVECTOR IL(DIM) NOTEST SC(C) NODC NOEC NOEMODE NOICA NODIRECTIVE NODBCS NOSAA NOPARALLEL NODYNAMIC NOSYM

 NOREORDER NOPC
OPT(#) LANGLVL(77) NOFIPS FLAG(I) HALT(S) AUTODBL(NONE) PTRSIZE(8) LINECOUNT(6#) CHARLEN(5##) NAME(MAIN#)

 IF DO ISN C....C...1.........2.........3.........4.........5.........6.........7.C.......8
 1 PROGRAM FORTMAIN
 2 EXTERNAL PGM1,PGM2,PGM3
 3 INTEGERC4 ANY_INT
 4 INTEGERC4 INT_ARR(3)
 5 CHARACTERC2# CHAR_VAR

6 ANY_INT = 555
7 INT_ARR(1) = 1111
8 INT_ARR(2) = 2222
9 INT_ARR(3) = 2222
1# CHAR_VAR = 'SAMPLE CONSTANT '

 11 CALL PGM1(ANY_INT,CHAR_VAR)
 12 CALL SDUMP(PGM1,PGM2,PGM3)
 13 STOP
 14 END
OPTIONS IN EFFECT: LIST NOMAP NOXREF NOGOSTMT NODECK SOURCE TERM OBJECT FIXED TRMFLG SRCFLG NODDIM NORENT SDUMP(ISN)

NOSXM NOVECTOR IL(DIM) NOTEST SC(C) NODC NOEC NOEMODE NOICA NODIRECTIVE NODBCS NOSAA NOPARALLEL NODYNAMIC NOSYM
 NOREORDER NOPC

OPT(#) LANGLVL(77) NOFIPS FLAG(I) HALT(S) AUTODBL(NONE) PTRSIZE(8) LINECOUNT(6#) CHARLEN(5##) NAME(MAIN#)
 IF DO ISN C....C...1.........2.........3.........4.........5.........6.........7.C.......8
 1 SUBROUTINE PGM1(ARG1,ARG2)
 2 EXTERNAL PGM2,PGM3
 3 INTEGERC4 ARG1
 4 CHARACTERC2# ARG2

5 ARG1 = 1
6 ARG2 = 'ARGUMENT'

 7 CALL PGM2
 8 CALL SDUMP
 9 CALL SDUMP(PGM2,PGM3)
 1# RETURN
 11 END
OPTIONS IN EFFECT: LIST NOMAP NOXREF NOGOSTMT NODECK SOURCE TERM OBJECT FIXED TRMFLG SRCFLG NODDIM NORENT SDUMP(ISN)

NOSXM NOVECTOR IL(DIM) NOTEST SC(C) NODC NOEC NOEMODE NOICA NODIRECTIVE NODBCS NOSAA NOPARALLEL NODYNAMIC NOSYM
 NOREORDER NOPC

OPT(#) LANGLVL(77) NOFIPS FLAG(I) HALT(S) AUTODBL(NONE) PTRSIZE(8) LINECOUNT(6#) CHARLEN(5##) NAME(MAIN#)
 IF DO ISN C....C...1.........2.........3.........4.........5.........6.........7.C.......8
 1 SUBROUTINE PGM2
 2 INTEGERC4 PGM2VAR

3 PGM2VAR = 555
 4 CALL PGM3
 5 RETURN
 6 END
OPTIONS IN EFFECT: LIST NOMAP NOXREF NOGOSTMT NODECK SOURCE TERM OBJECT FIXED TRMFLG SRCFLG NODDIM NORENT SDUMP(ISN)

NOSXM NOVECTOR IL(DIM) NOTEST SC(C) NODC NOEC NOEMODE NOICA NODIRECTIVE NODBCS NOSAA NOPARALLEL NODYNAMIC NOSYM
 NOREORDER NOPC

OPT(#) LANGLVL(77) NOFIPS FLAG(I) HALT(S) AUTODBL(NONE) PTRSIZE(8) LINECOUNT(6#) CHARLEN(5##) NAME(MAIN#)
 IF DO ISN C....C...1.........2.........3.........4.........5.........6.........7.C.......8
 1 SUBROUTINE PGM3
 2 CHARACTERC2# PGM3VAR

3 PGM3VAR = 'PGM3 VAR'
 4 RETURN
 5 END

Figure 90. Example Program That Calls SDUMP

Figure 91 on page 219 shows the resulting output generated by the example in
Figure 90.

218 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Parameters, Registers, and Variables for Active Routines:
PGM1 (DSA address #6D##4C8):
Parameters:
 ARG2 CHARACTERC2# ARGUMENT

 ARG1 INTEGERC4 1
Local Variables:
Parameters, Registers, and Variables for Active Routines:
PGM2 (DSA address ###93#FC):
Parameters:
Local Variables:
 PGM2VAR INTEGERC4 555
Parameters, Registers, and Variables for Active Routines:
PGM3 (DSA address ###93#FC):
Parameters:
Local Variables:
 PGM3VAR CHARACTERC2# PGM3 VAR

Parameters, Registers, and Variables for Active Routines:
PGM1 (DSA address ###93#FC):
Parameters:
 ARG2 CHARACTERC2# ARGUMENT

 ARG1 INTEGERC4 1
Local Variables:
Parameters, Registers, and Variables for Active Routines:
PGM2 (DSA address ###93#FC):
Parameters:
Local Variables:
 PGM2VAR INTEGERC4 555
Parameters, Registers, and Variables for Active Routines:
PGM3 (DSA address ###93#FC):
Parameters:
Local Variables:
 PGM3VAR CHARACTERC2# PGM3 VAR

Figure 91. Language Environment Dump Generated Using SDUMP

Finding Fortran Information in a Language Environment Dump
To locate Fortran-specific information in a Language Environment dump, you must
understand how to use the traceback section and the section in the symbol table
dump showing parameters and variables.

 Chapter 6. Debugging Fortran Routines 219

CEE3DMP V1 R8.#: Condition processing resulted in the unhandled condition. #3/26/97 1#:32:56 AM Page: 1

Information for enclave SAMPLE

Information for thread 8###############
[1]
 Traceback:

DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
###2D#18 CEEHDSP #593676# +####277C CEEHDSP #593676# +####277C CEEPLPKA Call
###2F#18 AFHCSGLE #59DF718 +#####1A8 AFHCSGLE #59DF718 +#####1A8 AFHPRNAG Exception
#5A44#6# AFHOOPNR #5A11638 +####1EDE AFHOOPNR #5A11638 +####1EDE AFHPRNAG Call
#59##A9# SAMPLE #59##9A8 +#####21C SAMPLE #59##9A8 +#####21C 6_ISN GO Call

[2]
Condition Information for Active Routines
Condition Information for AFHCSGLE (DSA address ###2F#18)
CIB Address: ###2D468

 Current Condition:
FOR1916S The OPEN statement for unit 999 failed. The unit number was either less than # or greater than 99, the highest

unit number allowed at your installation.
 Location:

Program Unit: AFHCSGLE Entry: AFHCSGLE Statement: Offset: +#####1A8
Storage dump near condition, beginning at location: #59DF8B#
+###### #59DF8B# 5#6#D198 588#C2B8 58F#8#1C 411#D19# #5EFD5#2 D3#19751 477#A1F# 482#D2FE |&-Jq..B..#....J...N.L.p....#..K.|

Parameters, Registers, and Variables for Active Routines:
CEEHDSP (DSA address ###2D#18):

 Saved Registers:
 GPR#..... #####3E7 GPR1..... ###2D3B4 GPR2..... ###2DFD7 GPR3..... ###2E#27
 GPR4..... ###2DF94 GPR5..... ######## GPR6..... #######4 GPR7..... ########
 GPR8..... ###2E#17 GPR9..... #593875E GPR1#.... #593775F GPR11.... 8593676#
 GPR12.... ###1477# GPR13.... ###2D#18 GPR14.... 8##25#DE GPR15.... 85949C7#

 GPREG STORAGE:
Storage around GPR# (#####3E7)

 -####2# #####3C7 Inaccessible storage.
 +###### #####3E7 Inaccessible storage.
 +####2# #####4#7 Inaccessible storage.

Storage around GPR1 (###2D3B4)
-####2# ###2D394 #######6 ######## ###2E#17 #593875E #593775F 8593676# ###1477# ######## |.............lg;.l.¬el.-........|
+###### ###2D3B4 ###2DFD7 ###2E#27 ###2DF94 ###2DF94 ###2DDF4 ###2DEC4 ###2E158 ###2D#18 |...P.......m...m...4...D........|
+####2# ###2D3D4 ###2D468 ######## ######## #######7 859D67E# ######## ######## #5914848 |..M.............e............j..|

...
[3]
 Local Variables:
 ABC CHARACTERC3 123

J INTEGERC4 444

[4]
File Status and Attributes:
The total number of units defined is 1##.
The default unit for the PUNCH statement is 7.
The default unit for the Fortran error messages is 6.
The default unit for formatted sequential output is 6.
The default unit for formatted sequential input is 5.

Figure 92. Sections of the Language Environment Dump

Understanding the Language Environment Traceback Table
Examine the traceback section of the dump, labeled with [1] in Figure 92, for con-
dition information about your routine and information about the statement number
and address where the exception occurred. The traceback section helps you locate
where an error occurred in your program. The information in this section begins
with the most recent program unit and ends with the first program unit.

220 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Identifying Condition Information
The section labeled [2] in Figure 92 on page 220 shows the condition information
for the active routines, indicating the program message, program unit name, the
statement number, and the offset within the program unit where the error occurred.

Identifying Variable Information
The local variable section of the dump, shown in the section labeled [3] in
Figure 92 on page 220, contains information on all variables and arrays in each
program unit in the save area chain, including the program causing the dump to be
invoked. The output shows variable items (one line only) and array (more than one
line) items.

Use the local variable section of the dump to identify the variable name, type, and
value at the time the dump was called. Variable and array items can contain either
character or noncharacter data, but not both.

Identifying File Status Information
The section labeled [4] in Figure 92 on page 220 shows the file status and attri-
bute section of the dump. This section displays the total number of units defined,
the default units for error messages, and the default unit numbers for formatted
input or formatted output.

Examples of Debugging Fortran Routines
This section contains examples of Fortran routines and instructions for using infor-
mation in the Language Environment dump to debug them.

Calling a Nonexistent Routine
Figure 93 illustrates an error caused by calling a nonexistent routine. The options
in effect at compile time appear at the top of the listing.

OPTIONS IN EFFECT: LIST NOMAP NOXREF NOGOSTMT NODECK SOURCE TERM OBJECT FIXED TRMFLG SRCFLG NODDIM NORENT SDUMP(ISN)
NOSXM NOVECTOR IL(DIM) NOTEST SC(C) NODC NOEC NOEMODE NOICA NODIRECTIVE NODBCS NOSAA NOPARALLEL NODYNAMIC NOSYM

 NOREORDER NOPC
OPT(#) LANGLVL(77) NOFIPS FLAG(I) HALT(S) AUTODBL(NONE) PTRSIZE(8) LINECOUNT(6#) CHARLEN(5##) NAME(MAIN#)

 1 PROGRAM CALLNON
 2 INTEGERC4 ARRAY_END
 C
 3 CALL SUBNAM
 4 STOP
 5 END

Figure 93. Example of Calling a Nonexistent Routine

Figure 94 on page 222 shows sections of the dump generated by a call to
SDUMP.

 Chapter 6. Debugging Fortran Routines 221

CEE3DMP V1 R8.#: Condition processing resulted in the unhandled condition. #3/26/97 1#:33:#1 AM Page: 1

Information for enclave CALLNON

Information for thread 8###############

 Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
###2D#18 CEEHDSP #593676# +####277C CEEHDSP #593676# +####277C CEEPLPKA Call
#59##C1# CALLNON #59##B28 -#59##B26 CALLNON #59##B28 -#59##B26 3_ISN GO Exception

Condition Information for Active Routines
Condition Information for CALLNON (DSA address #59##C1#)
CIB Address: ###2D468

 Current Condition:
CEE32#1S The system detected an operation exception.

 Location:
Program Unit: CALLNON

 Entry: CALLNON
Statement: 3_ISN Offset: -#59##B26

 Machine State:
ILC..... ###2 Interruption Code..... ###1
PSW..... #78D3D## 8######4

 GPR#..... FD#####8 GPR1..... ######## GPR2..... #59##D#4 GPR3..... #59##C1#
 GPR4..... ##7F693# GPR5..... ##7FD238 GPR6..... ##7BFFF8 GPR7..... FD######
 GPR8..... ##7FD968 GPR9..... 8#7FD4F8 GPR1#.... ######## GPR11.... ##7FD238
 GPR12.... ##E21ED2 GPR13.... #59##C1# GPR14.... 859##CE8 GPR15.... ########

Storage dump near condition, beginning at location: ########
 +###### ######## Inaccessible storage.

Parameters, Registers, and Variables for Active Routines:
CEEHDSP (DSA address ###2D#18):

 Saved Registers:
 GPR#..... ######## GPR1..... ###2D3B4 GPR2..... ###2DFD7 GPR3..... ###2E#27
 GPR4..... ###2DF94 GPR5..... ######## GPR6..... #######4 GPR7..... ########
 GPR8..... ###2E#17 GPR9..... #593875E GPR1#.... #593775F GPR11.... #593676#
 GPR12.... ###1477# GPR13.... ###2D#18 GPR14.... 8##25#DE GPR15.... 85949C7#

 GPREG STORAGE:
Storage around GPR# (########)

 +###### ######## Inaccessible storage.
 +####2# ######2# Inaccessible storage.
 +####4# ######4# Inaccessible storage.

Storage around GPR1 (###2D3B4)
-####2# ###2D394 #######6 ######## ###2E#17 #593875E #593775F #593676# ###1477# ######## |.............lg;.l.¬.l.-........|
+###### ###2D3B4 ###2DFD7 ###2E#27 ###2DF94 ###2DF94 ###2DDF4 ###2DEC4 ###2E158 ######## |...P.......m...m...4...D........|
+####2# ###2D3D4 ###2D468 ######## ######## #######7 859D67E# ######## ######## #5914848 |..M.............e............j..|

...
CEE3DMP V1 R8.#: Condition processing resulted in the unhandled condition. #3/26/97 1#:33:#1 AM Page: 4

File Status and Attributes:
The total number of units defined is 1##.
The default unit for the PUNCH statement is 7.
The default unit for the Fortran error messages is 6.
The default unit for formatted sequential output is 6.
The default unit for formatted sequential input is 5.

Figure 94. Sections of the Language Environment Dump Resulting from a Call to a Nonexistent Routine

To understand the traceback section, and debug this example routine, do the
following:

1. Find the Current Condition information in the Condition Information for Active
Routines section of the dump. The message is CEE3201S. The system
detected an operation exception at statement 3. For more information about
this message, see Chapter 9, “Language Environment Run-Time Messages” on
page 265. This section of the dump also provides such information as the
name of the active routine and the current statement number at the time of the
dump.

2. Locate statement 3 in the routine shown in Figure 93 on page 221. This state-
ment calls subroutine SUBNAM. The message CEE3201S in the Condition

222 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Information section of the dump indicates that the operation exception was gen-
erated because of an unresolved external reference.

3. Check the linkage editor output for error messages.

 Divide-by-Zero Error
Figure 95 demonstrates a divide-by-zero error. In this example, the main Fortran
program passed 0 to subroutine DIVZEROSUB, and the error occurred when
DIVZEROSUB attempted to use this data as a divisor.

OPTIONS IN EFFECT: LIST NOMAP NOXREF NOGOSTMT NODECK SOURCE TERM OBJECT FIXED TRMFLG SRCFLG NODDIM NORENT SDUMP(ISN)
NOSXM NOVECTOR IL(DIM) NOTEST SC(C) NODC NOEC NOEMODE NOICA NODIRECTIVE NODBCS NOSAA NOPARALLEL NODYNAMIC NOSYM

 NOREORDER NOPC
OPT(#) LANGLVL(77) NOFIPS FLAG(I) HALT(S) AUTODBL(NONE) PTRSIZE(8) LINECOUNT(6#) CHARLEN(5##) NAME(MAIN#)

 1 PROGRAM DIVZERO
 2 INTEGERC4 ANY_NUMBER
 3 INTEGERC4 ANY_ARRAY(3)

4 PRINT C,'EXAMPLE STARTING'
5 ANY_NUMBER = #
6 DO I = 1,3

 1 7 ANY_ARRAY(I) = I
 1 8 END DO

9 CALL DIVZEROSUB(ANY_NUMBER, ANY_ARRAY)
1# PRINT C,'EXAMPLE ENDING'

 11 STOP
 12 END
OPTIONS IN EFFECT: LIST NOMAP NOXREF NOGOSTMT NODECK SOURCE TERM OBJECT FIXED TRMFLG SRCFLG NODDIM NORENT SDUMP(ISN)

NOSXM NOVECTOR IL(DIM) NOTEST SC(C) NODC NOEC NOEMODE NOICA NODIRECTIVE NODBCS NOSAA NOPARALLEL NODYNAMIC NOSYM
 NOREORDER NOPC

OPT(#) LANGLVL(77) NOFIPS FLAG(I) HALT(S) AUTODBL(NONE) PTRSIZE(8) LINECOUNT(6#) CHARLEN(5##) NAME(MAIN#)
1 SUBROUTINE DIVZEROSUB(DIVISOR, DIVIDEND)

 2 INTEGERC4 DIVISOR
 3 INTEGERC4 DIVIDEND(3)

4 PRINT C,'IN SUBROUTINE DIVZEROSUB'
5 DIVIDEND(1) = DIVIDEND(3) / DIVISOR
6 PRINT C,'END OF SUBROUTINE DIVZEROSUB'

 7 RETURN
 8 END

Figure 95. Fortran Routine with a Divide-by-Zero Error

Figure 96 on page 224 shows the Language Environment dump for routine
DIVZERO.

 Chapter 6. Debugging Fortran Routines 223

CEE3DMP V1 R8.#: Condition processing resulted in the unhandled condition. #3/26/97 1#:33:#7 AM Page: 1

Information for enclave DIVZERO

Information for thread 8###############

 Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
###2D#18 CEEHDSP #593676# +####277C CEEHDSP #593676# +####277C CEEPLPKA Call
#59##64# DIVZSUB #59##558 +#####258 DIVZSUB #59##558 +#####258 5_ISN GO Exception
###2F#18 AFHLCLNR ###1B15# +######## AFHLCLNR ###1B15# +######## AFHPRNBG Call
#59##2E8 DIVZERO #59##2## +#####298 DIVZERO #59##2## +#####298 9_ISN GO Call

Condition Information for Active Routines
Condition Information for DIVZSUB (DSA address #59##64#)
CIB Address: ###2D468

 Current Condition:
CEE32#9S The system detected a fixed-point divide exception.

 Location:
Program Unit: DIVZSUB

 Entry: DIVZSUB
Statement: 5_ISN Offset: +#####258

 Machine State:
ILC..... ###4 Interruption Code..... ###9
PSW..... #78D2A## 859##7B4

 GPR#..... ######## GPR1..... #######3 GPR2..... #59##3FC GPR3..... #59##4##
 GPR4..... ##7F693# GPR5..... #59##468 GPR6..... #######C GPR7..... #59##3E#
 GPR8..... 859##4## GPR9..... 8#7FD4F8 GPR1#.... ######## GPR11.... ##7FD238
 GPR12.... ##E21ED2 GPR13.... #59##64# GPR14.... 859##79C GPR15.... #59##BA#

Storage dump near condition, beginning at location: #59##7A#
+###### #59##7A# 587#D118 58##7##C 587#D12# 8E####2# 5D##7### 587#D118 5#1#7##4 58F#D128 |..J.......J.....).....J.&....#J.|

Parameters, Registers, and Variables for Active Routines:
CEEHDSP (DSA address ###2D#18):

 Saved Registers:
 GPR#..... ######## GPR1..... ###2D3B4 GPR2..... ###2DFD7 GPR3..... ###2E#27
 GPR4..... ###2DF94 GPR5..... ######## GPR6..... #######4 GPR7..... ########
 GPR8..... ###2E#17 GPR9..... #593875E GPR1#.... #593775F GPR11.... #593676#
 GPR12.... ###1477# GPR13.... ###2D#18 GPR14.... 8##25#DE GPR15.... 85949C7#

 GPREG STORAGE:
Storage around GPR# (########)

 +###### ######## Inaccessible storage.
 +####2# ######2# Inaccessible storage.
 +####4# ######4# Inaccessible storage.

Storage around GPR1 (###2D3B4)
-####2# ###2D394 #######6 ######## ###2E#17 #593875E #593775F #593676# ###1477# ######## |.............lg;.l.¬.l.-........|
+###### ###2D3B4 ###2DFD7 ###2E#27 ###2DF94 ###2DF94 ###2DDF4 ###2DEC4 ###2E158 ######## |...P.......m...m...4...D........|
+####2# ###2D3D4 ###2D468 ######## ######## #######7 859D67E# ######## ######## #5914848 |..M.............e............j..|

...
 Local Variables:
 I INTEGERC4 4

 ANY_ARRAY(3) INTEGERC4
ANY_ARRAY(1) 1 2 3

 ANY_NUMBER INTEGERC4 #

File Status and Attributes:
The total number of units defined is 1##.
The default unit for the PUNCH statement is 7.
The default unit for the Fortran error messages is 6.
The default unit for formatted sequential output is 6.
The default unit for formatted sequential input is 5.

Figure 96. Language Environment Dump from Divide-By-Zero Fortran Example

To debug this application, do the following:

1. Locate the error message for the current condition in the Condition Information
section of the dump, shown in Figure 96. The message is CEE3209S. The
system detected a fixed-point divide exception. See Chapter 9, “Language
Environment Run-Time Messages” on page 265 for additional information
about this message.

2. Note the sequence of the calls in the call chain:

224 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

a. DIVZERO called AFHLCLNR, which is a Fortran library subroutine.

b. AFHLCLNR called DIVZEROSUB. (Note that when a program-unit name is
longer than 7 characters, the name as it appears in the dump consists of
the first 4 and last 3 characters concatenated together.)

c. DIVZEROSUB attempted a divide-by-zero operation (at statement 5).

d. This resulted in a call to CEEHDSP, a Language Environment condition
handling routine.

3. Locate statement 5 in the Fortran listing for the DIVZEROSUB subroutine in
Figure 96 on page 224. This is an instruction to divide the contents of
DIVIDEND(3) by DIVISOR.

4. Since DIVISOR is a parameter of subroutine DIVZEROSUB, go to the Parame-
ters section of the dump shown in Figure 96 on page 224. The parameter
DIVISOR shows a value of 0.

5. Since DIVISOR contains the value passed to DIVZEROSUB, check its value.
ANY_NUMBER is the actual argument passed to DIVZEROSUB, and the dump
and listing of DIVZERO indicate that ANY_NUMBER had value 0 when passed
to DIVZEROSUB, leading to the divide-by-zero exception.

 Chapter 6. Debugging Fortran Routines 225

226 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Chapter 7. Debugging PL/I Routines

This chapter contains information that can help you debug applications that contain
one or more PL/I routines. Following a discussion about potential errors in PL/I rou-
tines, the first part of this chapter discusses how to use compiler-generated listings
to obtain information about PL/I routines, and how to use PLIDUMP to generate a
Language Environment dump of a PL/I routine. The last part of the chapter pro-
vides examples of PL/I routines and explains how to debug them using information
contained in the traceback information provided in the dump. The topics covered
are listed below.

� Determining the source of errors in PL/I routines
� Using PL/I compiler listings
� Generating a Language Environment dump of a PL/I routine
� Finding PL/I information in a dump
� Debugging example of PL/I routines

Determining the Source of Errors in PL/I Routines
Most errors in PL/I routines can be identified by the information provided in PL/I
run-time messages, which begin with the prefix IBM. For a list of these messages,
see Chapter 14, “PL/I Run-Time Messages” on page 647.

A malfunction in running a PL/I routine can be caused by:

� Logic errors in the source routine
� Invalid use of PL/I

 � Unforeseen errors
� Invalid input data
� Compiler or run-time routine malfunction

 � System malfunction
� Unidentified routine malfunction

 � Overlaid storage

Logic Errors in the Source Routine
Errors of this type are often difficult to detect because they often appear as com-
piler or library malfunctions.

Some common errors in source routines are:

� Incorrect conversion from arithmetic data
� Incorrect arithmetic and string manipulation operations
� Unmatched data lists and format lists

Invalid Use of PL/I
A misunderstanding of the language or a failure to provide the correct environment
for using PL/I can result in an apparent malfunction of a PL/I routine.

Any of the following, for example, might cause a malfunction:

� Using uninitialized variables
� Using controlled variables that have not been allocated
� Reading records into incorrect structures

 Copyright IBM Corp. 1991, 2000 227

� Misusing array subscripts
� Misusing pointer variables

 � Incorrect conversion
� Incorrect arithmetic operations
� Incorrect string manipulation operations

 Unforeseen Errors
If an error is detected during run time and no ON-unit is provided in the routine to
terminate the run or attempt recovery, the job terminates abnormally. However, the
status of a routine at the point where the error occurred can be recorded by using
an ERROR ON-unit that contains the statements:

ON ERROR
 BEGIN;
ON ERROR SYSTEM;
CALL PLIDUMP; /Cgenerates a dumpC/

 PUT DATA; /Cdisplays variablesC/
 END;

The statement ON ERROR SYSTEM ensures that further errors do not result in a
permanent loop.

Invalid Input Data
A routine should contain checks to ensure that any incorrect input data is detected
before it can cause the routine to malfunction.

Use the COPY option of the GET statement to check values obtained by stream-
oriented input. The values are listed on the file named in the COPY option. If no file
name is given, SYSPRINT is assumed.

Compiler or Run-Time Routine Malfunction
If you are certain that the malfunction is caused by a compiler or run-time routine
error, you can either open a PMR or submit an APAR for the error. See either PL/I
for MVS & VM Diagnosis Guide or VisualAge PL/I for OS/390 Diagnosis Guide for
more information about handling compiler and run-time routine malfunctions. Mean-
while, you can try an alternative way to perform the operation that is causing the
trouble. A bypass is often feasible, since the PL/I language frequently provides an
alternative method of performing operations.

 System Malfunction
System malfunctions include machine malfunctions and operating system errors.
System messages identify these malfunctions and errors to the operator.

Unidentified Routine Malfunction
In most circumstances, an unidentified routine malfunction does not occur when
using the compiler. If your routine terminates abnormally without an accompanying
Language Environment run-time diagnostic message, the error causing the termi-
nation might also be inhibiting the production of a message. Check for the
following:

� Your job control statements might be in error, particularly in defining data sets.

� Your routine might overwrite main storage areas containing executable
instructions. This can happen if you have accidentally:

228 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

– Assigned a value to a nonexistent array element. For example:

DCL ARRAY(1#);

...
DO I = 1 TO 1##;
ARRAY(I) = VALUE;

To detect this type of error in a compiled module, set the
SUBSCRIPTRANGE condition so that each attempt to access an element
outside the declared range of subscript values raises the
SUBSCRIPTRANGE condition. If there is no ON-unit for this condition, a
diagnostic message is printed and the ERROR condition is raised. This
facility, though expensive in run time and storage space, is a valuable
routine-testing aid.

– Used an incorrect locator value for a locator (pointer or offset) variable.
This type of error can occur if a locator value is obtained by means of
record-oriented transmission. Ensure that locator values created in one
routine, transmitted to a data set, and subsequently retrieved for use in
another routine, are valid for use in the second routine.

– Attempted to free a nonbased variable. This can happen when you free a
based variable after its qualifying pointer value has been changed. For
example:

DCL A STATIC,B BASED (P);
ALLOCATE B;
P = ADDR(A);
FREE B;

– Used the SUBSTR pseudovariable to assign a string to a location beyond
the end of the target string. For example:

DCL X CHAR(3);
I=3
SUBSTR(X,2,I) = 'ABC';

To detect this type of error, enable the STRINGRANGE condition during
compilation.

Storage Overlay Problems
If you suspect an error in your PL/I application is a storage overlay problem, check
for the following:

1. The use of a subscript outside the declared bounds (check the
SUBSCRIPTRANGE condition)

2. An attempt to assign a string to a target with an insufficient maximum length
(check the STRINGSIZE condition)

3. The failure of the arguments to a SUBSTR reference to comply with the rules
described for the SUBSTR built-in function (check the STRINGRANGE condi-
tion)

4. The loss of significant last high-order (left-most) binary or decimal digits during
assignment to an intermediate result or variable or during an input/output oper-
ation (check the SIZE condition)

5. The reading of a variable-length file into a variable

6. The misuse of a pointer variable

 Chapter 7. Debugging PL/I Routines 229

7. The invocation of a Language Environment callable service with fewer argu-
ments than are required

The first four situations are associated with the listed PL/I conditions, all of which
are disabled by default. If you suspect one of these problems exists in your routine,
use the appropriate condition prefix on the suspected statement or on the BEGIN or
PROCEDURE statement of the containing block.

The fifth situation occurs when you read a data record into a variable that is too
small. This type of problem only happens with variable-length files. You can often
isolate the problem by examining the data in the file information and buffer.

The sixth situation occurs when you misuse a pointer variable. This type of storage
overlay is particularly difficult to isolate. There are a number of ways pointer vari-
ables can be misused:

� When a READ statement runs with the SET option, a value is placed in a
pointer. If you then run a WRITE statement or another READ SET option with
another pointer, you overlay your storage if you try to use the original pointer.

� When you try to use a pointer to allocate storage that has already been freed,
you can also cause a storage overlay.

� When you attempt to use a pointer set with the ADDR built-in function as a
base for data with different attributes, you can cause a storage overlay.

The seventh situation occurs when a Language Environment callable service is
passed fewer arguments than its interface requires. The following example might
cause a storage overlay because Language Environment assumes that the fourth
item in the argument list is the address of a feedback code, when in reality it could
be residue data pointing anywhere in storage.

Invalid calls:

DCL CEEDATE ENTRY OPTIONS(ASM);
CALL CEEDATE(x,y,z); /C invalid C/

Valid calls:

DCL CEEDATE ENTRY(C,C,C,C OPTIONAL) OPTIONS(ASM);
CALL CEEDATE(x,y,z,C); /C valid C/
CALL CEEDATE(x,y,z,fc); /C valid C/

Using PL/I Compiler Listings
The following sections explain how to generate listings that contain information
about your routine. PL/I listings show machine instructions, constants, and external
or internal addresses that the linkage editor resolves. This information can help you
find other information, such as variable values, in a dump of a PL/I routine.

Note: VisualAge PL/I shares a common compiler back-end with C/C++. The
VisualAge PL/I assembler listing will, consequently, have a similar form to
those from the C/C++ compiler.

The PL/I compiler listings included below are from the PL/I for MVS & VM product.

230 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Generating PL/I Listings and Maps
 Note

VisualAge PL/I does not support the MAP option or LIST suboptions.

The following table shows compiler-generated listings that you might find helpful
when you use information in dumps to debug PL/I routines. For more information
about supported compiler options that generate listings, reference either the PL/I for
MVS & VM Programming Guide or the VisualAge PL/I for OS/390 Programming
Guide.

Name Contents
Compiler
Option

Source program Source program statements SOURCE

Cross reference Cross reference of names with attributes XREF and
ATTRIBUTES

Aggregate table Names and layouts of structures and arrays AGGREGATE

Variable map Offsets of automatic and static internal variables (from their
defining base)

MAP

Note: VisualAge
PL/I does not
support the MAP
compiler option.

Object code Contents of the program control section in hexadecimal nota-
tion and translated into a pseudo-assembler format. To limit
the size of the object code listing, specify a certain statement
or range of statements to be listed; for example, LIST(20) or
LIST(10,30).

LIST

Variable map, object code,
static storage

Same as MAP and LIST options above, plus contents of
static internal and static external control sections in
hexadecimal notation with comments

MAP and LIST
Note: VisualAge
PL/I does not
support the MAP
compiler option.

Finding Information in PL/I Listings
Figure 97 on page 232 shows an example PL/I routine that was compiled with
LIST and MAP.

 Chapter 7. Debugging PL/I Routines 231

CPROCESS SOURCE, LIST, MAP;

 SOURCE LISTING

 STMT

1 |EXAMPLE: PROC OPTIONS(MAIN);
2 | DCL EXTR ENTRY EXTERNAL;
3 | DCL A FIXED BIN(31);
4 | DCL B(2,2) FIXED BIN(31) STATIC EXTERNAL INIT((4)#);
5 | DCL C CHAR(2#) STATIC INIT('SAMPLE CONSTANT');
6 | DCL D FIXED BIN(31) STATIC;
7 | DCL E FIXED BIN(31);

 8 | FETCH EXTR;
 9 | CALL EXTR(A,B,C,D,E);
 1# | DISPLAY(C);
 11 | END;

Figure 97. PL/I Routine Compiled with LIST and MAP

Figure 98 on page 233 shows the output generated from this routine, including the
static storage map, variable storage map, and the object code listing. The sections
following this example describe the contents of each type of listing.

232 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

STATIC INTERNAL STORAGE MAP

E#####E8 PROGRAM ADCON
#####4 #######8 PROGRAM ADCON
#####8 ######96 PROGRAM ADCON
#####C ######96 PROGRAM ADCON
####1# ######96 PROGRAM ADCON
####14 ######## A..IBMSJDSA
####18 ######## A..IBMSPFRA
####1C ######## A..STATIC
####2# ##############44 LOCATOR..B
####28 ######88##14#### LOCATOR..C
####3# 91E#91E# CONSTANT
####34 #A######C5E7E3D9 FECB..EXTR
 4#4#4#4#
####4# 8#####34 A..FECB..EXTR
####44 #######C#######8 DESCRIPTOR
 #######2#######1
 #######4#######2
 #######1
####6# 8#####34 A..FECB..EXTR
####64 ######## A..B
####68 ######## A..A
####6C ######2# A..LOCATOR
####7# ######28 A..LOCATOR
####74 ######A# A..D
####78 8####### A..E
####7C ######## A..ENTRY EXTR
####8# 8#####28 A..LOCATOR
####84
####88 E2C1D4D7D3C54#C3 INITIAL VALUE..C
 D6D5E2E3C1D5E34#
 4#4#4#4#

STATIC EXTERNAL CSECTS

CSECT FOR EXTERNAL VARIABLE
 ################

...
VARIABLE STORAGE MAP

IDENTIFIER LEVEL OFFSET (HEX) CLASS BLOCK

E 1 184 B8 AUTO EXAMPLE
D 1 16# A# STATIC EXAMPLE
C 1 136 88 STATIC EXAMPLE
A 1 188 BC AUTO EXAMPLE

...
 OBJECT LISTING

####96 58 B# C ##4 L 11,4(#,12)
####9A 58 FB # ### L 15,PR..EXTR

C STATEMENT NUMBER 1 ####9E 59 F# C #64 C 15,1##(#,12)
DC C'EXAMPLE' ####A2 47 7# 2 #1E BNE CL.5
#####7 DC AL1(7) ####A6 41 1# 3 #4# LA 1,64(#,3)

####AA 58 F# 3 #18 L 15,A..IBMSPFRA
C PROCEDURE EXAMPLE ####AE #5 EF BALR 14,15

####B# 58 FB # ### L 15,PR..EXTR
C REAL ENTRY ####B4 CL.5 EQU C
#####8 9# EC D ##C STM 14,12,12(13)
#####C 47 F# F #4C B C+72
####1# ######## DC A(STMT. NO. TABLE) C STATEMENT NUMBER 9
####14 ######D8 DC F'216' ####B4 D2 13 D #C# 3 #68 MVC 192(2#,13),1#4(3)
####18 ######## DC A(STATIC CSECT) ####BA 41 7# D #BC LA 7,A
####1C ######## DC A(SYMTAB VECTOR) ####BE 5# 7# D #C# ST 7,192(#,13)
####2# ######## DC A(COMPILATION INFO) ####C2 41 7# D #B8 LA 7,E
####24 A8###### DC X'A8######' ####C6 5# 7# D #D# ST 7,2#8(#,13)
####28 ###1#1## DC X'###1#1##' ####CA 96 8# D #D# OI 2#8(13),X'8#'
####2C ######## DC X'########' ####CE 58 FB # ### L 15,PR..EXTR
####3# ######## DC X'########' ####D2 59 F# C #64 C 15,1##(#,12)
####34 ######## DC A(ENTRY LIST VECTOR)####D6 47 7# 2 #52 BNE CL.6
####38 ######## DC X'########' ####DA 41 1# 3 #6# LA 1,96(#,3)
####3C #1##8### DC X'#1##8###' ####DE 58 F# 3 #18 L 15,A..IBMSPFRA
####4# ######## DC A(REGION TABLE) ####E2 #5 EF BALR 14,15
####44 #######2 DC X'#######2' ####E4 58 FB # ### L 15,PR..EXTR
####48 ######## DC A(PRIMARY ENTRY) ####E8 CL.6 EQU C

Figure 98 (Part 1 of 2). Compiler-Generated Listings from Example PL/I Routine

 Chapter 7. Debugging PL/I Routines 233

####4C ######## DC X'########' ####E8 1B 55 SR 5,5
####5# ######## DC X'########' ####EA 41 1# D #C# LA 1,192(#,13)
####54 58 3# F #1# L 3,16(#,15) ####EE #5 EF BALR 14,15
####58 58 1# D #4C L 1,76(#,13)
####5C 58 ## F ##C L #,12(#,15)
####6# 1E #1 ALR #,1 C STATEMENT NUMBER 1#
####62 55 ## C ##C CL #,12(#,12) ####F# 41 1# 3 #8# LA 1,128(#,3)
####66 47 D# F #68 BNH C+1# ####F4 58 F# 3 #14 L 15,A..IBMSJDSA
####6A 58 F# C #74 L 15,116(#,12) ####F8 #5 EF BALR 14,15
####6E #5 EF BALR 14,15
####7# 58 E# D #48 L 14,72(#,13)
####74 18 F# LR 15,# C STATEMENT NUMBER 11
####76 9# E# 1 #48 STM 14,#,72(1) ####FA 18 #D LR #,13
####7A 5# D# 1 ##4 ST 13,4(#,1) ####FC 58 D# D ##4 L 13,4(#,13)
####7E 92 8# 1 ### MVI #(1),X'8#' ###1## 58 E# D ##C L 14,12(#,13)
####82 92 25 1 ##1 MVI 1(1),X'25' ###1#4 98 2C D #1C LM 2,12,28(13)
####86 92 #2 1 #76 MVI 118(1),X'#2' ###1#8 #5 1E BALR 1,14
####8A 41 D1 # ### LA 13,#(1,#)
####8E D2 #3 D #54 3 #3# MVC 84(4,13),48(3) C END PROCEDURE
####94 #5 2# BALR 2,# ###1#A #7 #7 NOPR 7

C PROCEDURE BASE C END PROGRAM

Figure 98 (Part 2 of 2). Compiler-Generated Listings from Example PL/I Routine

Static Internal Storage Map
 Note

VisualAge PL/I does not support the MAP option or LIST suboptions. Therefore
the Static Internal Storage Map is not available when compiling under VisualAge
PL/I.

To get a complete variable storage map and static storage map, but not a complete
LIST, specify a single statement for LIST to minimize the size of the listing; for
example, LIST(1).

Each line of the static storage map contains the following information:

1. Six-digit hexadecimal offset.
2. Hexadecimal text, in 8-byte sections where possible.
3. Comment, indicating the type of item to which the text refers. The comment

appears on the first line of the text for an item.

Some typical comments you might find in a static storage listing:

Comment Explanation

A..xxx Address constant for xxx

COMPILER LABEL CL.n Compiler-generated label n

CONDITION CSECT Control section for programmer-named condition

CONSTANT Constant

CSECT FOR EXTERNAL
VARIABLE

Control section for external variable

D..xxx Descriptor for xxx

DED..xxx Data element descriptor for xxx

DESCRIPTOR Data descriptor

ENVB Environment control block

FECB..xxx Fetch control block for xxx

234 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Comment Explanation

DCLCB Declare control block

FED..xxx Format element descriptor for xxx

KD..xxx Key descriptor for xxx

LOCATOR..xxx Locator for xxx

ONCB ON statement control block

PICTURED DED..xxx Pictured data element descriptor for xxx

PROGRAM ADCON Program address constant

RD..xxx Record descriptor for xxx

SYMBOL TABLE ELEMENT Symbol table address

SYMBOL TABLE..xxx Symbol table for xxx

SYMTAB DED..xxx Symbol table DED for xxx

USER LABEL..xxx Source program label for xxx

xxx Variable with name xxx. If the variable is not initialized, no
text appears against the comment. There is also no static
offset if the variable is an array (the static offset can be cal-
culated from the array descriptor, if required).

Variable Storage Map
 Note

VisualAge PL/I does not support the MAP option or LIST suboptions. Therefore
the Variable Storage Map is not available when compiling under VisualAge PL/I.

For automatic and static internal variables, the variable storage map contains the
following information:

� PL/I identifier name
 � Level
 � Storage class
� Name of the PL/I block in which it is declared
� Offset from the start of the storage area, in both decimal and hexadecimal form

If the LIST option is also specified, a map of the static internal and external control
sections, called the static storage map, is also produced.

Object Code Listing
 Note

VisualAge PL/I does not support the MAP option or LIST suboptions. Therefore
the Object Code Listing is not available when compiling under VisualAge PL/I.

The object code listing consists of the machine instructions and a translation of
these instructions into a form that resembles assembler and includes comments,
such as source program statement numbers.

The machine instructions are formatted into blocks of code, headed by the state-
ment or line number in the PL/I source program listing. Generally, only executable
statements appear in the listing. DECLARE statements are not normally included.

 Chapter 7. Debugging PL/I Routines 235

The names of PL/I variables, rather than the addresses that appear in the machine
code, are listed. Special mnemonics are used to refer to some items, including test
hooks, descriptors, and address constants.

Statements in the object code listing are ordered by block, as they are sequentially
encountered in the source program. Statements in the external procedure are given
first, followed by the statements in each inner block. As a result, the order of state-
ments frequently differs from that of the source program.

Every object code listing begins with the name of the external procedure. The
actual entry point of the external procedure immediately follows the heading
comment REAL ENTRY. The subsequent machine code is the prolog for the block,
which performs block activation. The comment PROCEDURE BASE marks the end of
the prolog. Following this is a translation of the first executable statement in the
PL/I source program.

Following are the comments used in the listing:

Comment Function

BEGIN BLOCK xxx Indicates the start of the begin block with label xxx

BEGIN BLOCK NUMBER n Indicates the start of the begin block with number n

CALCULATION OF
COMMONED EXPRESSION
FOLLOWS

Indicates that an expression used more than once in the
routine is calculated at this point

CODE MOVED FROM
STATEMENT NUMBER n

Indicates object code moved by the optimization process to
a different part of the routine and gives the number of the
statement from which it originated

COMPILER GENERATED
SUBROUTINE xxx

Indicates the start of compiler-generated subroutine xxx

CONTINUATION OF PRE-
VIOUS REGION

Identifies the point at which addressing from the previous
routine base recommences

END BLOCK Indicates the end of a begin block

END INTERLANGUAGE
PROCEDURE xxx

Identifies the end of an ILC procedure xxx

END OF COMMON CODE Identifies the end of code used in running more than one
statement

END OF COMPILER GEN-
ERATED SUBROUTINE

Indicates the end of the compiler-generated subroutine

END PROCEDURE Identifies the end of a procedure

END PROGRAM Indicates the end of the external procedure

INITIALIZATION CODE FOR
xxx

Indicates the start of initialization code for variable xxx

INITIALIZATION CODE FOR
OPTIMIZED LOOP
FOLLOWS

Indicates that some of the code that follows was moved
from within a loop by the optimization process

INTERLANGUAGE PROCE-
DURE xxx

Identifies the start of an implicitly generated ILC procedure
xxx

METHOD OR ORDER OF
CALCULATING
EXPRESSIONS CHANGED

Indicates that the order of the code following was changed
to optimize the object code

236 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

In certain cases the compiler uses mnemonics to identify the type of operand in an
instruction and, where applicable, follows the mnemonic by the name of a PL/I vari-
able.

Comment Function

ON-UNIT BLOCK NUMBER
n

Indicates the start of an ON-unit block with number n

ON-UNIT BLOCK END Indicates the end of the ON-unit block

PROCEDURE xxx Identifies the start of the procedure labeled xxx

PROCEDURE BASE Identifies the address loaded into the base register for the
procedure

PROGRAM ADDRESS-
ABILITY REGION BASE

Identifies the address where the routine base is updated if
the routine size exceeds 4096 bytes and consequently
cannot be addressed from one base

PROLOGUE BASE Identifies the start of the prolog code common to all entry
points into that procedure

REAL ENTRY Precedes the actual executable entry point for a procedure

STATEMENT LABEL xxx Identifies the position of source program statement label
xxx

STATEMENT NUMBER n Identifies the start of code generated for statement number
n in the source listing

Mnemonic Explanation

A..xxx Address constant for xxx

ADD..xxx Aggregate descriptor for xxx

BASE..xxx Base address of variable xxx

BLOCK.n Identifier created for an otherwise unlabeled block

CL.n Compiler-generated label number n

D..xxx Descriptor for xxx

DED..xxx Data element descriptor for xxx

HOOK...ENTRY Debugging tool block entry hook

HOOK...BLOCK-EXIT Debugging tool block exit hook

HOOK...PGM-EXIT Debugging tool program exit hook

HOOK...PRE-CALL Debugging tool pre-call hook

HOOK...INFO Additional pre-call hook information

HOOK...POST-CALL Debugging tool post call hook

HOOK...STMT Debugging tool statement hook

HOOK...IF-TRUE Debugging tool IF true hook

HOOK...IF-FALSE Debugging tool ELSE hook

HOOK...WHEN Debugging tool WHEN true hook

HOOK...OTHERWISE Debugging tool OTHERWISE true hook

HOOK...LABEL Debugging tool label hook

HOOK...DO Debugging tool iterative DO hook

HOOK...ALLOC Debugging tool ALLOCATE controlled hook

 Chapter 7. Debugging PL/I Routines 237

Mnemonic Explanation

WSP.n Workspace, followed by identifying number n

L..xxx Length of variable xxx

PR..xxx Pseudoregister vector slot for xxx

LOCATOR..xxx Locator for xxx

RKD..xxx Record or key descriptor for xxx

VO..xxx Virtual origin for xxx (the address where element 0 is held
for a one-dimensional array, element 0,0 for a two-
dimensional array, and so on)

Generating a Language Environment Dump of a PL/I Routine
To generate a dump of a PL/I routine, you can call either the Language Environ-
ment callable service CEE3DMP or PLIDUMP. For information about calling
CEE3DMP, see “Generating a Language Environment Dump with CEE3DMP” on
page 37.

PLIDUMP Syntax and Options
PLIDUMP calls intermediate PL/I library routines, which convert most PLIDUMP
options to CEE3DMP options. The following list contains PLIDUMP options and the
corresponding CEE3DMP option, if applicable.

Some PLIDUMP options do not have corresponding CEE3DMP options, but con-
tinue to function as PL/I default options. The list following the syntax diagram pro-
vides a description of those options.

Note: VisualAge PL/I does not support multitasking, therefore, the PLIDUMP
options that refer to multitasking do not apply to VisualAge PL/I.

PLIDUMP now conforms to National Language Support standards.

PLIDUMP can supply information across multiple Language Environment enclaves.
If an application running in one enclave fetches a main procedure (an action that
creates another enclave), PLIDUMP contains information about both procedures.

The syntax and options for PLIDUMP are shown below.

 Syntax

JJ─ ─PLIDUMP──(──char.-string-exp 1──,──char.-string-exp 2──)──────────JL

 char.-string-exp 1
A dump options character string consisting of one or more of the following:

A All. Results in a dump of all tasks including the ones in the WAIT state.

B BLOCKS (PL/I hexadecimal dump). Dumps the control blocks used in
Language Environment and member language libraries. For PL/I, this
includes the DSA for every routine on the call chain and PL/I "global"
control blocks, such as Tasking Implementation Appendage (TIA), Task
Communication Area (TCA), and the PL/I Tasking Control Block (PTCB).

238 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

PL/I file control blocks and file buffers are also dumped if the F option is
specified.

C Continue. The routine continues after the dump.

E Exit. The enclave terminates after the dump. In a multitasking environ-
ment, if PLIDUMP is called from the main task, the enclave terminates
after the dump. If PLIDUMP is called from a subtask, the subtask and any
subsequent tasks created from the subtask terminate after the dump. In a
multithreaded environment, if PLIDUMP is called from the Initial Process
Thread (IPT), the enclave terminates after the dump. If PLIDUMP is called
from a non-IPT, only the non-IPT terminates after the dump.

F FILE INFORMATION. A set of attributes for all open files is given. The
contents of the file buffers are displayed if the B option is specified.

H STORAGE in hexadecimal. A SNAP dump of the region is produced. A
ddname of CEESNAP must be provided to direct the CEESNAP dump
report.

K BLOCKS (when running under CICS). The Transaction Work Area is
included.

Note: This option is not supported under VisualAge PL/I.

NB NOBLOCKS.

NF NOFILES.

NH NOSTORAGE.

NK NOBLOCKS (when running under CICS).

NT NOTRACEBACK.

O THREAD(CURRENT). Results in a dump of only the current task or
current thread (the invoker of PLIDUMP).

S Stop. The enclave terminates after the dump. In a multitasking environ-
ment, regardless of whether PLIDUMP is called from the main task or a
subtask, the enclave terminates after the dump. In a multithreaded envi-
ronment, regardless of whether PLIDUMP is called from the IPT or a
non-IPT, the enclave terminates after the dump (in which case there is no
fixed order as to which thread terminates first).

T TRACEBACK. Includes a traceback of all routines on the call chain. The
traceback shows transfers of control from either calls or exceptions.
BEGIN blocks and ON-units are also control transfers and are included in
the trace. The traceback extends backwards to the main program of the
current thread.

T, F, C, and A are the default options.

char.-string-exp 2
A user-identified character string up to 80 characters long that is printed as the
dump header.

 Chapter 7. Debugging PL/I Routines 239

PLIDUMP Usage Notes
If you use PLIDUMP, the following considerations apply:

� If a routine calls PLIDUMP a number of times, use a unique user-identifier for
each PLIDUMP invocation. This simplifies identifying the beginning of each
dump.

� In MVS or TSO, you can use ddnames of CEEDUMP, PLIDUMP, or PL1DUMP
to direct dump output. If no ddname is specified, CEEDUMP is used. In VM,
you can use a FILEDEF command to direct dump output.

� The data set defined by the PLIDUMP, PL1DUMP, or CEEDUMP DD statement
should specify a logical record length (LRECL) of at least 131 to prevent dump
records from wrapping.

� When you specify the H option in a call to PLIDUMP, the PL/I library issues an
OS SNAP macro to obtain a dump of virtual storage. The first invocation of
PLIDUMP results in a SNAP identifier of 0. For each successive invocation, the
ID is increased by one to a maximum of 256, after which the ID is reset to 0.

� Support for SNAP dumps using PLIDUMP is provided only under VM and MVS.
SNAP dumps are not produced in a CICS environment.

– If the SNAP does not succeed, the CEE3DMP DUMP file displays the
message:

Snap was unsuccessful

Failure to define a CEESNAP data set is the most likely cause of an unsuc-
cessful CEESNAP.

– If the SNAP is successful, CEE3DMP displays the message:

Snap was successful; snap ID = nnn

where nnn corresponds to the SNAP identifier described above. An unsuc-
cessful SNAP does not result in an incrementation of the identifier.

� To ensure portability across system platforms, use PLIDUMP to generate a
dump of your PL/I routine.

Finding PL/I Information in a Dump
The following sections discuss PL/I-specific information located in the following
sections of a Language Environment dump:

 � Traceback
� Control Blocks for Active Routines
� Control Block Associated with the Thread
� File Status and Attributes

 Traceback
Examine the traceback section of the dump, shown in Figure 99 on page 241, for
condition information about your routine and information about the statement
number and address where the exception occurred.

240 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

CEE3DMP V1 r5.#: PLIDUMP called from error ON-unit. #8/#5/95 4:#4:12 PM Page: 1

PLIDUMP was called from statement number 6 at offset +######D6 from ERROR ON-UNIT with entry address ###2#168

Information for enclave EXAMPLE

Information for thread 8###############

Registers on Entry to CEE3DMP:

 PM....... #1##
 GPR#..... ######## GPR1..... ###77448 GPR2..... #53AD9AF GPR3..... 853AD514
 GPR4..... #######1 GPR5..... #53AD314 GPR6..... 8##77454 GPR7..... ########
 GPR8..... #######1 GPR9..... 8####### GPR1#.... ###7747# GPR11.... ###F749#
 GPR12.... ###6A52# GPR13.... ###773C8 GPR14.... 8##6#712 GPR15.... 853F7918
 FPR#..... 4D###### ###43C31 FPR2..... ######## ########
 FPR4..... ######## ######## FPR6..... ######## ########

 Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Load Service Statement Status
##5359A# CEEKKMRA ##654438 +#####748 CEEKKMRA ##654438 +#####748 CELE38 Call
##6D981# LIBRARY(PLI) ##5CBE98 +######B2 LIBRARY(PLI) ##5CBE98 +######B2 CEEPLPKA Call
##5358A# EXAMPLE ###2##8# +#####1BE ERR ON-UNIT ###2#168 +######D6 CELE38 6 Call
##535698 IBMRERPL ##7CB41# +#####528 IBMRERPL ##7CB41# +#####528 Call
##5355B# CEEEV#1# ##5B5### +######E8 CEEEV#1# ##5B5### +######E8 Call
##6C3#18 CEEHDSP ##5F6D## +#####97# CEEHDSP ##5F6D## +#####97# Call
##535428 IBMRERRI ##7CB#4# +#####254 IBMRERRI ##7CB#4# +#####254 Exception
##535358 EXAMPLE ###2##8# +#####296 LABL1: BEGIN ###2#258 +######BE 11 Call
##535258 EXAMPLE ###2##8# +######D# EXAMPLE ###2##88 +######C8 8 Call
##5351B# IBMRPMIA ##7CABD# +#####2FA IBMRPMIA ##7CABD# +#####2FA Call
##535#C8 CEEEV#1# ##5B5### +#####1FE CEEEV#1# ##5B5### +#####1FE Call
##535#18 CEEBBEXT ##5E55F# +#####12E CEEBBEXT ##5E55F# +#####12E Call

Condition Information for Active Routines
Condition Information for IBMRERRI (DSA address ##535428)
CIB Address: ##6C33C8

 Current Condition:
 IBM#93#S
 Original Condition:

IBM#421S ONCODE=52# The SUBSCRIPTRANGE condition was raised.
 Location:

Program Unit: IBMRERRI Entry: IBMRERRI Statement: Offset: +#####254

...

Figure 99. Traceback Section of Dump

PL/I Task Traceback
A task traceback table is produced for multitasking programs showing the task invo-
cation sequence (trace). For each task, the CAA address, task variable address,
event variable address, thread ID, and absolute priority appear in the traceback
table. An example is shown in Figure 100 on page 242.

 Chapter 7. Debugging PL/I Routines 241

CEE3DMP V1 R5.#: called from SUBTSK2 #8/18/95 2:36:49 PM
Page: 1

PLIDUMP was called from statement number 23 at offset +######D2 from BEGIN BLOCK6 within task SUBTSK2

PL/I Task Traceback:
 Task Attached by Thread ID TCA Addr EV Addr TV Addr Absolute Priority
 SUBTSK2 SUBTSK1 #3B2CB78#######3 ###7#7#8 ###684F8 ###684E8 ###
 SUBTSK1 SUBTASK #3B2C2D########2 ###667#8 ###34498 ###34488 ###
 SUBTASK TASKING #3B2BA28#######1 ###5D7#8 ###34468 ###34458 #56
TASKING #3B2B18######### ###16658 ###545D4 ###5423C 254

Information for enclave TASKING

Information for thread #3B2CB78#######3

 Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Load Service Statement Status
###726A8 CEEKKMRA #394AAC# +#####86# CEEKKMRA #394AAC# +#####86# CELE38 Call
###6E2E8 IBMRKDM #39D245# +######BA IBMRKDM #39D245# +######BA CEEPLPKA Call
###725B8 SUBTSK1 ####776# +#####52A BEGIN BLOCK6 ####7BB8 +######D2 CELE38 23 Call
###724F8 SUBTSK1 ####776# +#####43E PROCA ####7B1C +######82 21 Call
###7243# SUBTSK1 ####776# +#####36E SUBTSK2 ####7A24 +######AA 19 Call
###715D8 IBMUPTMM ###2392# +######F6 IBMUPTMM ###2392# +######F6 Call

 7F6653A# ####6E38 +######## ####6E38 +######## Call

Figure 100. Task Traceback Section

 Condition Information
If the dump was called from an ON-unit, the type of ON-unit is identified in the
traceback as part of the entry information. For ON-units, the values of any relevant
condition built-in functions (for example, ONCHAR and ONSOURCE for conversion
errors) appear. In cases where the cause of entry into the ON-unit is not stated,
usually when the ERROR ON-unit is called, the cause of entry appears in the con-
dition information.

Statement Number and Address Where Error Occurred
This information, which is the point at which the condition that caused entry to the
ON-unit occurred, can be found in the traceback section of the dump.

If the condition occurs in compiled code, and you compiled your routine with either
GOSTMT or GONUMBER, the statement numbers appear in the dump. To identify
the assembler instruction that caused the error, use the traceback information in the
dump to find the program unit (PU) offset of the statement number in which the
error occurred. Then find that offset and the corresponding instruction in the object
code listing.

Control Blocks for Active Routines
This section shows the stack frames for all active routines, and the static storage.
Use this section of the dump to identify variable values, determine the contents of
parameter lists, and locate the timestamp.

Figure 101 on page 243 shows this section of the dump.

242 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Control Blocks for Active Routines:

...
DSA for PLIDMPB: ##3CA438

 +###### FLAGS.... 8#25 member... #### BKC...... ##3CA348 FWC...... ######## R14...... 4E#2#36#
 +####1# R15...... 8#5611C# R#....... ##3CA588 R1....... ###2#4AC R2....... 5E#2#2BE R3....... ###2#3B8
 +####24 R4....... ##3CA57C R5....... ######## R6....... #######9 R7....... #######1 R8....... ##3CA554
 +####38 R9....... ##3CA4F8 R1#...... #######4 R11...... #######8 R12...... ##3CA4EC reserved. ##54228#

+####4C NAB...... ##3CA588 PNAB..... ##3CA588 reserved. 91E#91E# ##3CA348 ##7C8#9# ##627188
 +####64 reserved. ##3CA4E8 reserved. ##5C8E1# MODE..... ##58C848 reserved. ##3CA6#8 ##62#258
 +####78 reserved. ##3CA4E8 reserved. ##3CA4EC

DYNAMIC SAVE AREA (PLIDMPB): ##3CA438
+###### ##3CA438 8#25#### ##3CA348 ######## 4E#2#36# 8#5611C# ##3CA588 ###2#4AC 5E#2#2BE |......t.....+..-......vh....;...
+####2# ##3CA458 ###2#3B8 ##3CA57C ######## #######9 #######1 ##3CA554 ##3CA4F8 #######4 |......v@..............v...u8....
+####4# ##3CA478 #######8 ##3CA4EC ##54228# ##3CA588 ##3CA588 91E#91E# ##3CA348 ##7C8#9# |......u.......vh..vhj.j...t..@..
+####6# ##3CA498 ##627188 ##3CA4E8 ##5C8E1# ##58C848 ##3CA6#8 ##62#258 ##3CA4E8 ##3CA4EC |...h..uY.C....H...w.......uY..u.
+####8# ##3CA4B8 ##62725# ##3CA6#8 ##627258 ###2#4D7 ##1##### ##62725# ##3CA4E8 ##62725# |...&.w........P.......&.uY...&
+####A# ##3CA4D8 ##3CA4EC ##3CA53# ##3CA6#8 ######## #####248 #######3 ##3CA4F8 ###2#474 |..u...v...w...............u8....
+####C# ##3CA4F8 ###4E385 9989B87# ######## #######8 C7899393 89A297A8 8E572778 4#4#4#4# |..Teri..........Gillispy....
+####E# ##3CA518 ##3CA52# 4#4#4#4# ###2#438 ###2#418 4#4#4#4# 8##2#46C ##4#4### ##7C8##4 |..v.%. ..@..
+###1## ##3CA538 4#4#4#4# 4#4#4#4# ###14#4# ##54246# E3C2C6C3 ##3CA548 ###4#### D7D3C9C4 |-TBFC..v.....PLID
+###12# ##3CA558 E4D4D74# 83819393 85844#86 9996944# 97999683 8584A499 854#D7D3 C9C4D4D7 |UMP called from procedure PLIDMP
+###14# ##3CA578 C24#4#4# ##3CA554 ##25#### 4#4#4#4# 88##4#4# ##54228# ##3CAA58 6E579B82 |B ..v..... h.>..b

STATIC FOR PROCEDURE PLIDMP TIMESTAMP: 2 DEC 92 11:26:26
STARTING FROM: ###2#3B8
+###### ###2#3B8 E####3## ###2##88 ###2#116 ###2#188 ###2#1E2 ###2#254 ###2#2AE ###2#2BE |.......h.......h...S............
+####2# ###2#3D8 ###2#2BE ###2#2BE ###2#2BE 8##2#A38 8##2#A5# 8##2#A68 8##2#A8# 8##2#A98 |...................&..........q
+####4# ###2#3F8 8##2#AB# 8##2134# 8##21148 8##2#AC8 8##213B8 8##213D# 8##2#AE# 8##2#AF8 |.......H...............8
+####6# ###2#418 2######2 1F8#28## ###4###8 ######## ###2#4C8 ###F#### ###2#4D7 ##1##### |...................H.......P....
+####8# ###2#438 ###2#4F3 ##1##### ######## ###4#### ######## ##25#### ###2#6#8 ##11#### |...3............................
+####A# ###2#458 ######## ###2#474 91E#91E# #######5 #######9 #######1 #######3 ######## |........j.j.....................
+####C# ###2#478 ###C8### #######E ###C8### ###2#6D# ###2#6D# ##3CA32# 8##2#46C ###2#6D# |......................t....%....
+####E# ###2#498 ##3CA41# 8##2#46C ###2#6D# ##3CA52# 8##2#46C ##3CA54C 8#3CA57C 8##2#A#8 |..u....%......v....%..v<..v@....

...

Figure 101. Control Blocks for Active Routines Section of the Dump

 Automatic Variables
To find automatic variables, use an offset from the stack frame of the block in
which they are declared. This information appears in the variable storage map gen-
erated when the MAP compiler option is in effect. If you have not used the MAP
option, you can determine the offset by studying the listing of compiled code
instructions.

 Static Variables
If your routine is compiled with the MAP option, you can find static variables by
using an offset in the variable storage map. If the MAP option is not in effect, you
can determine the offset by studying the listing of compiled code.

 Based Variables
To locate based variables, use the value of the defining pointer. Find this value by
using one of the methods described above to find static and automatic variables. If
the pointer is itself based, you must find its defining pointer and follow the chain
until you find the correct value.

The following is an example of typical code for X BASED (P), with P AUTOMATIC:

58 6# D #C8 L 6,P

58 E# 6 ### L 14,X

P is held at offset X'C8' from register 13. This address points to X.

 Chapter 7. Debugging PL/I Routines 243

Take care when examining a based variable to ensure that the pointers are still
valid.

 Area Variables
Area variables are located using one of the methods described above, according to
their storage class.

The following is an example of typical code: for an area variable A declared
AUTOMATIC:

41 6# D #F8 LA 6,A

The area starts at offset X'F8' from register 13.

Variables in Areas
To find variables in areas, locate the area and use the offset to find the variable.

Contents of Parameter Lists
To find the contents of a passed parameter list, first find the register 1 value in the
save area of the calling routine's stack frame. Use this value to locate the param-
eter list in the dump. If R1=0, no parameters passed. For additional information
about parameter lists, see either PL/I for MVS & VM Programming Guide or
VisualAge PL/I for OS/390 Programming Guide.

 Timestamp
If the TSTAMP compiler installation option is in effect, the date and time of compila-
tion appear within the last 32 bytes of the static internal control section. The last
three bytes of the first word give the offset to this information. The offset indicates
the end of the timestamp. Register 3 addresses the static internal control section. If
the BLOCK option is in effect, the timestamp appears in the static storage section
of the dump.

Control Blocks Associated with the Thread
This section of the dump, shown in Figure 102 on page 245, includes information
about PL/I fields of the CAA and other control block information.

244 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Control Blocks Associated with the Thread:
 CAA: ##58C848

+###### ##58C848 #####8## ##542648 ##3CA### ##44A### ######## ##58C858 ######## ##5421A# |......................H.........
+####2# ##58C868 ######## ######## ##542#3# ######## ##54223# ##7C8##4 ##5421F8 ######## |.....................@.....8....
+####4# ##58C888 ##5421C# ######## ##6CB66# ######## ##6CBBB8 ##6C66E# ######## ######## |.........%.-.....%...%..........
+####6# ##58C8A8 ######## ##6C666# ######## ##6CB2## ##6CB4A# ##6CB62# ##6C7#28 #4##1#1# |.....%.-.....%...%...%...%......

...
DUMMY DSA: ##58E#4#

 +###### FLAGS.... #### member... #### BKC...... ####95E8 FWC...... ##3CA#18 R14...... 4##2#81#
 +####1# R15...... 8#59#5F# R#....... #####E#8 R1....... ##58AE14 R2....... ###2#6F# R3....... #######2
 +####24 R4....... ######## R5....... ######## R6....... ######## R7....... ##58#1E# R8....... ###2#6C#
 +####38 R9....... ##D44A3# R1#...... ######## R11...... 4##2#73A R12...... ##58C848 reserved. ##54228#

+####4C NAB...... ##3CA#18 PNAB..... ##3CA#18 reserved. ######## ######## ######## ########
 +####64 reserved. ######## reserved. ######## MODE..... ######## reserved. ######## ########
 +####78 reserved. ######## reserved. ########

CEE3DMP V1 R5.#: PLIDUMP called from procedure PLIDMPB. #8/#5/95 11:29:13 AM Page: 5

PL/I TCA APPENDAGE: ##542#3#
+###### ##542#3# ######## ######## ######## ######3# ######## ######## ######## ######## |................................
+####2# ##542#5# ##5421D8 ######## ######## ######## ######## ######## ######## ######## |...Q............................
+####4# ##542#7# ######## ######## ######## ######## ##58C848 ######## ######## ######## |..................H.............
+####6# ##542#9# ######## ######## ######## ######## ######## ######## ######## ######## |................................

Enclave Control Blocks:
 EDB: ##58AD68

+###### ##58AD68 C3C5C5C5 C4C24#4# 8#4####1 ##58C6B8 ##58B3A8 ######## ######## ######## |CEEEDBF....y............
+####2# ##58AD88 ##58B#D8 ##58B1#8 ##58#1E# ##57F198 ######## 8#57F#88 ##58AE14 ####8### |...Q..........1q......#h........

 MEML: ##58C6B8
+###### ##58C6B8 ######## ######## ##592#3# ######## ######## ######## ##592#3# ######## |................................
+####2# ##58C6D8 - +####9F ##58C757 same as above
+####A# ##58C758 ######## ######## ##54A### ######## ######## ######## ##592#3# ######## |................................

File Status and Attributes:
ATTRIBUTES OF FILE: SYSPRINT
STREAM OUTPUT PRINT ENVIRONMENT(F BLKSIZE(8#) RECSIZE(8#) BUFFERS(2))
CONTENTS OF BUFFERS

 BUFFER: ##7CDF6#
+###### ##7CDF6# 4#D7D3C9 C4D4D7C2 4#E2A381 99A38995 874#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# | PLIDMPB Starting
+####2# ##7CDF8# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# |
+####4# ##7CDFA# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#D7D3C9 C4D4D7C1 4#E2A381 99A38995 | PLIDMPA Starting

 BUFFER: ##7CDFB#
+###### ##7CDFB# 4#D7D3C9 C4D4D7C1 4#E2A381 99A38995 874#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# | PLIDMPA Starting
+####2# ##7CDFD# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# |
+####4# ##7CDFF# 4#4#4#4# 4#4#4#4# 4#4#4#4# 4#4#4#4# ##7CE#31 7A958983 924BE3C5 D9C94#4# |

File Control Blocks:
FILE CONTROL BLOCK (FCB): ##7C8##4
+###### ##7C8##4 ######## ######## ##56B3CA ##5CB5EC ###2#6D# ##7C8#9# ######## ######## |.............C.......@..........
+####2# ##7C8#24 ######## 412111## 82###### #####1#4 ##5##### ######5# ##7CDF6# E3C6##F4 |........b........&....&@.-TF.4
+####4# ##7C8#44 ######## ######## ######## ##7CDF72 ##3E###1 ##3C##4F ###3#### ######## |.............@.........|........
+####6# ##7C8#64 ######## ##6CBBB8 ######## ##3CA52# ######## ######## ######## ######## |.....%........v.................

DATA CONTROL BLOCK (DCB): ##7C8#9#
+###### ##7C8#9# ######## ######## ######## ######## ##28#### #27CDF58 ##5#4### ##7D94B# |.....................@...& ..'m.
+####2# ##7C8#B# 4######1 84###### ######48 ##7D94A# 92D5927E #######1 #C5CB7FA ###9##5# | ...d........'m.kNk=.....C.....&
+####4# ##7C8#D# ######## ##7D94B# ##7CDFB# ##7CDFB# ######5# 8######1 ######## #######1 |.....'m..@...@.....&...........

DECLARE CONTROL BLOCK (DCLCB): ###2#6D#
+###### ###2#6D# FFFFFFFC 412#1### #2D7#F## ######## ######14 ###8E2E8 E2D7D9C9 D5E3#### |.........P............SYSPRINT..

Figure 102 (Part 1 of 2). Control Blocks Associated with the Thread Section of the Dump

 Chapter 7. Debugging PL/I Routines 245

Process Control Blocks:

 PCB: ##57F198
+###### ##57F198 C3C5C5D7 C3C24#4# #2#2#22# ######## ######## ######## ##57FB3# ##5C8E1# |CEEPCBC..|
+####2# ##57F1B8 ##5C75B8 ##5C2288 ##5C1C8# ######## ######## ######## ##57FB18 ##57FB3# |.C...C.h.C......................|

 MEML: ##57FB3#
+###### ##57FB3# ######## ######## ##592#3# ######## ######## ######## ##592#3# ######## |................................|
+####2# ##57FB5# - +####9F ##57FBCF same as above

Figure 102 (Part 2 of 2). Control Blocks Associated with the Thread Section of the Dump

 The CAA
The address of the CAA control block appears in this section of the dump. If the
BLOCK option is in effect, the complete CAA (including the PL/I implementation
appendage) appears separately from the body of the dump. Register 12 addresses
the CAA.

File Status and Attribute Information
This part of the dump includes the following information:

� The default and declared attributes of all open files
� Buffer contents of all file buffers
� The contents of FCBs, DCBs, DCLCBs, IOCBs, and control blocks for the

process or enclave

PL/I Contents of the Language Environment Trace Table
Language Environment provides three PL/I trace table entry types that contain
character data:

� Trace entry 100 occurs when a task is created.

� Trace entry 101 occurs when a task that contains the tasking CALL statements
is terminated.

� Trace entry 102 occurs when a task that does not contain a tasking CALL
statement is terminated.

The format for trace table entries 100, 101, and 102 is:

 ––>(1##) NameOfCallingTask NameOfCalledTask OffsetOfCallStmt
UserAgrPtr CalledTaskPtr TaskVarPtr EventVarPtr
PriorityPtr CallingR2-R5 CallingR12-R14

 ––>(1#1) NameOfReturnTask ReturnerR2-R5 ReturnerR12-R14

 ––>(1#2) NameOfReturnTask

For more information about the Language Environment trace table format, see
“Understanding the Trace Table Entry (TTE)” on page 113.

246 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Debugging Example of PL/I Routines
This section contains examples of PL/I routines and instructions for using informa-
tion in the Language Environment dump to debug them. Important areas in the
source code and in the dump for each routine are highlighted.

Subscript Range Error
Figure 103 illustrates an error caused by an array subscript value outside the
declared range. In this example, the declared array value is 10.

This routine was compiled with the options LIST, TEST, GOSTMT, and MAP. It was
run with the TERMTHDACT(TRACE) option to generate a traceback for the condi-
tion.

15688-235 IBM SAA AD/Cycle PL/I Ver 1 Rel 2 Mod # 18 NOV 92 15:57:56 PAGE 1
-OPTIONS SPECIFIED
#CPROCESS GOSTMT LIST S STG LC(1##) TEST MAP; ####1###
15688-235 IBM SAA AD/Cycle PL/I EXAMPLE: PROC OPTIONS(MAIN); PAGE 2
- SOURCE LISTING
- STMT
#

1 |EXAMPLE: PROC OPTIONS(MAIN); |####2###
 | |####3###

2 | DCL Array(1�) Fixed bin(31); |����4���
3 | DCL (I,Array_End) Fixed bin(31); |####5###

 | |####6###
4 | On error |####7###

 | Begin; |####8###
5 | On error system; |####9###
6 | Call plidump('tbnfs','Plidump called from error ON-unit'); |###1####

 7 | End; |###11###
 | |###12###

8 | (subrg): /C Enable subscriptrange conditionC/ |###13###
 | Labl1: Begin; |###14###

9 | Array_End = 2#; |###15###
1# | Do I = 1 to Array_End; /C Loop to initialize array C/ |###16###
11 | Array(I) = 2; /M Set array elements to 2 M/ |���17���

 12 | End; |###18###
 13 | End Labl1; |###19###
 | |###2####
 14 |End Example; |###21###
15688-235 IBM SAA AD/Cycle PL/I EXAMPLE: PROC OPTIONS(MAIN); PAGE 3
- VARIABLE STORAGE MAP
-IDENTIFIER LEVEL OFFSET (HEX) CLASS BLOCK

 I 1 2�� C8 AUTO EXAMPLE
 ARRAY_END 1 2#4 CC AUTO EXAMPLE
 ARRAY 1 2#8 D# AUTO EXAMPLE
15688-235 IBM SAA AD/Cycle PL/I EXAMPLE: PROC OPTIONS(MAIN); PAGE 6
- OBJECT LISTING

Figure 103. Example of Moving a Value Outside an Array Range

Figure 104 on page 248 shows sections of the dump generated by a call to
PLIDUMP.

 Chapter 7. Debugging PL/I Routines 247

CEE3DMP V1 R5.#: PLIDUMP called from error ON-unit. #2/#5/95 4:#4:12 PM Page: 1

 PLIDUMP was called from statement number 6 at offset +######D6 from ERROR ON-unit with entry address ###2#168

 Information for enclave EXAMPLE

Information for thread 8###############

Registers on Entry to CEE3DMP:

 PM....... #1##
 GPR#..... ######## GPR1..... ###77448 GPR2..... #53AD9AF GPR3..... 853AD514
 GPR4..... #######1 GPR5..... #53AD314 GPR6..... 8##77454 GPR7..... ########
 GPR8..... #######1 GPR9..... 8####### GPR1#.... ###7747# GPR11.... ###F749#
 GPR12.... ###6A52# GPR13.... ###773C8 GPR14.... 8##6#712 GPR15.... 853F7918
 FPR#..... 4D###### ###43C31 FPR2..... ######## ########
 FPR4..... ######## ######## FPR6..... ######## ########

Figure 104 (Part 1 of 2). Sections of the Language Environment Dump

248 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Load Service Statement Status
##5359A# CEEKKMRA ##654438 +#####748 CEEKKMRA ##654438 +#####748 CELE38 Call
##6D981# LIBRARY(PLI) ##5CBE98 +######B2 LIBRARY(PLI) ##5CBE98 +######B2 CEEPLPKA Call

 CELE38
��5358A� EXAMPLE ���2��8� +�����1BE ERR ON-UNIT ���2�168 +������D6 6 Call
##535698 IBMRERPL ##7CB41# +#####528 IBMRERPL ##7CB41# +#####528 Call
##5355B# CEEEV#1# ##5B5### +######E8 CEEEV#1# ##5B5### +######E8 Call
##6C3#18 CEEHDSP ##5F6D## +#####97# CEEHDSP ##5F6D## +#####97# Call
��535428 IBMRERRI ��7CB�4� +�����254 IBMRERRI ��7CB�4� +�����254 Exception
##535358 EXAMPLE ###2##8# +#####296 LABL1: BEGIN ###2#258 +######BE 11 Call
##535258 EXAMPLE ###2##8# +######D# EXAMPLE ###2##88 +������C8 8 Call
##5351B# IBMRPMIA ##7CABD# +#####2FA IBMRPMIA ##7CABD# +#####2FA Call
##535#C8 CEEEV#1# ##5B5### +#####1FE CEEEV#1# ##5B5### +#####1FE Call
##535#18 CEEBBEXT ##5E55F# +#####12E CEEBBEXT ##5E55F# +#####12E Call

Condition Information for Active Routines
Condition Information for IBMRERRI (DSA address ##535428)
CIB Address: ##6C33C8

 Current Condition:
 IBM#93#S
 Original Condition:

IBM�421S ONCODE=52� The SUBSCRIPTRANGE condition was raised.
 Location:

Program Unit: IBMRERRI Entry: IBMRERRI Statement: Offset: +#####254

Control Blocks for Active Routines:
DYNAMIC SAVE AREA (EXAMPLE): ##535258
+###### ##535258 C#25#### ##5351B# ######## 4E#2#152 ###2#258 ##535358 ##535258 4E#2#14# |......é.....+...............+..
+####2# ##535278 ###2#35# ###2#53C ##535258 ##535328 ###2#53C ###2#4#8 #######1 ###2##88 |...&..........................h
+####4# ##535298 #######5 ##6F3848 ##6D941# ##535358 ##535358 91E#91A# ######## ###2#4#8 |.....?..._m.........j.j.........
+####6# ##5352B8 ######## ######## ######## #######1 ##53531# #####2## #######1 ######## |................................
+####8# ##5352D8 ######## ######## ######## ######## ######## ######## ######## ######## |................................
+####A# ##5352F8 ######## ######## ######## ######## ######## ######## #C#1#### ######## |................................
+####C# ##535318 ##535328 ###2#3A4 �������B ######14 #######2 #######2 #######2 #######2 |.....................
+####E# ##535338 #######2 #######2 #######2 #######2 #######2 #######2 ######## ######## |................................

...

Figure 104 (Part 2 of 2). Sections of the Language Environment Dump

To debug this routine, use the following steps:

1. In the dump, PLIDUMP was called by the ERROR ON-unit in statement 6. The
traceback information in the dump shows that the exception occurred following
statement 11.

2. Locate the Original Condition message in the Condition Information for Active
Routines section of the dump. The message is IBM#421S ONCODE=52# The
SUBSCRIPTRANGE condition was raised. This message indicates that the
exception occurred when an array element value exceeded the subscript range
value (in this case, 10). For more information about this message, see
Chapter 14, “PL/I Run-Time Messages” on page 647.

3. Locate statement 9 in the routine in Figure 103 on page 247. The instruction is
Array_End = 2#. This statement assigns a 20 value to the variable Array_End.

4. Statement 10 begins the DO-loop instruction Do I = 1 to Array_End. Since the
previous instruction (statement 9) specified that Array_End = 2#, the loop in
statement 10 should run until I reaches a 20 value.

The instruction in statement 2, however, declared a 10 value for the array
range. Therefore, when the I value reached 11, the SUBSCRIPTRANGE condi-
tion was raised.

The following steps provide another method for finding the value that raised the
SUBSCRIPTRANGE condition.

 Chapter 7. Debugging PL/I Routines 249

1. Locate the offset of variable I in the variable storage map in Figure 103 on
page 247. Use this offset to find the I value at the time of the dump. In this
example, the offset is X'C8'.

2. Now find offset X'C8' from the start of the stack frame in Figure 104 on
page 248.

The block located at this offset contains the value that exceeded the array
range, X'B' or 11.

Calling a Nonexistent Subroutine
Figure 105 demonstrates the error of calling a nonexistent subroutine. This routine
was compiled with the LIST, MAP, and GOSTMT compiler options. It was run with
the TERMTHDACT(DUMP) run-time option to generate a traceback.

15688-235 IBM SAA AD/Cycle PL/I Ver 1 Rel 2 Mod # 25 NOV 92 13:47:13 PAGE 1
-OPTIONS SPECIFIED
#CPROCESS GOSTMT LIST S STG LC(1##) TEST MAP; ####1###
15688-235 IBM SAA AD/Cycle PL/I EXAMPLE1: PROC OPTIONS(MAIN); PAGE 2
- SOURCE LISTING
- STMT
#

1 |EXAMPLE1: PROC OPTIONS(MAIN); |####2###
 | |####3###

2 | DCL Prog#1 entry external; |####4###
 | |####5###

3 | On error |####6###
 | Begin; |####7###

4 | On error system; |####8###
5 | Call plidump('tbnfs','Plidump called from error ON-unit'); |####9###

 6 | End; |###1####
 | |###11###

7 | Call Prog�1; /M Call external program PROG�1 M/ |���12���
 | |###13###
 8 |End Example1; |###14###
15688-235 IBM SAA AD/Cycle PL/I EXAMPLE1: PROC OPTIONS(MAIN); PAGE 3
- STORAGE REQUIREMENTS
-BLOCK, SECTION OR STATEMENT TYPE LENGTH (HEX) DSA SIZE (HEX)
-EXAMLE11 PROGRAM CSECT 444 1BC
 EXAMLE12 STATIC CSECT 292 124
 EXAMPLE1 PROCEDURE BLOCK 21# D2 192 C#
 BLOCK 2 STMT 3 ON UNIT 232 E8 256 1##
15688-235 IBM SAA AD/Cycle PL/I EXAMPLE1: PROC OPTIONS(MAIN); PAGE 4
- STATIC INTERNAL STORAGE MAP

Figure 105. Example of Calling a Nonexistent Subroutine

Figure 106 on page 251 shows the traceback and condition information from the
dump.

250 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

CEE3DMP V1 R5.#: PLIDUMP called from error ON-unit. 12/#5/95 1:57:32 PM Page: 1

 PLIDUMP was called from statement number 5 at offset +######D6 from ERROR ON-unit with entry address ###2#154

 Information for enclave EXAMPLE1

Information for thread 8###############

Registers on Entry to CEE3DMP:

 PM....... #1##
 GPR#..... ######## GPR1..... ###77448 GPR2..... #53AD9AF GPR3..... 853AD514
 GPR4..... #######1 GPR5..... #53AD314 GPR6..... 8##77454 GPR7..... ########
 GPR8..... #######1 GPR9..... 8####### GPR1#.... ###7747# GPR11.... ###F749#
 GPR12.... ###6A52# GPR13.... ###773C8 GPR14.... 8##6#712 GPR15.... 853F7918
 FPR#..... 4D###### ###43C31 FPR2..... ######## ########
 FPR4..... ######## ######## FPR6..... ######## ########

 Traceback:
 DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Status

##3FC7#8 CEEKKMRA ##4AB438 +#####748 CEEKKMRA ##4AB438 +#####748 Call
##6D468# LIBRARY(PLI) ##4931C# +######B2 LIBRARY(PLI) ##4931C# +######B2 Call
��3FC6�8 EXAMPLE1 ���2��8� +�����1AA ERR ON-UNIT ���2�154 +������D6 5 Call
##3FC4## IBMRERPL ##6E33D8 +#####528 IBMRERPL ##6E33D8 +#####528 Call
##3FC318 CEEEV#1# ##47C### +#####11C CEEEV#1# ##47C### +#####11C Call
##623#18 CEEHDSP ##5A1D## +#####9B8 CEEHDSP ##5A1D## +#####9B8 Call
��3FC258 EXAMPLE1 ���2��8� +������C� EXAMPLE1 ���2��8C +������B4 7 Exception
##3FC1B# IBMRPMIA ##6E2BA8 +#####316 IBMRPMIA ##6E2BA8 +#####316 Call
##3FC#C8 CEEEV#1# ##47C### +#####3DE CEEEV#1# ##47C### +#####3DE Call
##3FC#18 CEEBBEXT ##59#5F# +#####12E CEEBBEXT ##59#5F# +#####12E Call

Condition Information for Active Routines
Condition Information for EXAMPLE1 (DSA address ##3FC258)
CIB Address: ##6233C8

 Current Condition:
CEE32�1S The system detected an Operations exception.

 Location:
Program Unit: EXAMPLE1 Entry: EXAMPLE1 Statement: 7 Offset: +������C�

 Machine State:
ILC..... ###3 Interruption Code..... ###1
PSW..... FFE4###1 CE#####6

 GPR#..... ##3FC318 GPR1..... ######## GPR2..... 4E#2#134 GPR3..... ###2#24#
 GPR4..... ###2#36C GPR5..... ######## GPR6..... ##3FC31# GPR7..... ###2#36C
 GPR8..... ###2#2B# GPR9..... ###2##8C GPR1#.... ##567198 GPR11.... #######3
 GPR12.... ##574848 GPR13.... ##3FC258 GPR14.... 4E#2#142 GPR15.... ########

Figure 106. Sections of the Language Environment Dump

To understand the traceback and debug this example routine, use the following
steps:

1. Find the Current Condition message in the Condition Information for Active
Routines section of the dump. The message is CEE32#1S. The system
detected an Operation exception. For more information about this message,
see Chapter 9, “Language Environment Run-Time Messages” on page 265.

This section of the dump also provides such information as the name of the
active routine and the current statement number at the time of the dump.

2. Locate statement 7 in the routine (Figure 105 on page 250). This statement
calls subroutine Prog01. The message CEE3201S, which indicates an oper-
ations exception, was generated because of an unresolved external reference.

3. Check the linkage editor output for error messages.

 Chapter 7. Debugging PL/I Routines 251

 Divide-by-Zero Error
Figure 107 demonstrates a divide-by-zero error. In this example, the main PL/I
routine passed bad data to a PL/I subroutine. The bad data in this example is 0,
and the error occurred when the subroutine SUB1 attempted to use this data as a
divisor.

- SOURCE LISTING
- STMT
#
 1 |SAMPLE: PROC OPTIONS(MAIN) ; |####2###
 | |####3###

2 | On error |####4###
 | begin; |####5###

3 | On error system; /C prevent nested error conditions C/ |####6###
4 | Call PLIDUMP('TBC','PLIDUMP called from error ON-unit'); |####7###
5 | Put Data; /M Display variables M/ |����8���

 6 | End; |####9###
 | |###1####

7 | DECLARE |###11###
| A_number Fixed Bin(31), |###12###

 | My_Name Char(13), |###13###
| An_Array(3) Fixed Bin(31) init(1,3,5); |###14###

 | |###15###
8 | Put skip list('Sample Starting'); |###16###
9 | A_number = #; |###17###
1# | My_Name = 'Tery Gillaspy'; |###18###

 | |###19###
11 | Call Sub1(a_number, my_name, an_array); |###2####

 | |###21###
12 | SUB1: PROC(divisor, name1, Array1); |###22###

 13 | Declare |###23###
 | Divisor Fixed Bin(31), |###24###
 | Name1 Char(13), |###25###

| Array1(3) Fixed Bin(31); |###26###
 | |###27###

14 | Put skip list('Sub1 Starting'); |###28###
15 | Array1(1) = Array1(2) / Divisor; |���29���
16 | Put skip list('Sub1 Ending'); |###3####

 17 | End SUB1; |###31###
 | |###32###

18 | Put skip list('Sample Ending'); |###33###
 19 |End; |###34###

Figure 107. PL/I Routine with a Divide-by-Zero Error

Since variables are not normally displayed in a PLIDUMP dump, this routine
included a PUT DATA statement, which generated a listing of arguments and vari-
ables used in the routine. Figure 108 shows this output.

1Sample Starting
 Sub1 Starting A_NUMBER= # MY_NAME='Tery Gillaspy' AN_ARRAY(1)= 1
 AN_ARRAY(2)= 3 AN_ARRAY(3)= 5;

Figure 108. Variables from Routine SAMPLE

The routine in Figure 107 was compiled with the LIST compiler option, which gen-
erated the object code listing shown in Figure 109 on page 253.

252 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

- OBJECT LISTING

 C STATEMENT NUMBER 15
 ###372 58 B# D #C8 L 11,2##(#,13)
 ###376 58 4# B ##4 L 4,4(#,11)
 ###37A 58 9# 3 #AC L 9,172(#,3)
 ###37E 5C 8# 4 ##4 M 8,4(#,4)
 ###382 58 7# 3 #CC L 7,2#4(#,3)
 ###386 5C 6# 4 ##4 M 6,4(#,4)
 ###38A 58 8# D #C# L 8,192(#,13)
 ###38E 58 6# B ### L 6,#(#,11)
 ###392 5F 6# 4 ### SL 6,#(#,4)
 ###396 58 E7 6 ### L 14,VO..ARRAY1(7)
 ###39A 8E E# # #2# SRDA 14,32
 ���39E 5D E� 8 ��� D 14,DIVISOR
 ###3A2 5# F9 6 ### ST 15,VO..ARRAY1(9)

Figure 109. Object Code Listing from Example PL/I Routine

Figure 110 shows the Language Environment dump for routine SAMPLE.

CEE3DMP V1 R5.#: PLIDUMP called from error ON-unit. #2/#5/95 3:17:13 PM Page: 1

 PLIDUMP was called from statement number 4 at offset +######BE from ERROR ON-unit with entry address ###2#22C

Information for enclave SAMPLE

Information for thread 8###############

Registers on Entry to CEE3DMP:

 PM....... #1##
 GPR#..... ######## GPR1..... ###77448 GPR2..... #53AD9AF GPR3..... 853AD514
 GPR4..... #######1 GPR5..... #53AD314 GPR6..... 8##77454 GPR7..... ########
 GPR8..... #######1 GPR9..... 8####### GPR1#.... ###7747# GPR11.... ###F749#
 GPR12.... ###6A52# GPR13.... ###773C8 GPR14.... 8##6#712 GPR15.... 853F7918
 FPR#..... 4D###### ###43C31 FPR2..... ######## ########
 FPR4..... ######## ######## FPR6..... ######## ########

 Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Load Service Statement Status
##4C58A# CEEKKMRA ##572438 +#####748 CEEKKMRA ##572438 +#####748 CELE38 Call
##4BD68# LIBRARY(PLI) ##558498 +######B2 LIBRARY(PLI) ##558498 +######B2 CEEPLPKA Call

 CELE38
##4C5778 SAMPLE ###2##8# +#####26A ERR ON-UNIT ###2#22C +######BE 4 Call
##4C557# IBMRERPL ##6D747# +#####528 IBMRERPL ##6D747# +#####528 Call
##4C5488 CEEEV#1# ##545### +######E8 CEEEV#1# ##545### +######E8 Call
##675#18 CEEHDSP ##59AD58 +#####9DC CEEHDSP ##59AD58 +#####9DC Call
��4C5388 SAMPLE ���2��8� +�����39E SUB1 ���2�348 +������D6 15 Exception
��4C5258 SAMPLE ���2��8� +�����15C SAMPLE ���2��88 +�����154 11 Call
##4C51B# IBMRPMIA ##6D6BB8 +#####3A2 IBMRPMIA ##6D6BB8 +#####3A2 Call
##4C5#C8 CEEEV#1# ##545### +#####1FE CEEEV#1# ##545### +#####1FE Call
##4C5#18 CEEBBEXT ##5895F# +#####12E CEEBBEXT ##5895F# +#####12E Call

Figure 110 (Part 1 of 3). Language Environment Dump from Example PL/I Routine

 Chapter 7. Debugging PL/I Routines 253

Condition Information for Active Routines
Condition Information for SAMPLE (DSA address ##4C5388)
CIB Address: ##6753C8

 Current Condition:
IBM#281S A prior condition was promoted to the ERROR condition.

 Original Condition:
CEE32�9S The system detected a Fixed Point divide exception.

 Location:
Program Unit: SAMPLE Entry: SUB1 Statement: 15 Offset: +#####39E

 Machine State:
ILC..... ###2 Interruption Code..... ###9
PSW..... FFE4###9 AE#2#422

 GPR#..... ##4C5488 GPR1..... ##4C546# GPR2..... 4E#2#3B4 GPR3..... ###2#478
 GPR4..... ###2#534 GPR5..... ##4C5258 GPR6..... ##4C532C GPR7..... #######8
 GPR8..... ##4C5328 GPR9..... #######4 GPR1#.... #######3 GPR11.... ##4C532#
 GPR12.... ##585848 GPR13.... ##4C5388 GPR14.... ######## GPR15.... #######3

DSA for SUB1: ##4C5388
 +###### FLAGS.... 8#25 member... #### BKC...... ##4C5258 FWC...... ######## R14...... ########
 +####1# R15...... #######3 R#....... ##4C5488 R1....... ##4C546# R2....... 4E#2#3B4 R3....... ###2#478
 +####24 R4....... ###2#534 R5....... ##4C5258 R6....... ##4C532C R7....... #######8 R8....... ##4C5328
 +####38 R9....... #######4 R1#...... #######3 R11...... ##4C532# R12...... ##585848 reserved. ##4BD28#

+####4C NAB...... ##4C5488 PNAB..... ##4C5488 reserved. 91E#91E# ##4C5258 ######## ########
 +####64 reserved. ######## reserved. ######## MODE..... ######## reserved. ######## #####2##
 +####78 reserved. ######## reserved. ########

CEE3DMP V1 R5.#: PLIDUMP called from error ON-unit. #2/#5/95 3:17:13 PM Page: 5

CIB for SUB1: ##6753C8
+###### ##6753C8 C3C9C24# ######## ######## #1#C###2 ######## ######## ###3#119 59C9C2D4 |CIBIBM|
+####2# ##6753E8 ######## ##675D#8 ###3#C89 59C3C5C5 ######## #######4 ##4C5258 ##545### |......)....i.CEE.........<....&|
+####4# ##6754#8 ######## ##4C5388 ###2#422 ##586#28 #######A ######## ######## ######## |.....<.h......-.................|
+####6# ##675428 ######## ######## ######## ######## ######## ######## ######## ######## |................................|
+####8# ##675448 - +####9F ##675467 same as above
+####A# ##675468 ######## ######## ######## ######## 4423#### ######## ######## ######## |................................|
+####C# ##675488 ######## ######## ##4C5388 ##4C5388 ###2#41E ######## ######## #######1 |.........<.h.<.h................|
+####E# ##6754A8 ##4C5258 #######A ######64 ######## FFFFFFFC ######## ######## ######## |.<..............................|
+###1## ##6754C8 ######## ######## ######## ######## ######## ######## ######## ######## |................................|

DYNAMIC SAVE AREA (SUB1): ##4C5388
+###### ##4C5388 8#25#### ##4C5258 ######## ######## #######3 ##4C5488 ##4C546# 4E#2#3B4 |.....<...............<.h.<.-+...|
+####2# ##4C53A8 ###2#478 ###2#534 ##4C5258 ##4C532C #######8 ##4C5328 #######4 #######3 |.........<...<.......<..........|
+####4# ##4C53C8 ##4C532# ##585848 ##4BD28# ##4C5488 ##4C5488 91E#91E# ##4C5258 ######## |.<........K..<.h.<.hj.j..<......|
+####6# ##4C53E8 ######## ######## ######## ######## ######## #####2## ######## ######## |................................|
+####8# ##4C54#8 ######## C9C2D4D9 D6D7C1C1 ###2#5A4 ###F#### ##675188 ##4C56A# 5E5C2#CA |....IBMROPAA...u......éh.<..;C..|
+####A# ##4C5428 ##5B88C8 ######## ##4C54FC ##578198 ##67525# ##675258 ##6DB968 ##6DAF44 |.$hH.....<....aq...&;...._..._..|
+####C# ##4C5448 ##4C5328 ##4C5318 ##4C532# #######1 ##4C546# #######3 ###2#51# ###2#4D8 |.<...<...<.......<.-...........Q|
+####E# ##4C5468 ######## 8##2#524 ##4##### ##7D1##4 ######## ######## ###1#### ##4BD46# |......... ...'................M-|

DSA for SAMPLE: ##4C5258
 +###### FLAGS.... C#25 member... #### BKC...... ##4C51B# FWC...... ######## R14...... 5E#2#1DE
 +####1# R15...... ###2#348 R#....... ##4C5388 R1....... ���2�558 R2....... 4E#2#166 R3.....8
 +####24 R4....... #######5 R5....... ##4C5258 R6....... ##4C533# R7....... ##4C532# R8....... #######1
 +####38 R9....... ###2##88 R1#...... #######3 R11...... ##578198 R12...... ##585848 reserved. ##4BD28#

+####4C NAB...... ##4C5388 PNAB..... ##4C5388 reserved. 91E#91E# ######## ###2#61# ########
 +####64 reserved. ######## reserved. ######## MODE..... #######1 reserved. ##4C531# #####2##
 +####78 reserved. #######1 reserved. ########

Figure 110 (Part 2 of 3). Language Environment Dump from Example PL/I Routine

254 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

DYNAMIC SAVE AREA (SAMPLE): ##4C5258
+###### ##4C5258 C#25#### ##4C51B# ######## 5E#2#1DE ###2#348 ##4C5388 ###2#558 4E#2#166 |.....<é.....;........<.h....+...|
+####2# ##4C5278 ###2#478 #######5 ##4C5258 ##4C533# ##4C532# #######1 ###2##88 #######3 |.........<...<...<.........h....|
+####4# ##4C5298 ##578198 ##585848 ##4BD28# ##4C5388 ##4C5388 91E#91E# ######## ###2#61# |..aq......K..<.h.<.hj.j.........|
+####6# ##4C52B8 ######## ######## ######## #######1 ##4C531# #####2## #######1 ######## |.................<..............|
+####8# ##4C52D8 ######## ######## ######## ######## ######## ######## ######## ######## |................................|
+####A# ##4C52F8 ######## ######## ######## ######## ######## ######## #C#1#### ######## |................................|
+####C# ##4C5318 ##4C533C ###D#### ##4C533# ###2#534 �������� ######## #######1 #######3 |.<.............................|
+####E# ##4C5338 #######5 E38599A8 4#C78993 9381A297 A8###### ######## ######## ######## |....Tery Gillaspy...............|
+###1## ##4C5358 ##4C536# ######## ###2#4E# ###2#4D8 ######## 8##2#524 ##4##### ##7D1##4 |.<.-...........Q......... ...'..|
+###12# ##4C5378 ######## ######## ###1#### ##4BD46# 8#25#### ##4C5258 ######## ######## |..............M-.....<..........|

STATIC FOR PROCEDURE SAMPLE TIMESTAMP: 15 JAN 93 15:1#:#5
STARTING FROM: ###2#478
+###### ###2#478 E####2A4 ###2##88 ###2#13# ###2#166 ###2#22C ###2#2A# ###2#348 ###2#3B4 |...u...h........................|
+####2# ###2#498 ###2#3B4 ###2#3B4 ###2#3B4 8##2#AA# 8##2#AB8 8##2#AD# 8##2#AE8 8##2#B## |...........................Y....|
+####4# ###2#4B8 8##2#B18 8##213A8 8##211B# 8##2#B3# 8##2142# 8##21438 8##2#B48 8##2#B6# |.......y.......................-|
+####6# ###2#4D8 2######2 1F8##### ###2#5A4 ###F#### ######## ###D#### ######## ###2#534 |...........u....................|
+####8# ###2#4F8 ###2#5C# ###D#### ######## ###3#### ######## ##21#### ###2#5F1 ###D#### |...........................1....|
+####A# ###2#518 ###2#5FE ###B#### 91E#91E# #######1 #######3 #######5 ######## #######4 |........j.j.....................|
+####C# ###2#538 #######4 #######3 #######1 #######2 ###2#738 ###2#738 ##4C536# 8##2#524 |.........................<.-....|
+####E# ###2#558 ��4C5328 ##4C5318 8#4C532# ###2#738 ##2#524 ##4C586C 8#4C5898 |.<...<...<..............<.%.<.q|
+###1## ###2#578 8##2#A7# ###2#738 8####### ######## 8##2#62# ###2#738 ##4C546# 8##2#524 |.........................<.-....|
+###12# ###2#598 ###2#738 ######## 8##2#524 E2819497 93854#E2 A38199A3 899587E3 8599A84# |............Sample StartingTery |
+###14# ###2#5B8 C7899393 81A297A8 E2819497 93854#C5 95848995 87E3C2C3 D7D3C9C4 E4D4D74# |GillaspySample EndingTBCPLIDUMP |
+###16# ###2#5D8 83819393 85844#86 9996944# 85999996 994#D6D5 6#A49589 A3E2A482 F14#E2A3 |called from error ON-unitSub1 St|
+###18# ###2#5F8 8199A389 9587E2A4 82F14#C5 95848995 87###### ######## #C16#### ###2#22C |artingSub1 Ending...............|
+###1A# ###2#618 #C96#### ######## ###2#634 ###2#65# ###2#66C ######## ######## 85#####1 |.o.............&..%........e...|
+###1C# ###2#638 ###2#4DA ######D# ######## ###8C16D D5E4D4C2 C5D9#### 81#####1 ###2#4D8 |..............A_NUMBER..a......Q|
+###1E# ###2#658 ######C# ######## ###7D4E8 6DD5C1D4 C5###### 81###1#1 ###2#4DA ######C8 |..........MY_NAME...a..........H|
+###2## ###2#678 ######## ###8C1D5 6DC1D9D9 C1E8#### #######1 ###2##88 #####1A4 ###2#6BC |......AN_ARRAY.........h...u....|
+###22# ###2#698 #######1 ##DE###2 ##E2###8 #12####9 #128###A #12E###B #156##12 #194##13 |.........S...................m..|

CEE3DMP V1 R5.#: PLIDUMP called from error ON-unit. #2/#5/95 3:17:13 PM Page: 4

+###24# ###2#6B8 #1A4###2 ###2#22C #####112 ###2#6E# #######2 ##74###3 ##78###4 ##C####5 |.u..............................|
+###26# ###2#6D8 #1#2###6 #114###C ###2#348 #####12C ###2#7#4 #######C ##6C###E ##AA###F |.........................%......|
+###28# ###2#6F8 ##DE##1# #11C##11 #11C##11 #E#E#E#E F1F54#D1 C1D54#F9 F34#4#F1 F57AF1F# |................15 JAN 93 15:1#|
+###2A# ###2#718 7AF#F54# 8#####1# ###2#### ######## #1#####1 ###2##88 ###2#758 ######## |:#5h........|

Figure 110 (Part 3 of 3). Language Environment Dump from Example PL/I Routine

To understand the dump information and debug this routine, use the following
steps:

1. Notice the title of the dump:PLIDUMP called from error ON-unit. This was the
title specified when PLIDUMP was invoked, and it indicates that the ERROR
condition was raised and PLIDUMP was called from within the ERROR
ON-unit.

2. Locate the messages in the Condition Information section of the dump.

There are two messages. The current condition message indicates that a prior
condition was promoted to the ERROR condition. The promotion of a condition
occurs when the original condition is left unhandled (no PL/I ON-units are
assigned to gain control). The original condition message is CEE32#9S. The
system detected a Fixed Point divide exception. The original condition
usually indicates the actual problem. For more information about this message,
see Chapter 9, “Language Environment Run-Time Messages” on page 265.

3. In the traceback section, note the sequence of calls in the call chain. SAMPLE
called SUB1 at statement 11, and SUB1 raised an exception at statement 15,
PU offset X'39E'.

4. Find the statement in the listing for SUB1 that raised the ZERODIVIDE condi-
tion. If SUB1 was compiled with GOSTMT and SOURCE, find statement 15 in
the source listing.

Since the object listing was generated in this example, you can also locate the
actual assembler instruction causing the exception at offset X'39E' in the

 Chapter 7. Debugging PL/I Routines 255

object listing for this routine, shown in Figure 109 on page 253. Either method
shows that divisor was used as the divisor in a divide operation.

5. You can see from the declaration of SUB1 that divisor is a parameter passed
from SAMPLE. Because of linkage conventions, you can infer that register 1 in
the SAMPLE save area points to a parameter list that was passed to SUB1.
divisor is the first parameter in the list.

6. In the SAMPLE DSA, the R1 value is X'20558'. This is the address of the
parameter list, which is located in static storage.

7. Find the parameter list in the stack frame; the value of the first parameter is
X'00000000'. Thus, the exception occurred when SAMPLE passed a 0 value
used as a divisor in subroutine SUB1.

256 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Chapter 8. Debugging under CICS

This chapter provides information for debugging under the Customer Information
Control System (CICS). The following sections explain how to access debugging
information under CICS, and describe features unique to debugging under CICS.

Use the following list as a quick reference for debugging information:

� Language Environment run-time messages (CESE Transient Data Queue)
� Language Environment traceback (CESE Transient Data Queue)
� Language Environment dump output (CESE Transient Data Queue)
� CICS Transaction Dump (CICS DFHDMPA or DFHDMPB data set)
� Language Environment abend and reason codes (system console)
� Language Environment return codes to CICS (system console)

If the EXEC CICS HANDLE ABEND command is active and the application, or
CICS, initiates an abend or application interrupt, then Language Environment does
not produce any run-time messages, tracebacks, or dumps.

If EXEC CICS ABEND NODUMP is issued, then no Language Environment dumps
or CICS transaction dumps are produced.

Accessing Debugging Information
The following sections list the debugging information available to CICS users, and
describe where you can find this information.

Under CICS, the Language Environment run-time messages, Language Environ-
ment traceback, and Language Environment dump output are written to the CESE
transient data queue. The transaction identifier, terminal identifier, date, and time
precede the data in the queue. For detailed information about the format of records
written to the transient data queue, see OS/390 Language Environment Program-
ming Guide.

The CESE transient data queue is defined in the CICS destination control table
(DCT). The CICS macro DFHDCT is used to define entries in the DCT. See CICS
Resource Definition Guide for a detailed explanation of how to define a transient
data queue in the DCT. If you are not sure how to define the CESE transient data
queue, see your system programmer.

Locating Language Environment Run-Time Messages
Under CICS, Language Environment run-time messages are written to the CESE
transient data queue. A sample Language Environment message that appears
when an application abends due to an unhandled condition from an EXEC CICS
command is:

P#39UTV9 1991#916145313 CEE325#C The System or User ABEND AEI# was issued.
P#39UTV9 1991#916145313 From program unit UT9CVERI at entry point UT9CVERIT

+#####11E at P#39UTV9 1991#916145313
at offset address ###6#51E.

 Copyright IBM Corp. 1991, 2000 257

Locating the Language Environment Traceback
Under CICS, the Language Environment traceback is written to the CESE transient
data queue. Because Language Environment invokes your application routine, the
Language Environment routines that invoked your routine appear in the traceback.
Figure 111 shows an example Language Environment traceback written to the
CESE transient data queue. Data unnecessary for this example has been replaced
by ellipses.

 P#23T2AB 19911#11#84413 CEE3211S The system detected a Decimal-divide exception.
 P#23T2AB 19911#11#84413 From program unit T2AB at entry point T2AB at offset +####14A8 at address #A9444E#.
1P#23T2AB 19911#11#84413 CEE3DMP V1 R7.#: Condition processing resulted in the unhandled condition. mm/dd/yy hh:mm:
 P#23T2AB 19911#11#84413
 P#23T2AB 19911#11#84413 Information for enclave T2AB
 P#23T2AB 19911#11#84413
 P#23T2AB 19911#11#84413 Information for thread 8###############
 P#23T2AB 19911#11#84413
 P#23T2AB 19911#11#84413 Registers on Entry to CEE3DMP:
 P#23T2AB 19911#11#84413
 P#23T2AB 19911#11#84413 PM....... #1##
 P#23T2AB 19911#11#84413 GPR#..... ######## GPR1..... ###77448 GPR2..... #53AD9AF GPR3..... 853AD514
 P#23T2AB 19911#11#84413 GPR4..... #######1 GPR5..... #53AD314 GPR6..... 8##77454 GPR7..... ########
 P#23T2AB 19911#11#84413 GPR8..... #######1 GPR9..... 8####### GPR1#.... ###7747# GPR11.... ###F749#
 P#23T2AB 19911#11#84413 GPR12.... ###6A52# GPR13.... ###773C8 GPR14.... 8##6#712 GPR15.... 853F7918
 P#23T2AB 19911#11#84413 FPR#..... 4D###### ###43C31 FPR2..... ######## ########
 P#23T2AB 19911#11#84413 FPR4..... ######## ######## FPR6..... ######## ########
 P#23T2AB 19911#11#84413
 P#23T2AB 19911#11#84413 Traceback:
 P#23T2AB 19911#11#84413 DSA Addr Program Unit PU Addr Entry E Addr E Offset Statement Load Mod Service Status
 P#23T2AB 19911#11#84413 #A9A563# CEEHDSP ##1DB878 c91#1 #55###28 +#####152 Call
 P#23T2AB 19911#11#84413 #A9AD1D# CEECGEX ##1D6BF# CB2C91#1 #55##1E# +#####3D# Call
 P#23T2AB 19911#11#84413 #A9ABD88 T2AB #A943#38 IGZCEV5 #4CF9### +#####836 Call
 P#23T2AB 19911#11#84413 #A9AD#98 CEECRINV ##1D9F9# CEECRINV #522A7#8 +#####36E Call
 P#23T2AB 19911#11#84413 #A9AD#1# CEECCICS ##1C637# CEECCICS ###1FF28 +#####456 CEECCICS UQ##568 Call
...

Figure 111. Language Environment Traceback Written to the Transient Data Queue

Locating the Language Environment Dump
Under CICS, the Language Environment dump output is written to the CESE tran-
sient data queue. For active routines, the Language Environment dump contains
the traceback, condition information, variables, storage, and control block informa-
tion for the thread, enclave, and process levels. Use the Language Environment
dump with the CICS transaction dump to locate problems when operating under
CICS.

For a sample Language Environment dump, see “Understanding the Language
Environment Dump” on page 44.

Using CICS Transaction Dump
The CICS transaction dump is generated to the DFHDMPA or DFHDMPB data set.
The offline CICS dump utility routine converts the transaction dump into formatted,
understandable output.

The CICS transaction dump contains information for the storage areas and
resources associated with the current transaction. This information includes the
Communication Area (COMMAREA), Transaction Work Area (TWA), Exec Interface
Block (EIB), and any storage obtained by the CICS EXEC commands. This infor-
mation does not appear in the Language Environment dump. It can be helpful to
use the CICS transaction dump with the Language Environment dump to locate
problems when operating under CICS.

258 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

When the location of an error is uncertain, it can be helpful to insert EXEC CICS
DUMP statements in and around the code suspected of causing the problem. This
generates CICS transaction dumps close to the error for debugging reference.

For information about interpreting CICS dumps, see CICS/ESA Version 3 Release
3 Problem Determination Guide.

Using CICS Register and Program Status Word Contents
When a routine interrupt occurs (code = ASRA) and a CICS dump is generated,
CICS formats the contents of the program status word (PSW) and the registers at
the time of the interrupt. This information is also contained in the CICS trace table
entry marked SSRP C EXECC — ABEND DETECTED. The format of the information
contained in this trace entry is described in CICS/ESA Data Areas manual, under
KERRD - KERNEL ERROR DATA.

The address of the interrupt can be found from the second word of the PSW, giving
the address of the instruction following the point of interrupt. The address of the
entry point of the function can be subtracted from this address. The offset com-
pared to this listing gives the statement that causes the interrupt.

For C routines, you can find the address of the entry point in register 3.

If register 15 is corrupted, the contents of the first load module of the active enclave
appear in the program storage section of the CICS transaction dump.

Using Language Environment Abend and Reason Codes
An application can end with an abend in two ways:

� User-specified abend (that is, an abend requested by the assembler user exit
or the ABTERMENC run-time option).

� Language Environment-detected unrecoverable error (in which case there is no
Language Environment condition handling).

When Language Environment detects an unrecoverable error under CICS, Lan-
guage Environment terminates the transaction with an EXEC CICS abend. The
abend code has a number between 4000 and 4095. A write-to-operator (WTO) is
performed to write a CEE1000S message to the system console. This message
contains the abend code and its associated reason code. The WTO is performed
only for unrecoverable errors detected by Language Environment. No WTO occurs
for user-requested abends.

Although this type of abend is performed only for unrecoverable error conditions, an
abend code of 4000–4095 does not necessarily indicate an internal error within
Language Environment. For example, an application routine can write a variable
outside its storage and corrupt the Language Environment control blocks.

Possible causes of a 4000–4095 abend are corrupted Language Environment
control blocks and internal Language Environment errors. See Chapter 16, “Lan-
guage Environment Abend Codes” on page 775 for more information about abend
codes 4000–4095. Following is a sample Language Environment abend and reason
code. Abend codes appear in decimal, and reason codes appear in hexadecimal.

12.34.27 JOB#5585 IEF45#I XCEPII#3 GO CEPII#3 - ABEND=S### U4#94 REASON=######2C

 Chapter 8. Debugging under CICS 259

Using Language Environment Return Codes to CICS
When the Language Environment condition handler encounters a severe condition
that is specific to CICS, the condition handler generates a CICS-specific return
code. This return code is written to the system console.

Possible causes of a Language Environment return code to CICS are:

� Incorrect region size
 � Incorrect DCT
� Incorrect CSD definitions

See Chapter 18, “Return Codes to CICS” on page 795 for a list of the reason
codes written only to CICS. Following is a sample of a return code that was
returned to CICS.

+DFHAP12##I LE#3CC#1 A CICS request to Language Environment has
failed. Reason code '##12#3#'.

Ensuring Transaction Rollback
If your application does not run to normal completion and there is no CICS trans-
action abend, take steps to ensure that transaction rollback (the backing out of any
updates made by the malfunctioning application) takes place.

There are two ways to ensure that a transaction rollback occurs when an unhan-
dled condition of severity 2 or greater is detected:

� Use the ABTERMENC run-time option with the ABEND suboption
(ABTERMENC(ABEND))

� Use an assembler user exit that requests an abend for unhandled conditions of
severity 2 or greater

The IBM-supplied assembler user exit for CICS (CEECXITA), available in the Lan-
guage Environment SCEESAMP sample library, ensures that a transaction abend
and rollback occur for all unhandled conditions of severity 2 or greater. See
“Invoking the Assembler User Exit” on page 25 and OS/390 Language Environment
Programming Guide for more information about the assembler user exit.

Finding Data When Language Environment Returns a Nonzero Reason
Code

Language Environment does not write any messages to the CESE transient data
queue. Following is the output generated when Language Environment returns a
nonzero reason code to CICS and the location where the output appears:

260 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Output Message Location Issued By

DFHAC2206 14:43:54 LE03CC01 Trans-
action UTV2 has failed with abend AEC7.
Resource backout was successful.

User's terminal CICS

DFHAP1200I LE03CC01 A CICS request to
the Language Environment has failed.
Reason code '0012030'.

System console CICS

DFHAC2236 06/05/91 14:43:48 LE03CC01
Transaction UTV2 abend AEC7 in routine
UT2CVERI term P021 backout successful.

Transient data queue
CSMT

CICS

Finding Data When Language Environment Abends Internally
Language Environment does not write any messages to the CESE transient data
queue. Following is the output generated when Language Environment abends
internally and the location where the output appears:

Output Message Location Issued By

DFHAC2206 14:35:24 LE03CC01 Trans-
action UTV8 has failed with abend 4095.
Resource backout was successful.

User's terminal CICS

CEE1000S LE INTERNAL abend. ABCODE
= 00000FFF REASON = 00001234

System console Language
Environment

DFHAC2236 06/05/91 14:35:24 LE03CC01
Transaction UTV8 abend 4095 in routine
UT8CVERI term P021 backout successful.

Transient data queue
CSMT

CICS

Finding Data When Language Environment Abends from an EXEC
CICS Command

This section shows the output generated when an application abends from an
EXEC CICS command and the location where the output appears.

This error assumes the use of Language Environment run-time option
TERMTHDACT(MSG).

Output Message Location Issued By

DFHAC2206 14:35:34 LE03CC01 Trans-
action UTV8 has failed with abend AEI.
Resource backout was successful.

User's terminal CICS

No message. System console CICS

DFHAC2236 06/05/91 14:35:17 LE03CC01
Transaction UTV9 abend AEI0 in routine
UT9CVERI term P021 backout successful.

Transient data queue
CSMT

CICS

P021UTV9 091156 143516 CEE3250C The
System or User Abend AEI0 was issued.

Transient data queue
CESE

Language
Environment

 Chapter 8. Debugging under CICS 261

262 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Part 3. Run-Time Messages and Codes

This part of the book provides lists of Language Environment and Language
Environment-component run-time messages and abend and reason codes
that can appear as a result of errors in your routine.

Chapter 9. Language Environment Run-Time Messages 265

Chapter 10. C Prelinker and the C Object Library Utility Messages 387
Severe Error Messages . 395

Chapter 11. C Utility Messages . 397
localedef Messages . 397

Return Codes . 397
Messages . 397

iconv Utility Messages . 410
Return Codes . 410
Messages . 411

genxlt Utility Messages . 413

Chapter 12. C/C++ Run-Time Messages . 415

Chapter 13. Fortran Run-Time Messages . 479
Fortran Run-Time Message Number Ranges . 479
Qualifying Data . 480
Permissible Resume Actions . 481
locator-text in the Run-Time Message Texts . 481
List of Run-Time Messages . 482

Chapter 14. PL/I Run-Time Messages . 647

Chapter 15. COBOL Run-Time Messages . 741

Chapter 16. Language Environment Abend Codes 775

Chapter 17. C Abend and Reason Codes and SPC Messages 789
C System Programming Abend Codes . 789
C System Programming Reason Codes . 791
System Programming C Messages . 791

Chapter 18. Return Codes to CICS . 795
Language Environment Return Codes . 795
C Return Codes . 803
COBOL Return Codes . 804
PL/I Return Codes . 804

 Copyright IBM Corp. 1991, 2000 263

264 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE0102S N CEE0111S

Chapter 9. Language Environment Run-Time Messages

The following messages pertain to Language Environment. Each message is fol-
lowed by an explanation describing the condition that caused the message, a pro-
grammer response suggesting how you might prevent the message from occurring
again, and a system action indicating how the system responds to the condition
that caused the message.

The messages also contain a symbolic feedback code, which represents the first 8
bytes of a 12-byte condition token. You can think of the symbolic feedback code as
the nickname for a condition. As such, the symbolic feedback code can be used in
user-written condition handlers to screen for a given condition, even if it occurs at
different locations in an application.

The messages in this section contain alphabetic suffixes that have the following
meaning:

I Informational message
W Warning message
E Error message
S Severe error message
C Critical error message

CEE0102S An unrecognized condition token was passed to routine and could not be
used.

Explanation: The condition token passed to routine contained fields that were not within
the range of accepted values.

Programmer Response: Verify that the condition token passed to routine does not contain
invalid fields.

System Action: Unless the condition is handled, the defualt action is to terminate the
enclave.

Symbolic Feedback Code: CEE036

CEE0110S For data conversion from character form to internal floating-point form, an
invalid character was specified in the input character string character_string.

Programmer Response: Ensure the input character string specified for conversion con-
tains only numerical characters. Signs, decimal points, commas, exponents are not allowed
in the string. If the feedback token was omitted on the call to the conversion routine, then the
condition is signaled. Otherwise, examine the feedback token upon return and take appro-
priate action.

System Action: The output value from the conversion routine is undefined.

Symbolic Feedback Code: CEE03E

CEE0111S For data conversion from internal floating-point form to character form, the
number of fraction digits specified was either negative or greater than the
value specified for the length of the character string.

Programmer Response: Ensure the input value specified for fraction digits is non-negative
and less than the value specified for the length of the character string. If the feedback token
was omitted on the call to the conversion routine, then the condition is signaled. Otherwise,
examine the feedback token upon return and take appropriate action.

 Copyright IBM Corp. 1991, 2000 265

 CEE0112S N CEE0199W

System Action: The output value from the conversion routine is undefined.

Symbolic Feedback Code: CEE03F

CEE0112S For data conversion from internal floating-point form to character form, the
value specified for the length of the output character string is outside the
acceptable range. The valid range for E-format conversion is 1 to 35, and
for F-format conversion is 2 to 36.

Programmer Response: Ensure the input value specified for the length of the output char-
acter string is within limit. If the feedback token was omitted on the call to the conversion
routine, then the condition is signaled. Otherwise, examine the feedback token upon return
and take appropriate action.

System Action: The output value from the conversion routine is undefined.

Symbolic Feedback Code: CEE03G

CEE0113S For data conversion from character form to internal floating-point form, the
value specified for the length of the input character string is outside the
acceptable range. The valid range is 1 to 35.

Programmer Response: Ensure the input value specified for the length of the input char-
acter string is within limit. If the feedback token was omitted on the call to the conversion
routine, then the condition is signaled. Otherwise, examine the feedback token upon return
and take appropriate action.

System Action: The output value from the conversion routine is undefined.

Symbolic Feedback Code: CEE03H

CEE0198S The termination of a thread was signaled due to an unhandled condition.

Explanation: Termination imminent due to an unhandled condition was signaled or was the
target of a promote.

Programmer Response: Call CEEITOK from a user-written condition handler to determine
what condition was unhandled. With that information, you can either recover appropriately or
allow termination to continue.

System Action: If this condition is signaled, or is the target of a promote, and it remains
unhandled at stack frame zero, the thread will terminate without re-raising this condition. If
this condition was signaled with CEESGL specifying a feedback code, the feedback code is
returned to the caller of CEESGL and control is returned to the next sequential instruction
following the call to CEESGL.

Symbolic Feedback Code: CEE066

CEE0199W The termination of a thread was signaled due to a STOP statement.

Explanation: The termination of a thread was signaled.

Programmer Response: No response is required. A thread is terminating normally.

System Action: The thread is terminated in a normal manner.

Symbolic Feedback Code: CEE067

266 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE0201I N CEE0254W

CEE0201I An unhandled condition was returned in a feedback code.

Explanation: No language run-time component event handler or CEEHDL routine handled
the condition.

Programmer Response: See the original condition.

System Action: Language Environment returns to the point at which the original condition
was signaled.

Symbolic Feedback Code: CEE069

CEE0250S An unrecognized label variable was detected. The stack frame address
could not be associated with an active stack frame.

Explanation: A call to CEEGOTO was made with a bad label variable. The label variable
should be a valid code point that is subject to a current save area.

Programmer Response: The label variable applies to a program that is no longer active,
or the label variable was not initialized. Make sure that the program is active.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE07Q

CEE0252W CEEHDLU was unable to find the requested user-written condition handler
routine.

Explanation: A call to CEEHDLU was made to unregister a user-written condition handler
that was not registered.

Programmer Response: Ensure that the user-written condition handler you are trying to
free is registered.

System Action: No user-written condition handlers are removed.

Symbolic Feedback Code: CEE07S

CEE0253W A user-written condition handler was unregistered. Additional registration
remain in the queue.

Explanation: A call to CEEHDLU was made to unregister a user-written condition handler.
The user-written condition handler had been registered a multiple number of times.

Programmer Response: No programmer action is required.

System Action: The first occurrence of the user-written condition handler is removed from
the queue. Other registrations remain on the queue.

Symbolic Feedback Code: CEE07T

CEE0254W The first parameter passed to CEEMRCR was not 0 or 1.

Explanation: The first parameter passed to CEEMRCR was neither 0 nor 1.

Programmer Response: Change the first parameter (type_of_move) passed to CEEMRCR
to a valid value (0 or 1).

System Action: The resume cursor is not moved.

Symbolic Feedback Code: CEE07U

 Chapter 9. Language Environment Run-Time Messages 267

 CEE0255S N CEE0260S

CEE0255S The first parameter passed to CEEMRCE was an unrecognized label.

Explanation: A move resume cursor must be made to a valid label pointed to by
CEEMRCE.

Programmer Response: Change the position parameter pointed to by CEEMRCE to a
valid label.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE07V

CEE0256W The user-written condition handler routine specified was already registered
for this stack frame. It was registered again.

Explanation: CEEHDLR provided for multiple registration of user-written condition handler
routines but the registration of the same routine again for the same stack frame is consid-
ered unusual.

Programmer Response: No response is required. This message is just a warning.

System Action: The handler is registered.

Symbolic Feedback Code: CEE080

CEE0257S The routine specified contained an invalid entry variable.

Explanation: CEEHDLR could not validate the entry variable passed.

Programmer Response: Build and pass CEEHDLR a valid entry variable.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE081

CEE0259S A move to stack frame zero using CEEMRCR was attempted from a MAIN
routine.

Explanation: The handler for the first stack frame beyond stack frame zero attempted to do
a move of the resume cursor with type_of_move = 1. The resume cursor was not moved.

Programmer Response: Do not attempt to move the resume cursor to the caller of the
main routine. If you want to end the thread, signal Termination Imminent.

System Action: The resume cursor is not moved. The thread is terminated.

Symbolic Feedback Code: CEE083

CEE0260S No condition was active when a call to a condition management routine
was made. The requested function was not performed.

Explanation: The condition manager had no record of an active condition.

Programmer Response: No response is required. Calls to these routines should only be
made within the handler routine.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE084

268 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE0264S N CEE0374C

CEE0264S An invalid request to resume a condition was detected.

Explanation: A user-written condition handler attempted to resume for a condition for which
resumption is not allowed unless the resume cursor is moved.

Note: CEE088 might not be handled and resumed without moving the resume cursor. If
resumption is requested without moving the resume cursor, the environment is termi-
nated with ABEND 4091-12.

Programmer Response: Move the resume cursor as part of handling the condition.

System Action: The resume request that triggered this condition is ignored.

Symbolic Feedback Code: CEE088

CEE0277W CEEMRCR was called to perform an unnecessary move.

Explanation: A user-written condition handler attempted to move the resume cursor with
type_of_move = 0 and with the handle and resume cursors pointing to the same stack frame.
The handle and resume cursor might point to the same stack frame either because the
handler is for the incurring frame or because the resume cursor has already been moved to
the frame being handled.

Programmer Response: No response is necessary.

System Action: No action is taken by the Condition Manager. The resume cursor is not
moved.

Symbolic Feedback Code: CEE08L

CEE0355C The user-written condition handler that was scheduled using CEEHDLR
returned an unrecognized result code.

Explanation: A user written condition handler passed an invalid result code. A user-written
condition handler has either returned without setting a reason code variable to a valid
response code or has moved the resume cursor that caused a return to condition manage-
ment without a valid response code being set.

Programmer Response: Supply a valid result code.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE0B3

CEE0356C An internal condition handler returned an unrecognized result code.

Explanation: A language run-time component condition handler passed an invalid result
code.

Programmer Response: Contact your service representative.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE0BA

CEE0374C CONDITION = condition-id TOKEN = condition-token WHILE RUNNING
PROGRAM program-name WHICH STARTS AT program-address AT THE TIME
OF INTERRUPT

PSW psw GPR 0-3 gpr0 gpr1 gpr2
gpr3
 GPR 4-7 gpr4 gpr5 gpr6 gpr7 GPR 8-B gpr8
gpr9 gprA gprB GPR C-F gprC gprD gprE gprF
FLT 0-2 flt0 flt2
 FLT 4-6 flt4 flt6

Explanation: An unrecoverable condition occurred while processing a previous condition.
This message is issued with a WTO because Language Environment has encountered a

 Chapter 9. Language Environment Run-Time Messages 269

 CEE0398W N CEE0402S

critical error while handling a previous condition. The CONDITION indicates the message
representing the condition being handled and the TOKEN is the three word Language Envi-
ronment Condition Token. The program-name, program-address (starting address of
program), psw, and registers are for the condition being handled when the unrecoverable
condition occurred. If the CEE0374C message appears several times in sequence, the con-
ditions appear in order of occurrence. Correcting the earliest condition may allow the applica-
tion to run successfully.

Programmer Response: Attempt to correct the original condition by looking up the
condition-token specified in the message.

System Action: The thread is terminated abnormally.

Symbolic Feedback Code: CEE0BM

CEE0398W Resume with new input.

Explanation: This condition was returned from a user-written condition handler to tell Lan-
guage Environment to retry the operation with new input.

Programmer Response: No programmer response is required.

System Action: Language Environment attempts to retry the operation.

Symbolic Feedback Code: CEE0CE

CEE0399W Resume with new output.

Explanation: This condition was returned from a user-written condition handler to tell Lan-
guage Environment to retry the operation with new output.

Programmer Response: No programmer response is required.

System Action: Language Environment resumes execution with new output.

Symbolic Feedback Code: CEE0CF

CEE0400E An invalid action code action-code was passed to routine routine-name.

Explanation: An action code parameter passed to routine did not contain a valid value.

Programmer Response: Provide a valid action code.

System Action: No system action is performed. The output is undefined.

Symbolic Feedback Code: CEE0CG

CEE0401S An invalid case code case-code was passed to routine routine-name.

Explanation: A case code parameter must be a 2-byte integer with a value of 1 or 2.

Programmer Response: Provide a valid case code.

System Action: No system action is performed. The output is undefined.

Symbolic Feedback Code: CEE0CH

CEE0402S An invalid control code control-code was passed to routine routine-name.

Explanation: A control code parameter must be a 2-byte integer with a value of 0 or 1.

Programmer Response: Provide a valid control code.

System Action: No system action is performed.

Symbolic Feedback Code: CEE0CI

270 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE0403S N CEE0454S

CEE0403S An invalid severity code severity-code was passed to routine routine-name.

Explanation: A severity code parameter must be a 2-byte integer with a value between 0
and 4.

Programmer Response: Provide a valid severity code.

System Action: No system action is performed.

Symbolic Feedback Code: CEE0CJ

CEE0404W Facility ID facility-id with non-alphanumeric characters was passed to
routine routine-name.

Explanation: A facility ID parameter was passed with characters not in the range of A-Z,
a-z, 0-9.

Programmer Response: Verify that the facility ID passed is the correct value.

System Action: No system action is performed. Processing continues.

Symbolic Feedback Code: CEE0CK

CEE0450S The message inserts for the condition token with message number
message-number and facility ID facility-id could not be located.

Explanation: An insert area for the given condition token did not exist. It possibly was
never allocated, or was reused by another condition.

Programmer Response: Verify that the message-number and Facility-ID passed contain
the correct values. If so, verify that the program was run with the MSGQ option specifying a
large enough value to contain all the insert areas necessary for this program to run.

System Action: No system action is performed.

Symbolic Feedback Code: CEE0E2

CEE0451S An invalid destination code destination-code was passed to routine routine-
name.

Explanation: A destination code must be a 4-byte integer with a value of 2.

Programmer Response: Provide a valid destination code.

System Action: No system action is performed. The message is not written.

Symbolic Feedback Code: CEE0E3

CEE0452S An invalid facility ID facility-id was passed to routine routine-name.

Explanation: A facility id parameter must be a 3-alphanumeric character field.

Programmer Response: Provide a facility id made up of 3-alphanumeric characters that
corresponds to a product recognized by Language Environment. The IBM-supplied facility ids
are IBM, CEE, IGZ, and EDC.

System Action: No system action is performed. The output is undefined.

Symbolic Feedback Code: CEE0E4

CEE0454S The message number message-number could not be found for facility ID
facility-id.

Explanation: The message could not be located within the source message files for
facility-id.

Programmer Response: Ensure the message number is contained within the source
message file for facility-id.

System Action: No system action is performed. The message is not written.

 Chapter 9. Language Environment Run-Time Messages 271

 CEE0455W N CEE0460W

Symbolic Feedback Code: CEE0E6

CEE0455W The message with message number message-number and facility ID
facility-id was truncated.

Explanation: The message could not fit within the message buffer supplied. Msg_index
contains the index into the message returned.

Programmer Response: Subsequent calls to CEEMGET with the previously returned
msg_index value will retrieve the remainder of the message.

System Action: The index into the message is returned in msg_ptr.

Symbolic Feedback Code: CEE0E7

CEE0457S The message file destination ddname could not be located.

Explanation: An error was detected trying to access the given message file ddname.

Programmer Response: Verify that the file exists and is usable.

System Action: No system action is performed. The message is not written.

Symbolic Feedback Code: CEE0E9

CEE0458S The message repository repository-name could not be located.

Explanation: The file containing the table of message file names could not be located. The
name of the file was txxxMSGT, where t was either the letter "I" for an IBM-assigned facility
id, or "U" for a user-assigned facility id. xxx was the facility id. MSGT was the letters
"MSGT".

Programmer Response: Verify that the table exists and is appropriately named.

System Action: No system action is performed. The message is not written.

Symbolic Feedback Code: CEE0EA

CEE0459S Not enough storage was available to create a new instance specific infor-
mation block.

Explanation: A new ISI could not be created because not enough storage was available.

Programmer Response: Ensure that the REGION size is sufficient to run the application.
Verify that the storage sizes specified in the HEAP run-time option is reasonable, given the
region size allocated to the application.

System Action: No storage is allocated.

Symbolic Feedback Code: CEE0EB

CEE0460W Multiple instances of the condition token with message number message-
number and facility ID facility-id were detected.

Explanation: A message insert block for the given condition token already existed. A new
message insert block was created. The two were differentiated by the I_S_info field in the
condition token.

Programmer Response: No response is required.

System Action: A call to CEEMSG or CEEMGET will format the message associated with
the instance of the message insert block indicated by the I_S_info field of the condition
token.

Symbolic Feedback Code: CEE0EC

272 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE0461S N CEE0502S

CEE0461S The maximum number of unique message insert blocks was reached. This
condition token had its I_S_info field set to 1.

Explanation: The maximum number of 2,147,483,647 unique message insert blocks was
reached. The condition token passed had its I_S_info field set to 1.

Programmer Response: No response is required.

System Action: The I_S_info field in the condition token is set to 1.

Symbolic Feedback Code: CEE0ED

CEE0462S Instance specific information for the condition token with message number
message-number and facility ID facility-id could not be found.

Explanation: The ISI associated with the condition token was not located. It possibly was
reused by another condition if the number specified in the MSGQ run-time option was
exceeded.

Programmer Response: Specify a MSGQ run-time option that is sufficient to contain all
the active ISIs.

System Action: No system action is performed. The message is not written.

Symbolic Feedback Code: CEE0EE

CEE0463S The maximum size for an insert data item was exceeded.

Explanation: The maximum size of 254 for the length of an insert data item was exceeded.

Programmer Response: Make the insert 254 characters or less. If this is not possible,
divide the insert into 2 or more inserts.

System Action: No system action is performed. The insert is not created.

Symbolic Feedback Code: CEE0EF

CEE0464S Instance-specific information for the condition token with message number
message-number and facility ID facility-id did not exist.

Explanation: No ISI was associated with the condition token. It is most likely that the infor-
mation was never created.

Programmer Response: If this condition was returned by a Language Environment
service, contact your service representative. Otherwise, make sure that the correct I_S_info
was identified.

System Action: No system action is performed. The message is not written.

Symbolic Feedback Code: CEE0EG

CEE0502S The operational descriptor for the argument list was missing in routine
routine-name.

Explanation: The high order bit of register 1 was off or the constant X'81C3C501' was
missing from the storage location immediately preceding the argument list.

Programmer Response: Contact your service representative.

System Action: No system action is performed.

Symbolic Feedback Code: CEE0FM

 Chapter 9. Language Environment Run-Time Messages 273

 CEE0553S N CEE0804S

CEE0553S An internal error was detected in creating the inserts for a condition.

Explanation: An invalid insert number was passed to the routine to format inserts.

Programmer Response: Contact your service representative.

System Action: No system action is performed.

Symbolic Feedback Code: CEE0H9

CEE0554W A value outside the range of 0 through 999,999 was supplied. However,
the value was still used as the enclave return code.

Explanation: Language Environment prefers the user to set the enclave return code to a
value of 0 through 999,999.

Programmer Response: If possible, change the return code to be within the range of 0
through 999,999.

System Action: The value will still be used as the enclave return code.

Symbolic Feedback Code: CEE0HA

CEE0802C Heap storage control information was damaged.

Explanation: Internal control information saved in header records within the heap was
damaged.

Programmer Response: Ensure that your program does not write data to an area larger
than the original allocation. For example, allocating a 100 byte area and then writing 120
bytes to this area could cause damage to a storage header.

System Action: No storage is allocated. A severity 4 condition is signaled and the applica-
tion is terminated.

Symbolic Feedback Code: CEE0P2

CEE0803S The heap identifier in a get storage request or a discard heap request was
unrecognized.

Explanation: The heap identifier supplied in a call to CEEGTST or CEEDSHP did not
match any known heap identifier, or the heap had already been discarded by a call to
CEEDSHP (discard heap) prior to the request.

Programmer Response: For get heap storage requests, ensure that the value in the heap
identifier parameter is either 0, indicating the default heap, or an identifier returned by the
CEECRHP (create heap) service. For all other requests, ensure that the heap is not dis-
carded prior to the request.

System Action: No storage is allocated. The value of the address parameter is undefined.

Symbolic Feedback Code: CEE0P3

CEE0804S The initial size value supplied in a create heap (CEECRHP) request was
invalid.

Explanation: The initial size value supplied to CEECRHP was a negative number.

Programmer Response: Ensure that the value in the initial size parameter is either 0, indi-
cating same as the initial heap, or a positive integer.

System Action: No heap is created. The value of the heap identifier is undefined.

Symbolic Feedback Code: CEE0P4

274 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE0805S N CEE0809S

CEE0805S The increment size value supplied in a create heap (CEECRHP) request was
invalid.

Explanation: The increment size value supplied to CEECRHP was a negative number.

Programmer Response: Ensure that the value in the increment size parameter is either 0,
indicating same as the initial heap, or a positive integer.

System Action: No heap is created. The value of the heap identifier is undefined.

Symbolic Feedback Code: CEE0P5

CEE0806S The options value supplied in a create heap (CEECRHP) request was unrec-
ognized.

Explanation: The value of the options parameter supplied to CEECRHP was not recog-
nized.

Programmer Response: Ensure that the value in the options parameter is either 0, indi-
cating same as the initial heap, or one of the supported options values documented in the
OS/390 Language Environment Programming Guide.

System Action: No heap is created. The value of the heap identifier is undefined.

Symbolic Feedback Code: CEE0P6

CEE0807S An input supplied to a create user heap request (CEEVUHCR) was not
valid.

Explanation: The value of an input parameter supplied to CEEVUHCR was not correct.

Programmer Response: Ensure that all of the input parameters have been properly speci-
fied on the call to CEEVUHCR.

System Action: No heap is created. The value of the heap token is undefined.

Symbolic Feedback Code: CEE0P7

CEE0808S Storage size in a get storage request (CEEGTST) or a reallocate request
(CEECZST) was not a positive number.

Explanation: The size parameter supplied in a get storage request call to CEEGTST or a
reallocate call to CEECZST was less than or equal to 0.

Programmer Response: Ensure that the size parameter is a positive integer representing
the number of bytes of storage to be obtained.

System Action: No storage is allocated. The value of the address parameter is undefined.

Symbolic Feedback Code: CEE0P8

CEE0809S The maximum number of heaps was reached.

Explanation: The maximum number of heaps had already been created.

Programmer Response: Modify the program to discard unneeded heaps before attempting
to create a new heap or restructure the application so that it requires fewer heaps.

System Action: No heap is created. The value of the heap identifier is undefined.

Symbolic Feedback Code: CEE0P9

 Chapter 9. Language Environment Run-Time Messages 275

 CEE0810S N CEE1000S

CEE0810S The storage address in a free storage (CEEFRST) request was not recog-
nized, or heap storage (CEECZST) control information was damaged.

Explanation: The address parameter supplied in a call to CEEFRST or CEECZST did not
contain the starting address of a currently allocated area in the heap. Either the supplied
address was invalid, or the area had been freed previously.

Programmer Response: Ensure that the address parameter contains a value returned by
a call to CEEGTST or CEECZST. Ensure that the storage area to be freed has not been
freed previously.

System Action: No storage is freed. The address parameter is left unchanged so that its
value can be examined.

Symbolic Feedback Code: CEE0PA

CEE0812S An invalid attempt to discard the initial heap was made.

Explanation: The heap identifier supplied in a discard heap request was zero (indicating
the initial heap) but the initial heap could not be discarded.

Programmer Response: Ensure that the heap identifier supplied in the discard heap call is
an identifier returned by the create heap (CEECRHP) service.

System Action: No storage is freed. The value of the heap identifier remains unchanged.

Symbolic Feedback Code: CEE0PC

CEE0813S Insufficient storage was available to satisfy a get storage (CEECZST)
request.

Explanation: There was not enough free storage available to satisfy a get storage call to
CEEGTST or reallocate request call to CEECZST.

Programmer Response: Ensure that the REGION size is sufficient to run the application.
Ensure that the size parameter in the get storage request is not an unusually large number.
Verify that the storage sizes specified in the HEAP and STACK run-time options are reason-
able, given the region size allocated to the application. Verify that you are using storage
options that get your storage from above the line, if you can, since you can run out of
storage below the line much more easily.

System Action: No storage is allocated. The value of the address parameter is undefined.

Symbolic Feedback Code: CEE0PD

CEE0814S Insufficient storage was available to extend the stack.

Explanation: During prologue processing, a new stack frame could not be obtained
because there was not enough free storage available.

Programmer Response: Ensure that the REGION size is sufficient to run the application.

System Action: A SIGSEGV signal is raised. If the process is blocking or ignoring this
signal, or is catching it but has not specified that the catcher function should run on an alter-
nate stack, the signal will be unblocked and its action set to default (i.e., terminate the
process) before the signal is raised.

Symbolic Feedback Code: CEE0PE

CEE1000S Language Environment internal abend. ABCODE = abcode REASON =
rsncode

Explanation: This message was issued to the operators console in CICS to indicate that
Language Environment had abended, with the abend code and reason code as specified in
the message.

Programmer Response: Refer to the Language Environment Abend and Reason Codes
appendix in this book for information on the cause of the abend.

276 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE1001E N CEE2003E

System Action: The transaction is terminated abnormally with the abend code stated in
this message.

Symbolic Feedback Code: CEE0V8

CEE1001E A cross program branching was attempted as a result of a CICS HANDLE
command with the LABEL options. This was not supported by the lan-
guage used by program program-name.

Explanation: The HLL did not support transferring control to specified LABEL.

Programmer Response: This is a language-specific restriction. See OS/390 Language
Environment Programming Guide for information on EXEC CICS.

System Action: No system action is performed.

Symbolic Feedback Code: CEE0V9

CEE2001E For an exponentiation operation (R**S) where R and S are real values, R
was less than zero in math routine routine-name.

Explanation: Invalid arguments were specified to the scalar math routine.

Programmer Response: Ensure the arguments are valid to the math routine. You might
want to register a user handler that will gain control if this condition is signaled (if the feed-
back token was omitted on the call to the math routine, then the condition is signaled). If you
specify the feedback token on the call to the math routine, examine the feedback token upon
return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1UH

CEE2002E The argument value was too close to one of the singularities (plus or
minus pi/2, plus or minus 3pi/2, for the tangent; or plus or minus pi, plus or
minus 2pi, for the cotangent) in math routine routine-name.

Explanation: Invalid arguments were specified to the scalar math routine.

Programmer Response: Ensure the arguments are valid to the math routine. You might
want to register a user handler that will gain control if this condition is signaled (if the feed-
back token was omitted on the call to the math routine, then the condition is signaled). If you
specify the feedback token on the call to the math routine, examine the feedback token upon
return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1UI

CEE2003E For an exponentiation operation (I**J) where I and J are integers, I was
equal to zero and J was less than or equal to zero in math routine routine-
name.

Explanation: Invalid arguments were specified to the scalar math routine.

Programmer Response: Ensure the arguments are valid to the math routine. You might
want to register a user handler that will gain control if this condition is signaled (if the feed-
back token was omitted on the call to the math routine, then the condition is signaled). If you
specify the feedback token on the call to the math routine, examine the feedback token upon
return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1UJ

 Chapter 9. Language Environment Run-Time Messages 277

 CEE2004E N CEE2007E

CEE2004E For an exponentiation operation (R**I) where R is real and I is an integer, R
was equal to zero and I was less than or equal to zero in math routine
routine-name.

Explanation: Invalid arguments were specified to the scalar math routine.

Programmer Response: Ensure the arguments are valid to the math routine. You might
want to register a user handler that will gain control if this condition is signaled (if the feed-
back token was omitted on the call to the math routine, then the condition is signaled). If you
specify the feedback token on the call to the math routine, examine the feedback token upon
return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1UK

CEE2005E The value of the argument was outside the valid range range in math
routine routine-name.

Explanation: Invalid arguments were specified to the scalar math routine.

Programmer Response: Ensure the arguments are valid to the math routine. You might
want to register a user handler that will gain control if this condition is signaled (if the feed-
back token was omitted on the call to the math routine, then the condition is signaled). If you
specify the feedback token on the call to the math routine, examine the feedback token upon
return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1UL

CEE2006E For an exponentiation operation (R**S) where R and S are real values, R
was equal to zero and S was less than or equal to zero in math routine
routine-name.

Explanation: Invalid arguments were specified to the scalar math routine.

Programmer Response: Ensure the arguments are valid to the math routine. You might
want to register a user handler that will gain control if this condition is signaled (if the feed-
back token was omitted on the call to the math routine, then the condition is signaled). If you
specify the feedback token on the call to the math routine, examine the feedback token upon
return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1UM

CEE2007E The exponent exceeded limit in math routine routine-name.

Explanation: Invalid arguments were specified to the scalar math routine.

Programmer Response: Ensure the arguments are valid to the math routine. You might
want to register a user handler that will gain control if this condition is signaled (if the feed-
back token was omitted on the call to the math routine, then the condition is signaled). If you
specify the feedback token on the call to the math routine, examine the feedback token upon
return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1UN

278 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE2008E N CEE2012E

CEE2008E For an exponentiation operation (Z**P) where the complex base Z equals
zero, the real part of the complex exponent P, or the integer exponent P
was less than or equal to zero in math routine routine-name.

Explanation: Invalid arguments were specified to the scalar math routine.

Programmer Response: Ensure the arguments are valid to the math routine. You might
want to register a user handler that will gain control if this condition is signaled (if the feed-
back token was omitted on the call to the math routine, then the condition is signaled). If you
specify the feedback token on the call to the math routine, examine the feedback token upon
return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1UO

CEE2009E The value of the real part of the argument was greater than limit in math
routine routine-name.

Explanation: Invalid arguments were specified to the scalar math routine.

Programmer Response: Ensure the arguments are valid to the math routine. You might
want to register a user handler that will gain control if this condition is signaled (if the feed-
back token was omitted on the call to the math routine, then the condition is signaled). If you
specify the feedback token on the call to the math routine, examine the feedback token upon
return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1UP

CEE2010E The argument was less than limit in math routine routine-name.

Explanation: Invalid arguments were specified to the scalar math routine.

Programmer Response: Ensure the arguments are valid to the math routine. You might
want to register a user handler that will gain control if this condition is signaled (if the feed-
back token was omitted on the call to the math routine, then the condition is signaled). If you
specify the feedback token on the call to the math routine, examine the feedback token upon
return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1UQ

CEE2011E The argument was greater than limit in math routine routine-name.

Explanation: Invalid arguments were specified to the scalar math routine.

Programmer Response: Ensure the arguments are valid to the math routine. You might
want to register a user handler that will gain control if this condition is signaled (if the feed-
back token was omitted on the call to the math routine, then the condition is signaled). If you
specify the feedback token on the call to the math routine, examine the feedback token upon
return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1UR

CEE2012E The argument was less than or equal to limit in math routine routine-name.

Explanation: Invalid arguments were specified to the scalar math routine.

Programmer Response: Ensure the arguments are valid to the math routine. You might
want to register a user handler that will gain control if this condition is signaled (if the feed-
back token was omitted on the call to the math routine, then the condition is signaled). If you
specify the feedback token on the call to the math routine, examine the feedback token upon
return from the math routine and take appropriate action.

 Chapter 9. Language Environment Run-Time Messages 279

 CEE2013E N CEE2016E

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1US

CEE2013E The absolute value of the imaginary part of the argument was greater than
limit in math routine routine-name.

Explanation: Invalid arguments were specified to the scalar math routine.

Programmer Response: Ensure the arguments are valid to the math routine. You might
want to register a user handler that will gain control if this condition is signaled (if the feed-
back token was omitted on the call to the math routine, then the condition is signaled). If you
specify the feedback token on the call to the math routine, examine the feedback token upon
return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1UT

CEE2014E Both arguments were equal to limit in math routine routine-name.

Explanation: Invalid arguments were specified to the scalar math routine.

Programmer Response: Ensure the arguments are valid to the math routine. You might
want to register a user handler that will gain control if this condition is signaled (if the feed-
back token was omitted on the call to the math routine, then the condition is signaled). If you
specify the feedback token on the call to the math routine, examine the feedback token upon
return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1UU

CEE2015E The absolute value of the imaginary part of the argument was greater than
or equal to limit in math routine routine-name.

Explanation: Invalid arguments were specified to the scalar math routine.

Programmer Response: Ensure the arguments are valid to the math routine. You might
want to register a user handler that will gain control if this condition is signaled (if the feed-
back token was omitted on the call to the math routine, then the condition is signaled). If you
specify the feedback token on the call to the math routine, examine the feedback token upon
return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1UV

CEE2016E The absolute value of the argument was greater than limit in math routine
routine-name.

Explanation: Invalid arguments were specified to the scalar math routine.

Programmer Response: Ensure the arguments are valid to the math routine. You might
want to register a user handler that will gain control if this condition is signaled (if the feed-
back token was omitted on the call to the math routine, then the condition is signaled). If you
specify the feedback token on the call to the math routine, examine the feedback token upon
return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1V0

280 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE2017E N CEE2020E

CEE2017E The absolute value of the argument was greater than or equal to limit in
math routine routine-name.

Explanation: Invalid arguments were specified to the scalar math routine.

Programmer Response: Ensure the arguments are valid to the math routine. You might
want to register a user handler that will gain control if this condition is signaled (if the feed-
back token was omitted on the call to the math routine, then the condition is signaled). If you
specify the feedback token on the call to the math routine, examine the feedback token upon
return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1V1

CEE2018E The real and imaginary parts of the argument were equal to limit in math
routine routine-name.

Explanation: Invalid arguments were specified to the scalar math routine.

Programmer Response: Ensure the arguments are valid to the math routine. You might
want to register a user handler that will gain control if this condition is signaled (if the feed-
back token was omitted on the call to the math routine, then the condition is signaled). If you
specify the feedback token on the call to the math routine, examine the feedback token upon
return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1V2

CEE2019E The absolute value of the real part of the argument was greater than or
equal to limit in math routine routine-name.

Explanation: Invalid arguments were specified to the scalar math routine.

Programmer Response: Ensure the arguments are valid to the math routine. You might
want to register a user handler that will gain control if this condition is signaled (if the feed-
back token was omitted on the call to the math routine, then the condition is signaled). If you
specify the feedback token on the call to the math routine, examine the feedback token upon
return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1V3

CEE2020E For an exponentiation operation (R**S) where R and S are real values,
either R is equal to zero and S is negative, or R is negative and S is not an
integer whose absolute value is less than or equal to limit in math routine
routine-name.

Explanation: Invalid arguments were specified to the scalar math routine.

Programmer Response: Ensure the arguments are valid to the math routine. You might
want to register a user handler that will gain control if this condition is signaled (if the feed-
back token was omitted on the call to the math routine, then the condition is signaled). If you
specify the feedback token on the call to the math routine, examine the feedback token upon
return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1V4

 Chapter 9. Language Environment Run-Time Messages 281

 CEE2021E N CEE2025W

CEE2021E For an exponentiation operation (X**Y), the argument combination of
Y*log2(X) generated a number greater than or equal to limit in math routine
routine-name.

Explanation: Invalid arguments were specified to the scalar math routine.

Programmer Response: Ensure the arguments are valid to the math routine. You might
want to register a user handler that will gain control if this condition is signaled (if the feed-
back token was omitted on the call to the math routine, then the condition is signaled). If you
specify the feedback token on the call to the math routine, examine the feedback token upon
return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1V5

CEE2022E The value of the argument was plus or minus limit in math routine routine-
name.

Explanation: Invalid arguments were specified to the scalar math routine.

Programmer Response: Ensure the arguments are valid to the math routine. You might
want to register a user handler that will gain control if this condition is signaled (if the feed-
back token was omitted on the call to the math routine, then the condition is signaled). If you
specify the feedback token on the call to the math routine, examine the feedback token upon
return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1V6

CEE2024E An overflow has occurred in math routine routine-name.

Explanation: An overflow had occurred in calculating the results in the scalar math routine.

Programmer Response: Ensure the input arguments are valid to the math routine. You
might want to register a user handler that will gain control if this condition is signaled (if the
feedback token was omitted on the call to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math routine, examine the feedback token
upon return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1V8

CEE2025W An underflow has occurred in math routine routine-name.

Explanation: An underflow had occurred in calculating the results in the scalar math
routine.

Programmer Response: Ensure the arguments are valid to the math routine. You might
want to register a user handler that will gain control if this condition is signaled (if the feed-
back token was omitted on the call to the math routine, then the condition is signaled). If you
specify the feedback token on the call to the math routine, examine the feedback token upon
return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1V9

282 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE2028E N CEE2031E

CEE2028E The value of the second argument was outside the valid range range in
math routine routine-name.

Explanation: Invalid arguments were specified to the scalar math routine.

Programmer Response: Ensure the arguments are valid to the math routine. You might
want to register a user handler that will gain control if this condition is signaled (if the feed-
back token was omitted on the call to the math routine, then the condition is signaled). If you
specify the feedback token on the call to the math routine, examine the feedback token upon
return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1VC

CEE2029E The value of the argument was equal to limit in math routine routine-name.

Explanation: Invalid input arguments were specified to the scalar math routine.

Programmer Response: Ensure the input arguments are valid to the math routine. You
might want to register a user handler that will gain control if this condition is signaled (if the
feedback token was omitted on the call to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math routine, examine the feedback token
upon return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1VD

CEE2030E The value of the second argument was equal to limit in math routine routine-
name.

Explanation: Invalid input arguments were specified to the scalar math routine.

Programmer Response: Ensure the input arguments are valid to the math routine. You
might want to register a user handler that will gain control if this condition is signaled (if the
feedback token was omitted on the call to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math routine, examine the feedback token
upon return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1VE

CEE2031E The value of the argument was a non-positive whole number in math
routine routine-name.

Explanation: Invalid input arguments were specified to the scalar math routine.

Programmer Response: Ensure the input arguments are valid to the math routine. You
might want to register a user handler that will gain control if this condition is signaled (if the
feedback token was omitted on the call to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math routine, examine the feedback token
upon return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1VF

 Chapter 9. Language Environment Run-Time Messages 283

 CEE2040E N CEE2043E

CEE2040E The value of the third argument was outside the valid range range in math
routine routine-name.

Explanation: Invalid input arguments were specified to the scalar math routine.

Programmer Response: Ensure the input arguments are valid to the math routine. You
may want to register a user handler that will gain control if this condition is signaled (if the
feedback token was omitted on the call to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math routine, examine the feedback token
upon return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1VO

CEE2041E The absolute value of the second argument was greater than either the
value of the third argument or the number of bits in the first argument in
math routine routine-name.

Explanation: Invalid input arguments were specified to the scalar math routine.

Programmer Response: Ensure the input arguments are valid to the math routine. You
may want to register a user handler that will gain control if this condition is signaled (if the
feedback token was omitted on the call to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math routine, examine the feedback token
upon return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1VP

CEE2042E The sum of the second and the third arguments was greater than the
number of bits in the first argument in math routine routine-name.

Explanation: Invalid input arguments were specified to the scalar math routine.

Programmer Response: Ensure the input arguments are valid to the math routine. You
may want to register a user handler that will gain control if this condition is signaled (if the
feedback token was omitted on the call to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math routine, examine the feedback token
upon return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1VQ

CEE2043E The value of the second or third argument was less than 0 in math routine
routine-name.

Explanation: Invalid input arguments were specified to the scalar math routine.

Programmer Response: Ensure the input arguments are valid to the math routine. You
may want to register a user handler that will gain control if this condition is signaled (if the
feedback token was omitted on the call to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math routine, examine the feedback token
upon return from the math routine and take appropriate action.

System Action: The output value from the math routine is undefined.

Symbolic Feedback Code: CEE1VR

284 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE2050S N CEE2503S

CEE2050S The length of the first argument was less than 0 or greater than 32767 in
routine routine-name.

Explanation: Invalid length of input argument was specified.

Programmer Response: Ensure the length of input argument is valid.

System Action: The output value is undefined.

Symbolic Feedback Code: CEE202

CEE2051S The length of the second argument was less than 0 or greater than 32767
in routine routine-name.

Explanation: Invalid length of input argument was specified.

Programmer Response: Ensure the length of input argument is valid.

System Action: The output value is undefined.

Symbolic Feedback Code: CEE203

CEE2052S The length of the result was less than 0 or greater than 32767 in routine
routine-name.

Explanation: Invalid length of result was specified.

Programmer Response: Ensure the length of result is valid.

System Action: The output value is undefined.

Symbolic Feedback Code: CEE204

CEE2053S The value of the second argument was not positive in routine routine-name.

Explanation: Invalid input argument was specified.

Programmer Response: Ensure the input argument is valid.

System Action: The output value is undefined.

Symbolic Feedback Code: CEE205

CEE2502S The UTC/GMT was not available from the system.

Explanation: A call to CEEUTC or CEEGMT failed because the system clock was in an
invalid state. The current time could not be determined.

Programmer Response: Notify systems support personnel that the system clock is in an
invalid state.

System Action: All output values are set to 0.

Symbolic Feedback Code: CEE2E6

CEE2503S The offset from UTC/GMT to local time was not available from the system.

Explanation: A call to CEEGMTO failed because either (1) the current operating system
could not be determined, or (2) the time zone field in the operating system control block
appears to contain invalid data.

Programmer Response: Notify systems support personnel that the local time offset stored
in the operating system appears to contain invalid data.

System Action: All output values are set to 0.

Symbolic Feedback Code: CEE2E7

 Chapter 9. Language Environment Run-Time Messages 285

 CEE2505S N CEE2508S

CEE2505S The input_seconds value in a call to CEEDATM or CEESECI was not within
the supported range.

Explanation: The input_seconds value passed in a call to CEEDATM or CEESECI was not
a floating-point number between 86,400.0 and 265,621,679,999.999. The input parameter
should represent the number of seconds elapsed since 00:00:00 on 14 October 1582, with
00:00:00.000 15 October 1582 being the first supported time/date, and 23:59:59.999 31
December 9999 being the last supported time/date.

Programmer Response: Verify that input parameter contains a floating-point value
between 86,400.0 and 265,621,679,999.999.

System Action: For CEEDATM, the output value is set to blanks. For CEESECI, all output
parameters are set to 0.

Symbolic Feedback Code: CEE2E9

CEE2506S Japanese (<JJJJ>) or Republic of China (<CCCC> or <CCCCCCCC>) Era
was used in a picture string passed to CEEDATM, but the input number-of-
seconds value was not within the supported range. The era could not be
determined.

Explanation: In a CEEDATM call, the picture string indicated that the input value was to be
converted to a Japanese (<JJJJ>) or Republic of China (<CCCC> or <CCCCCCCC>) Era;
however, the input value that was specified lies outside the range of supported eras.

Programmer Response: Verify that the input value contains a valid number-of-seconds
value within the range of supported eras.

System Action: The output value is set to blanks.

Symbolic Feedback Code: CEE2EA

CEE2507S Insufficient data was passed to CEEDAYS or CEESECS. The Lilian value
was not calculated.

Explanation: The picture string passed in a CEEDAYS or CEESECS call did not contain
enough information. For example, it is an error to use the picture string MM/DD (month and
day only) in a call to CEEDAYS or CEESECS, because the year value is missing. The
minimum information required to calculate a Lilian value is either (1) month, day and year, or
(2) year and Julian day.

Programmer Response: Verify that the picture string specified in a call to CEEDAYS or
CEESECS specifies, as a minimum, the location in the input string of either (1) the year,
month, and day, or (2) the year and Julian day.

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2EB

CEE2508S The date value passed to CEEDAYS or CEESECS was invalid.

Explanation: In a CEEDAYS or CEESECS call, the value in the DD or DDD field was not
valid for the given year and/or month. For example, MM/DD/YY with 02/29/90, or YYYY.DDD
with 1990.366 are invalid because 1990 is not a leap year. This code can also be returned
for any nonexistent date value such as June 31st or January 0.

Programmer Response: Verify that the format of the input data matches the picture string
specification and that input data contains a valid date.

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2EC

286 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE2509S N CEE2512S

CEE2509S The Japanese or Republic of China Era passed to CEEDAYS or CEESECS
was not recognized.

Explanation: The value in the Japanese (<JJJJ>) or Republic of China (<CCCC> or
<CCCCCCCC>) Era field passed in a call to CEEDAYS or CEESECS did not contain a sup-
ported Japanese or Republic of China Era name.

Programmer Response: Verify that the format of the input data matches the picture string
specification and that the spelling of the Japanese or ROC Era name is correct. Note that
the era name must be a proper DBCS string, that is, the '<' position must contain a shift-out
character (X'0E') and the '>' position must contain a shift-in character (X'0F').

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2ED

CEE2510S The hours value in a call to CEEISEC or CEESECS was not recognized.

Explanation: (1) In a CEEISEC call, the hours parameter did not contain a number
between 0 and 23, or (2) in a CEESECS call, the value in the HH (hours) field did not
contain a number between 0 and 23, or the AP (a.m./p.m.) field was present and the HH
field did not contain a number between 1 and 12.

Programmer Response: For CEEISEC, verify that the hours parameter contains an integer
between 0 and 23. For CEESECS, verify that the format of the input data matches the
picture string specification, and that the hours field contains a value between 0 and 23, (or 1
and 12 if the AP field is used).

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2EE

CEE2511S The day parameter passed in a CEEISEC call was invalid for year and
month specified.

Explanation: The day parameter passed in a CEEISEC call did not contain a valid day
number. The combination of year, month, and day formed an invalid date value. Examples:
year=1990, month=2, day=29; or month=6, day=31; or day=0.

Programmer Response: Verify that the day parameter contains an integer between 1 and
31, and that the combination of year, month, and day represents a valid date.

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2EF

CEE2512S The Lilian date value passed in a call to CEEDATE or CEEDYWK was not
within the supported range.

Explanation: The Lilian day number passed in a call to CEEDATE or CEEDYWK was not a
number between 1 and 3,074,324.

Programmer Response: Verify that the input parameter contains an integer between 1 and
3,074,324.

System Action: The output value is set to blanks.

Symbolic Feedback Code: CEE2EG

 Chapter 9. Language Environment Run-Time Messages 287

 CEE2513S N CEE2517S

CEE2513S The input date passed in a CEEISEC, CEEDAYS, or CEESECS call was not
within the supported range.

Explanation: The input date passed in a CEEISEC, CEEDAYS, or CEESECS call was
earlier than 15 October 1582, or later than 31 December 9999.

Programmer Response: For CEEISEC, verify that the year, month, and day parameters
form a date greater than or equal to 15 October 1582. For CEEDAYS and CEESECS, verify
that the format of the input date matches the picture string specification, and that the input
date is within the supported range.

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2EH

CEE2514S The year value passed in a CEEISEC call was not within the supported
range.

Explanation: The year parameter passed in a CEEISEC call did not contain a number
between 1582 and 9999.

Programmer Response: Verify that the year parameter contains valid data, and that the
year parameter includes the century. For example, you must specify the year as 1990, not
as 90.

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2EI

CEE2515S The milliseconds value in a CEEISEC call was not recognized.

Explanation: In a CEEISEC call, the milliseconds parameter (input_milliseconds) did not
contain a number between 0 and 999.

Programmer Response: Verify that the milliseconds parameter contains an integer
between 0 and 999.

Symbolic Feedback Code: CEE2EJ

System Action: The output value is set to 0.

CEE2516S The minutes value in a CEEISEC call was not recognized.

Explanation: (1) In a CEEISEC call, the minutes parameter (input_minutes) did not contain
a number between 0 and 59, or (2) in a CEESECS call, the value in the MI (minutes) field
did not contain a number between 0 and 59.

Programmer Response: For CEEISEC, verify that the minutes parameter (input_minutes)
contains an integer between 0 and 59. For CEESECS, verify that the format of the input data
matches the picture string specification, and that the minutes field contains a number
between 0 and 59.

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2EK

CEE2517S The month value in a CEEISEC call was not recognized.

Explanation: (1) In a CEEISEC call, the month parameter (input_month) did not contain a
number between 1 and 12, or (2) in a CEEDAYS or CEESECS call, the value in the MM
field did not contain a number between 1 and 12, or the value in the MMM, MMMM, etc. field
did not contain a correctly spelled month name or month abbreviation in the currently active
National Language.

Programmer Response: For CEEISEC, verify that the month parameter (input_month)
contains an integer between 1 and 12. For CEEDAYS and CEESECS, verify that the format
of the input data matches the picture string specification. For the MM field, verify that the
input value is between 1 and 12. For spelled-out month names (MMM, MMMM, etc.), verify

288 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE2518S N CEE2521S

that the spelling or abbreviation of the month name is correct in the currently active National
Language.

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2EL

CEE2518S An invalid picture string was specified in a call to a date/time service.

Explanation: The picture string supplied in a call to one of the date/time services was
invalid. Only one era character string can be specified. The picture string contained an
invalid DBCS string or contains more than one era descriptor, such as both Japanese
(<JJJJ>) or Republic of China (<CCCC>) Era being specified in the same picture string.

Programmer Response: Verify that the picture string contains valid data. Only one era
character string can be specified. If the picture string contains the X'0E' (shift-out) character,
this indicates the presence of DBCS data. Therefore, (1) the DBCS data must be terminated
by a X'0F' (shift-in) character, (2) there must be an even number of characters between the
shift-out and shift-in, and (3) these characters must all be valid DBCS characters.

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2EM

CEE2519S The seconds value in a CEEISEC call was not recognized.

Explanation: (1) In a CEEISEC call, the seconds parameter (input_seconds) did not
contain a number between 0 and 59, or (2) in a CEESECS call, the value in the SS
(seconds) field did not contain a number between 0 and 59.

Programmer Response: For CEEISEC, verify that the seconds parameter (input_seconds)
contains an integer between 0 and 59. For CEESECS, verify that the format of the input data
matches the picture string specification, and that the seconds field contains a number
between 0 and 59.

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2EN

CEE2520S CEEDAYS detected non-numeric data in a numeric field, or the date string
did not match the picture string.

Explanation: The input value passed in a CEEDAYS call did not appear to be in the format
described by the picture specification. For example, non-numeric characters appear where
only numeric characters are expected.

Programmer Response: Verify that the format of the input data matches the picture string
specification and that numeric fields contain only numeric data.

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2EO

CEE2521S The Japanese (<JJJJ>) or Chinese (<CCCC>) year-within-Era value passed
to CEEDAYS or CEESECS was zero.

Explanation: In a CEEDAYS or CEESECS call, if the YY or ZYY picture token was speci-
fied, and if the picture string contained one of the era tokens such as <CCCC> or <JJJJ>,
then the year value must be greater than or equal to 1. In this context, the YY or ZYY field
means year within Era.

Programmer Response: Verify that the format of the input data matches the picture string
specification and that the input data is valid.

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2EP

 Chapter 9. Language Environment Run-Time Messages 289

 CEE2522S N CEE2526E

CEE2522S Japanese (<JJJJ>) or Republic of China (<CCCC> or <CCCCCCCC>) Era
was used in a picture string passed to CEEDATE, but the Lilian date value
was not within the supported range. The era could not be determined.

Explanation: In a CEEDATE call, the picture string indicated that the Lilian date was to be
converted to a Japanese or Republic of China Era, but the Lilian date lies outside the range
of supported eras.

Programmer Response: Verify that the input value contains a valid Lilian day number
within the range of supported eras.

System Action: The output value is set to blanks.

Symbolic Feedback Code: CEE2EQ

CEE2523W The system time was not available when CEERAN0 was called. A seed
value of 1 was used to generate a random number and a new seed value.

Explanation: A seed value of 0 was specified in a CEERAN0 call, indicating that the
current system time should be used as a seed value. Because the system time was not
available, a seed value of 1 was used to generate a new seed value.

Programmer Response: If seed=1 is acceptable, no action is required. Otherwise, code an
appropriate non-zero seed, or refer to message CEE2502.

System Action: A seed value of 1 is assumed. CEERAN0 returns both a random number
and a new seed value.

Symbolic Feedback Code: CEE2ER

CEE2524S An invalid seed value was passed to CEERAN0. The random number was
set to -1.

Explanation: CEERAN0 was called with a seed value that was out of range.

Programmer Response: Code a seed value between 0 and 2147483646, inclusive, for the
CEERAN0 call.

System Action: The random number output was set to -1, and the seed value input was
not changed.

Symbolic Feedback Code: CEE2ES

CEE2525S CEESECS detected non-numeric data in a numeric field, or the timestamp
string did not match the picture string.

Explanation: The input value passed in a CEESECS call did not appear to be in the format
described by the picture specification. For example, non-numeric characters appear where
only numeric characters are expected, or the a.m./p.m. field did not contain the strings AM or
PM.

Programmer Response: Verify that the format of the input data matches the picture string
specification and that numeric fields contain only numeric data.

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2ET

CEE2526E The date string returned by CEEDATE was truncated.

Explanation: In a CEEDATE call, the output string was not large enough to contain the
formatted date value.

Programmer Response: Verify that the output string variable is large enough to contain
the entire formatted date. Ensure that the output parameter is at least as long as the picture
string parameter.

System Action: The output value is truncated to the length of the output parameter.

290 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE2527E N CEE2533S

Symbolic Feedback Code: CEE2EU

CEE2527E The timestamp string returned by CEEDATM was truncated.

Explanation: In a CEEDATM call, the output string was not large enough to contain the
formatted timestamp value.

Programmer Response: Verify that the output string variable is large enough to contain
the entire formatted timestamp. Ensure that the output parameter is at least as long as the
picture string parameter.

System Action: The output value is truncated to the length of the output parameter.

Symbolic Feedback Code: CEE2EV

CEE2529S A debug tool has terminated the enclave.

Explanation: The debug tool terminated the enclave at the user's request. Under VM,
abend code 4094, reason code X'28' is issued. Under MVS, return code 3000 is issued.

Programmer Response: No programmer response is necessary.

System Action: The enclave is terminated.

Symbolic Feedback Code: CEE2F1

CEE2530S A debug tool was not available.

Explanation: Either the debug environment was corrupted or could not load the debug
event handler.

Programmer Response: Make sure the debug tool is installed with the loadable name
CEEEVDBG.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE2F2

CEE2531S The local time was not available from the system.

Explanation: A call to CEELOCT failed because the system clock was in an invalid state.
The current time could not be determined.

Programmer Response: Notify systems support personnel that the system clock is in an
invalid state.

System Action: All output values are set to 0.

Symbolic Feedback Code: CEE2F3

CEE2533S The value passed to CEESCEN was not between 0 and 100.

Explanation: The century_start value passed in a CEESCEN call was not between 0 and
100, inclusive.

Programmer Response: Ensure that the input parameter is within range.

System Action: The 100-year window assumed for all 2-digit years is unchanged.

Symbolic Feedback Code: CEE2F5

 Chapter 9. Language Environment Run-Time Messages 291

 CEE2534W N CEE2602I

CEE2534W Insufficient field width was specified for a month or weekday name in a
call to CEEDATE or CEEDATM. Output set to blanks.

Explanation: The CEEDATE or CEEDATM callable services issued this message
whenever: (1) the picture string contained MMM, MMMMMZ, WWW, Wwww, etc., requesting
a spelled out month name or weekday name, (2) the national language currently in effect
was a DBCS (Double Byte Character Set) language such as NATLANG(JPN), and (3) the
month name currently being formatted contained more characters than can fit in the indi-
cated field.

Programmer Response: Increase the field width to contain the longest month or weekday
name being formatted, including two bytes for the SO/SI characters. For Japanese, eight
characters are sufficient (3 DBCS + SO/SI), so one should specify MMMMMMMM or
MMMMMMMZ, WWWWWWWW or WWWWWWWWZ in the picture string.

System Action: The month name and weekday name fields that are of insufficient width
are set to blanks. The rest of the output string is unaffected. Processing continues.

Symbolic Feedback Code: CEE2F6

CEE2535S Profiler loaded, Debug Tool unavailable.

Explanation: Profiler and Debug Tool cannot run concurrently.

Programmer Response: To dynamically invoke Debug Tool, set PROFILE run-time option
OFF.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE2F7

CEE2600I Success with zero result.

Explanation: The floating-point input value was a true zero, and the caller is to provide the
appropriate formatting.

Programmer Response: No programmer response is required.

System Action: Program continues.

Symbolic Feedback Code: CEE2H8

CEE2601I Success with positive result.

Explanation: The conversion has been completed successfully, and the result is strictly
greater than zero.

Programmer Response: No programmer response is required.

System Action: Program continues.

Symbolic Feedback Code: CEE2H9

CEE2602I Success with negative result.

Explanation: The conversion has been completed successfully, and the result is strictly
less than zero.

Programmer Response: No programmer response is required.

System Action: Program continues.

Symbolic Feedback Code: CEE2HA

292 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE2603I N CEE2608E

CEE2603I Success with plus-rounded-to-zero result.

Explanation: The conversion has been completed successfully, and the result contains a
zero result that was created by a strictly positive input value that rounded to zero.

Programmer Response: No programmer response is required.

System Action: Program continues.

Symbolic Feedback Code: CEE2HB

CEE2604I Success with minus-rounded-to-zero result.

Explanation: The conversion has been completed successfully, and the result contains a
zero result that was created by a strictly negative input value that rounded to zero.

Programmer Response: No programmer response is required.

System Action: Program continues.

Symbolic Feedback Code: CEE2HC

CEE2606E Result overflows output field.

Explanation: The floating-point input value is too large or the output character string is too
small to contain the fixed-point representation of the input argument.

Programmer Response: Ensure the input floating-point value is properly specified and the
length of the output character string is big enough to contain the fixed-point representation of
the input argument.

System Action: The result value is undefined.

Symbolic Feedback Code: CEE2HE

CEE2607E Result has underflowed.

Explanation: The conversion would have resulted in a number smaller than the underflow
threshold for the floating point representation.

Programmer Response: Ensure the input character value to be converted is specified cor-
rectly. If the feedback token was omitted on the call to the conversion routine, then the con-
dition is signaled. Otherwise, examine the feedback token upon return and take appropriate
action.

System Action: A true floating point zero result has been returned.

Symbolic Feedback Code: CEE2HF

CEE2608E Result has overflowed.

Explanation: The conversion would have resulted in a number larger than the overflow
threshold for the floating point representation.

Programmer Response: Ensure the input character value to be converted is specified cor-
rectly. If the feedback token was omitted on the call to the conversion routine, then the con-
dition is signaled. Otherwise, examine the feedback token upon return and take appropriate
action.

System Action: The maximum positive floating point magnitude has been returned.

Symbolic Feedback Code: CEE2HG

 Chapter 9. Language Environment Run-Time Messages 293

 CEE2701S N CEE3102E

CEE2701S An invalid category parameter was passed to a locale function.

Explanation: An invalid category parameter was passed to a locale function. Valid catego-
ries are: LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY,
LC_NUMERIC, and LC_TIME.

Programmer Response: Supply a valid category to the function.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE2KD

CEE2702S An invalid locale name parameter was passed to a locale function.

Explanation: An invalid locale name parameter was passed to a locale function. Locale
name must be one provided with the product or constructed using the LOCALEDEF utility.

Programmer Response: Supply a valid locale name to the function.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE2KE

CEE2999C An internal logic error was detected in a date/time routine.

Explanation: An internal logic error was detected in one of the date/time services. Internal
date/time control blocks might have been damaged.

Programmer Response: Verify that the program doesn't inadvertently overlay areas of
storage reserved for library use.

System Action: The requested action is not completed. The application is terminated.

Symbolic Feedback Code: CEE2TN

CEE3098S The user routine traceback could not be completed.

Explanation: The user routine traceback could not be completed due to an error detected
in tracing back through the DSA chain.

Programmer Response: Attempt to perform problem determination through the use of a
dump.

System Action: The user routine traceback is not completed.

Symbolic Feedback Code: CEE30Q

CEE3101E The title or option string passed to CEE3DMP was longer than 80 bytes.

Explanation: The maximum character string length for a dump title was 80 bytes.

Programmer Response: Specify dump title string with 80 characters or less.

System Action: Title string is truncated to 80 bytes.

Symbolic Feedback Code: CEE30T

CEE3102E Invalid CEE3DMP options or suboptions were found and ignored.

Explanation: Invalid options or suboptions were found in the options parameter to
CEE3DMP.

Programmer Response: Check the options string passed to CEE3DMP. Make sure it has
correct syntax and values for options and suboptions as specified in the OS/390 Language
Environment Programming Reference. Also, make sure the options string is 255 characters
long.

System Action: The invalid options or suboptions are ignored, valid options and suboptions
are processed, and a dump is performed.

294 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3103S N CEE3107E

Symbolic Feedback Code: CEE30U

CEE3103S An error occurred in writing messages to the dump file.

Explanation: An error occurred in trying to write information to the dump file, whose file
name was specified with the FNAME option to CEE3DMP. The default file name was
CEEDUMP, or CESE transient data queue under CICS.

Programmer Response: Make sure the file name is correct as specified in the options to
CEE3DMP. Also, make sure there is enough room in the file to contain the dump.

System Action: Dump processing is terminated at the point where the file error is detected.

Symbolic Feedback Code: CEE30V

CEE3104S Information could not be successfully extracted for this DSA.

Explanation: Some information associated with the DSA or save area passed to
CEETRCB could not be determined.

Programmer Response: If no information could be extracted by CEETRCB, it is likely that
the DSAPTR parameter does not point to an actual DSA or save area.

System Action: All information that could be extracted is returned by CEETRCB. Any infor-
mation that could not be extracted is zero or blank (depending on parameter type).

Symbolic Feedback Code: CEE310

CEE3105S The language dump exit was unsuccessful.

Explanation: A language component of Language Environment returned this condition to
the common component of Language Environment when an error had occurred in the lan-
guage component's dump event handler that was not covered in the conditions returned by
the dump CWI services.

Programmer Response: Not applicable. This is an internal condition within Language Envi-
ronment, and is never seen by the application programmer.

System Action: The common component of Language Environment ignores this condition
and continues dump processing.

Symbolic Feedback Code: CEE311

CEE3106S An invalid parameter value was specified in a call to the CEEVDMP CWI
service.

Explanation: The CEEVDMP CWI service was called with an invalid value for one of the
parameters.

Programmer Response: Check to make sure the parameters on the call to CEEVDMP are
correct. In particular, check the lengths of the strings passed as parameters.

System Action: The CEEVDMP service returns to the caller without adding any information
to the dump.

Symbolic Feedback Code: CEE312

CEE3107E The CEEHDMP or CEEBDMP CWI service encountered inaccessible storage
during dump processing.

Explanation: The CEEHDMP CWI service encountered inaccessible storage while dumping
a storage area, or the CEEBDMP CWI service encountered inaccessible storage while
dumping a control block.

Programmer Response: Make sure the address and length of the storage area are correct
for CEEHDMP. Make sure the address and offset are correct for CEEBDMP, and that
CEEBDMP is dumping the control block with a correct mapping for the control block.

 Chapter 9. Language Environment Run-Time Messages 295

 CEE3108E N CEE3192C

System Action: The message Inaccessible storage is printed in the dump at the point of
the encounter. The storage or control block dumping terminates, and CEEHDMP or
CEEBDMP returns to the calling routine.

Symbolic Feedback Code: CEE313

CEE3108E An invalid option, suboption, or delimiter was found in the dump option
string.

Explanation: An invalid option, suboption, or delimiter was found in the dump option string.

Programmer Response: Correct the error location as indicated in the position parameter.

System Action: No system action is taken.

Symbolic Feedback Code: CEE314

CEE3186E A field type parameter of the CEEBDMP CWI service contained an invalid
value.

Explanation: The field_ids, field_length, or field_types parameter of the CEEBDMP CWI
service contained an invalid value.

Programmer Response: Check to make sure the mapping of the control block specified to
CEEBDMP through these three parameters is correct.

System Action: CEEBDMP returns to its caller. Information might have been written to the
dump.

Symbolic Feedback Code: CEE33I

CEE3191E An attempt was made to initialize an AMODE24 application without using
the ALL31(OFF) and STACK(,,BELOW) run-time options.

Explanation: During initialization it was detected that a program began in AMODE 24, yet
the options required for completely safe execution in AMODE 24 were not fully specified.

Programmer Response: Specify run-time options ALL31(OFF) and STACK(,,BELOW) for
AMODE 24 operation.

System Action: Program initialization continues.

Symbolic Feedback Code: CEE33N

CEE3192C The Language Environment anchor support was not installed or was not
supported on the operating system.

Explanation: The Language Environment anchor was the address of the Language Envi-
ronment main control block, the CAA. The underlying operating system must provide the
Language Environment anchor support for Language Environment to get its main control
block, the CAA. Because the anchor was not installed, the application was not able to run
properly.

Programmer Response: Report the error to your systems programmer. Check whether
Language Environment anchor support is installed properly on the underlying operating
system.

System Action: The application is terminated.

Symbolic Feedback Code: CEE33O

296 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3193I N CEE3197W

CEE3193I The invocation command parameter string contained an unmatched quote
character.

Explanation: The invocation command parameter string contained a beginning quote
(either single quote or double quote) but a matching end quote was not found.

Programmer Response: Correct the string.

System Action: The entire string is treated as user parameters.

Symbolic Feedback Code: CEE33P

| CEE3194E An attempt was made to initialize an AMODE24 program when the
| XPLINK(ON) run-time option was in effect. AMODE24 programs are not
| supported in an XPLINK environment.

| Explanation: During initialization it was detected that a program began in AMODE 24 and
| the XPLINK(ON) run-time option was in effect. The XPLINK(ON) run-time option may be in
| effect because it was specified or because XPLINK-compiled routines were found in the
| initial program of the application.

| Programmer Response: If the application does not invoke any XPLINK-compiled routines,
| specify run-time options XPLINK(OFF), ALL31(OFF) and STACK(,,BELOW) for AMODE 24
| operation. Otherwise, the application must be modified to eliminate either the AMODE24 rou-
| tines or the XPLINK routines.

| System Action: Unless the condition is handled, the default action is to terminate the
| enclave.

| Symbolic Feedback Code: CEE33Q

CEE3195W The SNAP dump file could not be opened.

Explanation: The SNAP dump file could not be opened.

Programmer Response: If a SNAP dump was desired, determine the reason the file could
not be opened and correct the problem.

System Action: No SNAP dump was taken.

Symbolic Feedback Code: CEE33R

CEE3196W The id number was not in the allowed range.

Explanation: The id number was not in the required range of 0 to 255.

Programmer Response: This is an internal problem. Contact your service representative.

System Action: The id number MOD 256 was used.

Symbolic Feedback Code: CEE33S

CEE3197W An invalid value for reserved was passed.

Explanation: An invalid value for the reserved parameter was passed to the SNAP dump
service.

Programmer Response: This is an internal problem. Contact your service representative.

System Action: The invalid value is ignored.

Symbolic Feedback Code: CEE33T

 Chapter 9. Language Environment Run-Time Messages 297

 CEE3198S N CEE3202S

CEE3198S A SNAP dump was requested on an unsupported system.

Explanation: The SNAP dump service was called to produce a SNAP dump on an unsup-
ported system.

Programmer Response: This is an internal problem. Contact your service representative.

System Action: The SNAP dump was not produced.

Symbolic Feedback Code: CEE33U

CEE3199S An error was returned from the SNAP system function.

Explanation: The SNAP dump service was called. It invoked the SNAP system service that
failed.

Programmer Response: This is an internal problem. Contact your service representative.

System Action: The SNAP dump was not produced.

Symbolic Feedback Code: CEE33V

CEE3201S The system detected an operation exception (System Completion
Code=0C1).

Explanation: The program attempted to execute an instruction with an invalid operation
code. The operation code may be unassigned or the instruction with that operation code
cannot be installed on this platform. See a Principles of Operation manual for a full list of
operation exceptions.

Programmer Response: Examine the contents of registers 14 and 15. If register 15 has a
value of 0, then the cause was probably a routine didn't exist and a branch was made to
location 0. This would indicate a link-edit failure. Examine the contents of register 14 to
determine the point at which the branch was made. Also examine the linkage editor map for
any unresolved references reported by the linkage editor.

Another possible cause is a routine branched to some unintended location, such as a conflict
in addressing mode between the calling and the called routine, or any other program error
that branched to the wrong location.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE341

CEE3202S The system detected a privileged-operation exception (System Completion
Code=0C2).

Explanation: Attempted to execute a privileged operation code while the machine was in a
problem state. See a Principles of Operation manual for a full list of privileged-operation
exceptions.

Programmer Response: Examine the contents of registers 14 and 15. If register 15 has a
value of 0, then the probable cause is that a routine doesn't exist and a branch was made to
location 0. This would indicate a link-edit failure. Examine the contents of register 14 to
determine the point at which the branch was made. Also examine the linkage editor map for
any unresolved references reported by the linkage editor.

Another possible cause is a routine branched to some unintended location, such as a conflict
in addressing mode between the calling and the called routine, or any other program error
that branched to the wrong location.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE342

298 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3203S N CEE3206S

CEE3203S The system detected an execute exception (System Completion
Code=0C3).

Explanation: Your program attempted to execute an EXECUTE instruction where the target
of the first EXECUTE instruction was another EXECUTE instruction. See a Principles of
Operation manual for a full list of execute exceptions.

Programmer Response: Check your application for errors in the EXECUTE instructions.
See a Principles of Operation manual for a full list of execute exceptions.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE343

CEE3204S The system detected a protection exception (System Completion
Code=0C4).

Explanation: your program attempted to access a storage location to which it was not
authorized.

Programmer Response: Check your application for these common errors:

� Using the wrong AMODE to reference storage
� Trying to use a pointer that has not been set
� Trying to store data into storage reserved for the system
� Using an invalid index to an array

See a Principles of Operation manual for a full list of protection exceptions.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE344

CEE3205S The system detected an addressing exception (System Completion
Code=0C5).

Explanation: Your program attempted to reference a main-storage location that was not
available in the configuration. See a Principles of Operation manual for a full list of
addressing exceptions.

Programmer Response: Check your application for these common errors:

� Using the wrong AMODE to reference storage
� Trying to use a pointer that has not been set
� Trying to store data into storage reserved for the system
� Using an invalid index to an array

See a Principles of Operation manual for a full list of addressing exceptions.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE345

CEE3206S The system detected a specification exception (System Completion
Code=0C6).

Explanation: Your program attempted an invalid operation such as incorrect use of regis-
ters. The register used for an operation was invalid. Examples include using an odd register
number when an even register number was required, using a bad number for floating point
registers, or having data that was not correctly aligned.

Programmer Response: If the program is being produced by a compiler, then you might
be able to specify a different optimization level to by-pass the problem. See a Principles of
Operation manual for a full list of specification exceptions.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE346

 Chapter 9. Language Environment Run-Time Messages 299

 CEE3207S N CEE3211S

CEE3207S The system detected a data exception (System Completion Code=0C7).

Explanation: Your program attempted to use a decimal instruction incorrectly. See a Princi-
ples of Operation manual for a full list of data exceptions.

Programmer Response: Check the variables associated with the failing statement to make
sure that they have been initialized correctly.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE347

CEE3208S The system detected a fixed-point overflow exception (System Completion
Code=0C8).

Explanation: Your program attempted to use signed binary arithmetic or signed left-shift
operations and an overflow occurred. See a Principles of Operation manual for a full list of
fixed-point overflow exceptions.

Programmer Response: You can use a condition handling routine to correct the data
values and resume the application.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE348

CEE3209S The system detected a fixed-point divide exception (System Completion
Code=0C9).

Explanation: Your program attempted to perform a signed binary division and the divisor is
zero. See a Principles of Operation manual for a full list of fixed-point divide exceptions.

Programmer Response: You can use a condition handling routine to correct the data
values and resume the application.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE349

CEE3210S The system detected a decimal-overflow exception (System Completion
Code=0CA).

Explanation: Your program attempted to perform a mathematical operation and one or
more nonzero digits were lost because the destination field in a decimal operation was too
short to contain the results. See a Principles of Operation manual for a full list of decimal-
overflow exceptions.

Programmer Response: You can use a condition handling routine to correct the data
values and resume the application.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE34A

CEE3211S The system detected a decimal-divide exception (System Completion
Code=0CB).

Explanation: Your program attempted to perform a mathematical operation where, in
decimal division, the divisor is zero or the quotient exceeds the specified data-field size. See
a Principles of Operation manual for a full list of decimal-divide exceptions.

Programmer Response: You can use a condition handling routine to correct the data
values and resume the application.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE34B

300 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3212S N CEE3216S

CEE3212S The system detected an exponent-overflow exception (System Completion
Code=0CC).

Explanation: Your program attempted a floating-point operation and the result character-
istic exceeded 127 and the result fraction was not zero. See a Principles of Operation
manual for a full list of exponent-overflow exceptions.

Programmer Response: You can use a condition handling routine to correct the data
values and resume the application.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE34C

CEE3213S The system detected an exponent-underflow exception (System Completion
Code=0CD).

Explanation: Your program attempted a floating-point operation and the result character-
istic is less than zero and the result fraction was not zero. See a Principles of Operation
manual for a full list of exponent-underflow exceptions.

Programmer Response: You can use a condition handling routine to correct the data
values and resume the application.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE34D

CEE3214S The system detected a significance exception (System Completion
Code=0CE).

Explanation: Your program attempted a floating-point addition or subtraction and the
resulting fraction was zero. See a Principles of Operation manual for a full list of significance
exceptions.

Programmer Response: You can use a condition handling routine to correct the data
values and resume the application.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE34E

CEE3215S The system detected a floating-point divide exception (System Completion
Code=0CF).

Explanation: Your program attempted a do a floating-point divide and the divisor had a
zero fraction. See a Principles of Operation manual for a full list of floating-point divide
exceptions.

Programmer Response: You can use a condition handling routine to correct the data
values and resume the application.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE34F

CEE3216S The system detected an IEEE inexact exception. The result was truncated.

Explanation: An IEEE-inexact condition is recognized when the rounded result of an opera-
tion differs in value from the intermediate result computed as if exponent range and precision
were unbounded.

Programmer Response: You can use a condition handling routine to correct the data
values and resume the application.

System Action: The process is terminated.

Symbolic Feedback Code: CEE34G

 Chapter 9. Language Environment Run-Time Messages 301

 CEE3217S N CEE3221S

CEE3217S The system detected an IEEE inexact exception. The result was truncated.

Explanation: An IEEE-inexact condition is recognized when the rounded result of an opera-
tion differs in value from the intermediate result computed as if exponent range and precision
were unbounded.

Programmer Response: You can use a condition handling routine to correct the data
values and resume the application.

System Action: The process is terminated.

Symbolic Feedback Code: CEE34H

CEE3218S The system detected an IEEE exponent-underflow exception. The result
was truncated.

Explanation: An IEEE-underflow condition is recognized when the exponent of the exact
result of an operation would be less than the minimum exponent of the target format.

Programmer Response: You can use a condition handling routine to correct the data
values and resume the application.

System Action: The process is terminated.

Symbolic Feedback Code: CEE34I

CEE3219S The system detected an IEEE exponent-underflow exception. The result
was inexact and truncated.

Explanation: An IEEE-underflow condition is recognized when the exponent of the exact
result of an operation would be less than the minimum exponent of the target format.

Programmer Response: You can use a condition handling routine to correct the data
values and resume the application.

System Action: The process is terminated.

Symbolic Feedback Code: CEE34J

CEE3220S The system detected an IEEE exponent-underflow exception. The result
was inexact and incremented.

Explanation: An IEEE-underflow condition is recognized when the exponent of the exact
result of an operation would be less than the minimum exponent of the target format.

Programmer Response: You can use a condition handling routine to correct the data
values and resume the application.

System Action: The process is terminated.

Symbolic Feedback Code: CEE34K

CEE3221S The system detected an IEEE exponent-underflow exception.

Explanation: An IEEE-underflow condition is recognized when the exponent of the rounded
result of an operation would be greater than the maximum exponent of the target format if
the exponent range were unbounded.

Programmer Response: You can use a condition handling routine to correct the data
values and resume the application.

System Action: The process is terminated.

Symbolic Feedback Code: CEE34L

302 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3222S N CEE3225S

CEE3222S The system detected an IEEE exponent-underflow exception. The result
was inexact and truncated.

Explanation: An IEEE-underflow condition is recognized when the exponent of the rounded
result of an operation would be greater than the maximum exponent of the target format if
the exponent range were unbounded.

Programmer Response: You can use a condition handling routine to correct the data
values and resume the application.

System Action: The process is terminated.

Symbolic Feedback Code: CEE34M

CEE3223S The system detected an IEEE exponent-underflow exception. The result
was inexact and incremented.

Explanation: An IEEE-underflow condition is recognized when the exponent of the rounded
result of an operation would be greater than the maximum exponent of the target format if
the exponent range were unbounded.

Programmer Response: You can use a condition handling routine to correct the data
values and resume the application.

System Action: The process is terminated.

Symbolic Feedback Code: CEE34N

CEE3224S The system detected an IEEE division—by—zero exception.

Explanation: An IEEE-division—by—zero condition is recognized when in BFP division the
divisor is zero and the dividend is a finite nonzero number.

Programmer Response: You can use a condition handling routine to correct the data
values and resume the application.

System Action: The process is terminated.

Symbolic Feedback Code: CEE34O

CEE3225S The system detected an IEEE invalid operation exception.

Explanation: An IEEE-invalid-operation condition is recognized when any of the following
occur:

1. An SNaN is encountered in any arithmetic or comparison operation.

2. A QNaN is encountered in a comparison by COMPARE AND SIGNAL.

3. A difference is undefined (addition of infinities of opposite sign, or subtraction of infinities
of like sign).

4. A product is undefined (zero times infinity).

5. A quotient is undefined (DIVIDE instruction with both operands zero or both operands
infinity).

6. A remainder is undefined (DIVIDE TO INTEGER with a dividend of infinity or a divisor of
zero).

7. A square root is undefined (negative nonzero operand).

Programmer Response: You can use a condition handling routine to correct the data
values and resume the application.

System Action: The process is terminated.

Symbolic Feedback Code: CEE34P

 Chapter 9. Language Environment Run-Time Messages 303

 CEE3230E N CEE3255C

CEE3230E Vector unnormalized operand exception occurred.

Explanation: The parameters to the vector instruction were floating-point numbers that are
unnormalized.

Programmer Response: The data to be processed by the vector instructions must be nor-
malized before it is to be handled in a vector instruction. Normalize the input value by adding
floating-point zero (0.0) to the qdata item.

System Action: The user program is terminated unless the condition is handled.

Symbolic Feedback Code: CEE34U

CEE3250C The system or user abend abend-code was issued.

Explanation: A system or user abend has occurred.

Programmer Response: Look in the messages and codes or system codes manual for the
particular platform to resolve the system-described problem.

System Action: The program is terminated abnormally.

Symbolic Feedback Code: CEE35I

CEE3251I An ATTENTION condition occurred.

Explanation: An ATTENTION condition was signaled after polling code was invoked.

Programmer Response: Do whatever is appropriate for the user to do, after the user hits
the "attention" key.

System Action: The program is resumed after the point where the condition was signaled.

Symbolic Feedback Code: CEE35J

CEE3253C A critical condition occurred during the sort operation.

Explanation: An unrecoverable error prevented SORT from completing.

Programmer Response: Take the appropriate action defined by the SORT messages.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE35L

CEE3254C An incorrect DFSORT Plist was passed to CEE3SRT.

Explanation: The parameter list for CEE3SRT must be the 31 bit list specified by
DFSORT.

Programmer Response: Correct the parameter list for CEE3SRT.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE35M

CEE3255C An attempt to call CEE3SRT was made from within a DFSORT exit routine.

Explanation: Only one sort can be active at a time. A program called during the execution
of SORT must have attempted to invoke sort again.

Programmer Response: Do not attempt a sort from within a sort exit.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE35N

304 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3260W N CEE3292W

CEE3260W No condition was active when a call to a condition management routine
was made.

Explanation: The condition manager had no record of an active condition.

Programmer Response: No response is required. Calls to condition management routines
should only be made within the handler routine.

System Action: No system action is performed.

Symbolic Feedback Code: CEE35S

CEE3261W service-name is not supported.

Explanation: The service was no longer supported. It was provided for migration and com-
patibility with previous releases of Language Environment.

Programmer Response: Migrate an application to a supported function.

System Action: The service did not take any action.

Symbolic Feedback Code: CEE35T

CEE3262W An invalid condition token was passed. The condition token did not repre-
sent an active condition.

Explanation: The condition token passed to CEE3CIB did not represent a condition that is
currently active.

Programmer Response: No programmer response required.

System Action: No system action is taken.

Symbolic Feedback Code: CEE35U

CEE3263C The condition handler's condition information block was damaged.
 The requested function was not performed.

Explanation: The condition manager did not have a valid CIB chain.

Programmer Response: This is an internal problem. Contact you service representative.

System Action: The requested function is not performed.

Symbolic Feedback Code: CEE35V

CEE3264S No machine state block found in association with the current stack frame.

Explanation: Your program has not established a valid machine state block (via
CEE3SRP) associated with the current stack frame.

Programmer Response: Make sure CEE3SRP is issued before calling CEE3GMB.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE360

CEE3292W The language run-time component id was already registered. No action
was taken.

Explanation: The CEE3DHDL CWI was invoked previously with the same language run-
time component id.

Programmer Response: No programmer response required.

System Action: If this condition is not handled, execution continues at the instruction after
the CEE3DHDL invocation.

Symbolic Feedback Code: CEE36S

 Chapter 9. Language Environment Run-Time Messages 305

 CEE3293C N CEE3298E

CEE3293C The language environment was corrupted. The save area chain was broken.

Explanation: The save area chain was not intact.

Programmer Response: Language Environment always expects the save area to be valid,
and usually abends when it is not. Ensure that the save chain is valid.

System Action: The function was not completed, and did not schedule the routine.

Symbolic Feedback Code: CEE36T

CEE3294E The cancel request could not be performed, since the routine was not pre-
viously scheduled.

Explanation: A request was made to cancel a routine, but that routine could not be found
on the active chain. The routine that was requested to cancel either was never scheduled or
was previously deleted.

Programmer Response: Ensure that routines are scheduled via CEEHDLR before an
attempt is made to delete them.

System Action: No routine is released.

Symbolic Feedback Code: CEE36U

CEE3295E The condition string from CEE3SPM did not contain all of the settings,
because the returned string was truncated.

Explanation: The QUERY option of the CEE3SPM service needed a larger character string
to represent the conditions.

Programmer Response: Try increasing the character string length.

System Action: Some items might have been filled in.

Symbolic Feedback Code: CEE36V

CEE3296E Some of the data in the condition string from CEE3SPM could not be
recognized.

Explanation: The data encountered in the string could not be interpreted.

Programmer Response: Correct the character representation for the condition(s) and
ensure that the string is padded with blanks.

System Action: Only conditions that could be recognized were set.

Symbolic Feedback Code: CEE370

CEE3297E The service completed successfully for recognized condition(s), unsuc-
cessfully for unrecognized (invalid) condition(s).

Explanation: The data encountered in the string could not be interpreted.

Programmer Response: Correct the character representation for the conditions.

System Action: Only conditions that could be recognized were set.

Symbolic Feedback Code: CEE371

CEE3298E CEE3SPM attempted to PUSH settings onto a full stack.

Explanation: There was not enough storage for the CEE3SPM PUSH service to save all of
the conditions.

Programmer Response: Increase the size of the storage.

System Action: No settings were changed.

Symbolic Feedback Code: CEE372

306 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3299E N CEE3352E

CEE3299E CEE3SPM attempted to POP settings off an empty stack.

Explanation: A call to CEE3SPM was made to POP the stack. There were no elements on
the stack to POP.

Programmer Response: Ensure that something is on the stack before you attempt to POP
it.

System Action: No settings are changed.

Symbolic Feedback Code: CEE373

CEE3300E The action parameter in CEE3SPM was not one of the digits 1 to 5.

Explanation: A call to CEE3SPM was made with an invalid action.

Programmer Response: Use an action value parameter between 1 and 5 when invoking
CEE3SPM.

Symbolic Feedback Code: CEE374

System Action: No settings were changed.

CEE3301E The first parameter was not one of the digits expected.

Explanation: A call was made to a condition management subroutine that did not have a
valid parameter for the action parameter.

Programmer Response: This is an internal error. The internal routine was called with an
improper parameter. Contact your service representative.

System Action: No system action is performed.

Symbolic Feedback Code: CEE375

CEE3350S Unable to find the event handler.

Explanation: An internal error occurred when Language Environment attempted to load a
required language run-time component module.

Programmer Response: Contact your service representative.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE38M

CEE3351S Unable to properly initialize the event handler.

Explanation: An internal error occurred when Language Environment attempted to initialize
a required language run-time component module.

Programmer Response: Contact your service representative.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE38N

CEE3352E The enclave terminated with a non-zero return code.

Explanation: An internal error occurred while attempting to terminate an enclave.

Programmer Response: Contact your service representative.

System Action: No system action is performed.

Symbolic Feedback Code: CEE38O

 Chapter 9. Language Environment Run-Time Messages 307

 CEE3353S N CEE3357S

CEE3353S The parameter manipulation service was called, but not during the create
enclave event, or not by a language run-time component corresponding to
the MAIN program.

Explanation: The parameter manipulation service was used during enclave initialization by
the language in which the main program was written. It was used in an illegal manner.

Programmer Response: This is an internal problem. Contact your service representative.

System Action: The requested parameter manipulation is not performed and the main
parameter list might not be correct.

Symbolic Feedback Code: CEE38P

CEE3354S The parameter list manipulation service was called in a CICS environment.

Explanation: The parameter manipulation service was used during enclave initialization by
the language in which the main program was written. It cannot be used in a CICS environ-
ment.

Programmer Response: This is an internal problem. Contact your service representative.

System Action: The requested parameter manipulation is not performed and the main
parameter list might not be correct.

Symbolic Feedback Code: CEE38Q

CEE3355S A language run-time component initialization has failed.

Explanation: An internal error occurred while attempting to establish a minimum environ-
ment for a language run-time component.

Programmer Response: This is an internal problem. Contact your service representative.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE38R

CEE3356S The rc_modifier must be in the range of 1 through 4. The return code modi-
fier was not changed.

Explanation: The rc_modifier was not in the range of 1 through 4. The return code modifier
that was first established by the enclave termination services or by the condition handling
was kept.

Programmer Response: Provide a valid rc_modifier.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE38S

CEE3357S The service was invoked outside of the language run-time component
enclave termination. No action was taken.

Explanation: CEESRCM was to be called during the language run-time component enclave
termination. It was invoked outside of the language run-time component enclave termination.

Programmer Response: Ensure that the routine is called during the enclave termination.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE38T

308 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3358E N CEE3363S

CEE3358E The service was invoked outside of the member enclave initialization.
 No action was taken.

Explanation: This CWI service can only be invoked from within member language enclave
initialization.

Programmer Response: Move the use of this service to within enclave initialization event
handling, or, determine the proper event to be using at the point where you are trying to
invoke this event.

System Action: The service returns, without performing the function of the service.

Symbolic Feedback Code: CEE38U

CEE3360S The stack frame was not found on the call chain.

Explanation: The stack frame parameter passed to the CEE3SMS CWI did not point to a
valid stack frame on the call chain.

Programmer Response: This is an internal problem. Contact your service representative.

System Action: The CEE3SMS CWI returns without allocating a machine state control
block.

Symbolic Feedback Code: CEE390

CEE3361W A nested enclave completed with an unhandled condition of severity two
or greater.

Explanation: If a nested enclave is created due to an SVC-assisted linkage (LINK on VM
or MVS, CMSCALL on VM), and it subsequently abends or program checks, or it software-
signals a condition of severity two or greater, then condition token CEE391 was signaled in
the creator of the nested enclave.

Programmer Response: Check condition token CEE391.

System Action: If the signal of the CEE391 condition is not handled, execution continues
at the instruction after the LINK or CMSCALL.

Symbolic Feedback Code: CEE391

CEE3362S No main or fetchable procedure or function was present within the load
module.

Explanation: The load module contained neither a main procedure/function nor a fetchable
procedure/function.

Programmer Response: Correct the load module.

System Action: The application is terminated.

Symbolic Feedback Code: CEE392

CEE3363S A second main procedure or function was entered without crossing a
nested enclave boundary.

Explanation: A direct call was made to a main procedure. The program should have been
loaded and/or called using a defined language construct like fetch() or system().

Programmer Response: Correct the load module.

System Action: The application is terminated.

Symbolic Feedback Code: CEE393

 Chapter 9. Language Environment Run-Time Messages 309

 CEE3364W N CEE3400W

CEE3364W The enclave name was truncated by the enclave naming service during
initialization.

Explanation: The enclave naming service was used by the language in which the main
program was written during enclave initialization. It was passed a name longer than 32 char-
acters.

Programmer Response: This is an internal problem. Contact your service representative.

System Action: The truncated name is used as the enclave name.

Symbolic Feedback Code: CEE394

CEE3365S The enclave naming service was called, but not during enclave initializa-
tion, or not by a language run-time component corresponding to the MAIN
program.

Explanation: The enclave naming service was used by the language in which the main
program was written during enclave initialization. It was used in an illegal manner.

Programmer Response: This is an internal problem. Contact your service representative.

System Action: The truncated name is used as the enclave name.

Symbolic Feedback Code: CEE395

CEE3370W The program invocation name could not be found, and the returned name
was blank.

Explanation: CEEBGIN could not determine the name under which the program was
invoked.

Programmer Response: No response is required.

System Action: No system action is performed.

Symbolic Feedback Code: CEE39A

CEE3380W The target load module was not recognized by Language Environment.

Explanation: The language list could not be returned because the target load module was
not recognized. A value of zero was returned.

Programmer Response: No response is required.

System Action: Processing continues. No system action is performed.

Symbolic Feedback Code: CEE39K

CEE3400W The condition name was not recognized and the value of the condition
token was undefined.

Explanation: CEEQFBC was passed a condition name that could not be translated into a
corresponding Language Environment condition token.

Programmer Response: No programmer action is required.

System Action: No system action is taken.

Symbolic Feedback Code: CEE3A8

310 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3401W N CEE3426S

CEE3401W The condition token was not recognized and the value of the condition
name was undefined.

Explanation: CEEBFBC was passed a condition token that could not be translated into a
corresponding condition name.

Programmer Response: No programmer action is required.

System Action: No system action is taken.

Symbolic Feedback Code: CEE3A9

CEE3402E The condition token passed was invalid and the value of the condition
name was undefined.

Explanation: CEEBFBC was passed a condition token that was determined to be invalid
and could not to be translated into a corresponding condition name.

Programmer Response: No programmer action is required.

System Action: No system action is taken.

Symbolic Feedback Code: CEE3AA

CEE3424S CEE3SMO was called from outside a user-written condition handler.

Explanation: CEE3SMO can only be called from within a user-written condition handler.

Programmer Response: Only code calls to CEE3SMO from within user-written condition
handlers.

System Action: The application is terminated.

Symbolic Feedback Code: CEE3B0

CEE3425S Severity 0 or 1 condition was signaled with CEESGLN.

Explanation: The caller of CEESGLN signaled a severity 0 or 1 condition; however,
resumption is never allowed for a condition signaled from CEESGLN.

Programmer Response: Do not signal severity 0 and 1 conditions from CEESGLN. Use
CEESGL when signaling a severity 0 and 1 conditions.

System Action: The condition is changed to CEE3B1 and, if unhandled, the enclave is
terminated.

Symbolic Feedback Code: CEE3B1

CEE3426S There was an invalid request to fix-up and resume a condition.

Explanation: There was a request to fix-up and resume from a user-written condition
handler and either (1) the resume cursor was moved, or (2) the condition was signaled from
CEESGLN or from CEESGL without a feedback code. The resume cursor can not be moved
by a user-written condition handler if fix-up and resume behavior is desired. Conditions sig-
naled from CEESGLN or from CEESGL without a feedback code can not be resumed
without moving the resume cursor. The original condition is indicated in the next message in
the message file.

Programmer Response: A user-written condition handler must move the resume cursor
and return a result code of 10 (Resume) in order to resume a condition signaled by
CEESGLN or by CEESGL without a feedback code.

System Action: The condition is promoted to CEE3B2 and, if unhandled, the enclave is
terminated.

Symbolic Feedback Code: CEE3B2

 Chapter 9. Language Environment Run-Time Messages 311

 CEE3427S N CEE3449S

CEE3427S A user-written condition handler promoted a condition signaled by
CEESGLN to severity 0 or 1.

Explanation: The condition handling mechanism allows condition handlers to promote their
current condition and then handle new ones. If a severity 2 or above condition signaled by
CEESGLN was promoted to a 0 or 1 condition, the purpose of CEESGLN would be violated
- programs can never resume following a call to CEESGLN. (Language Environment allows
severity 0 or 1 conditions to resume.) Note that the original condition is indicated in the next
message in the message file.

Programmer Response: User-written condition handlers must not promote conditions that
are not allowed to resume to severity 0 or 1.

System Action: The condition is promoted to CEE3B3 and if unhandled the enclave is
terminated.

Symbolic Feedback Code: CEE3B3

CEE3428S Condition signaled by CEESGLN is not enabled by a language run-time
component.

Explanation: Some conditions are disabled by a language run-time component. For
example Fixed Point Overflow conditions in COBOL are ignored and the application is
resumed. Such a condition must not be signaled by CEESGLN. Note that the original condi-
tion is indicated in the next message in the message file.

Programmer Response: Do not use CEESGLN to signal a condition from a language that
does not enable the condition.

System Action: The condition is promoted to CEE3B4 and if unhandled the enclave is
terminated.

Symbolic Feedback Code: CEE3B4

CEE3429S Move resume cursor relative is not permitted in a user-written condition
handler registered with the USRHDLR run-time option.

Explanation: You can register a user-written condition handler at stack frame 0 with the
USRHDLR run-time option. The move resume cursor relative (CEEMRCR) service was not
permitted at stack frame 0.

Programmer Response: Remove all references to CEEMRCR in user-written condition
handlers registered with the USRHDLR run-time option.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3B5

CEE3449S An internal message services error occurred during termination.

Explanation: A message service was called to perform a service during termination, but
the service could not be completed because certain resources were no longer available.

Programmer Response: Contact your service representative.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3BP

312 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3450E N CEE3455E

CEE3450E Only one language was on the stack when a POP request was made to
CEE3LNG. The current language was returned in the desired language
parameter.

Explanation: CEE3LNG cannot POP since the resulting stack was empty.

Programmer Response: No programmer action is required.

System Action: The current language is returned in the desired_language parameter and
the stack remains unchanged.

Symbolic Feedback Code: CEE3BQ

CEE3451S The desired language desired-language for the PUSH or SET function for
CEE3LNG was invalid. No operation was performed.

Explanation: The desired_language parameter was not a valid 3-character national lan-
guage id.

Programmer Response: Provide a valid desired_language parameter. A list of the valid
national languages is provided in OS/390 Language Environment Programming Reference.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3BR

CEE3452S The function function specified for CEE3LNG was not recognized.
 No operation was performed.

Explanation: The function parameter must be a fullword binary 1, 2, 3, or 4.

Programmer Response: Provide a fullword binary 1, 2, 3, or 4 in the function parameter.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3BS

CEE3454S The function requested in CEE3LNG failed because at least one of the high-
level languages did not accept the change from the function.

Explanation: An internal error prevented the requested change from being made.

Programmer Response: Contact your service representative.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3BU

CEE3455E Only one country code was on the stack when a POP request was made to
CEE3CTY. The current country code was returned in the country code
parameter.

Explanation: CEE3CTY cannot POP the stack since the resulting stack was empty.

Programmer Response: No programmer action is required.

System Action: The current country code is returned in the country_code parameter and
the stack remains unchanged.

Symbolic Feedback Code: CEE3BV

 Chapter 9. Language Environment Run-Time Messages 313

 CEE3456S N CEE3461E

CEE3456S The country code country-code for the PUSH or SET function for CEE3CTY
was invalid. No operation was performed.

Explanation: The country_code parameter was not a valid 2-character country code.

Programmer Response: Provide a valid country_code parameter. A list of the valid country
codes is provided in OS/390 Language Environment Programming Reference.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3C0

CEE3457S The function function specified for CEE3CTY was not recognized.
 No operation was performed.

Explanation: The function parameter must be a fullword binary 1, 2, 3, or 4.

Programmer Response: Provide a fullword binary 1, 2, 3, or 4 in the function parameter.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3C1

CEE3459S The function requested in CEE3CTY failed because at least one of the high-
level languages did not accept the change from the function.

Explanation: The function requested failed because one of the high-level languages did not
accept the change.

Programmer Response: An internal error prevented the requested change from being
made. Contact your service representative.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3C3

CEE3460E The decimal separator 'decimal_separator' was truncated and was not
defined in CEE3MDS.

Explanation: The decimal_separator parameter must be a 2-character field. The resulting
decimal separator might not be valid. The decimal separator was left-justified and padded on
the right with a blank if necessary.

Programmer Response: Provide a 2-character decimal_separator parameter.

System Action: The decimal separator is truncated and placed into the given parameter.

Symbolic Feedback Code: CEE3C4

CEE3461E The country code country_code was invalid for CEE3MDS. The default
decimal separator 'decimal_separator' was returned.

Explanation: The country_code parameter was not a valid 2-character country code. The
default decimal separator was returned.

Programmer Response: Provide a valid country_code parameter. A list of the valid country
codes is provided in OS/390 Language Environment Programming Reference.

System Action: The default decimal separator is returned.

Symbolic Feedback Code: CEE3C5

314 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3462E N CEE3466E

CEE3462E The currency symbol 'currency_symbol' was truncated and was not defined
in CEE3MCS.

Explanation: The currency_symbol parameter must be a 2-character field. The resulting
currency symbol might not be valid. The currency symbol was left-justified and padded on
the right with a blank if necessary.

Programmer Response: Provide a 2-character currency_symbol parameter.

System Action: The currency symbol is truncated and placed into the given parameter.

Symbolic Feedback Code: CEE3C6

CEE3463E The country code country_code was invalid for CEE3MCS. The default cur-
rency symbol 'currency_symbol' was returned.

Explanation: The country_code parameter was not a valid 2-character country code. The
default currency symbol was returned.

Programmer Response: Provide a valid country_code parameter. A list of the valid country
codes is provided in OS/390 Language Environment Programming Reference.

System Action: The default currency symbol is returned.

Symbolic Feedback Code: CEE3C7

CEE3464E The thousands separator 'thousands_separator' was truncated and was not
defined in CEE3MTS.

Explanation: The thousands_separator parameter must be a 2-character field. The
resulting thousands separator might not be valid. The thousands separator was left-justified
and padded on the right with a blank if necessary.

Programmer Response: Provide a 2-character thousands_separator parameter.

System Action: The thousands separator is truncated and placed into the given parameter.

Symbolic Feedback Code: CEE3C8

CEE3465E The country code country_code was invalid for CEE3MTS. The default thou-
sands separator 'thousands_separator' was returned.

Explanation: The country_code parameter was not a valid 2-character country code. The
default thousands separator was returned.

Programmer Response: Provide a valid country_code parameter. A list of the valid country
codes is provided in OS/390 Language Environment Programming Reference.

System Action: The default thousands separator is returned.

Symbolic Feedback Code: CEE3C9

CEE3466E The date picture string date_pic_string was truncated and was not defined in
CEEFMDA.

Explanation: The date_pic_string parameter must be an 80-character field. The resulting
date_pic_string might not be valid. The date_pic_string was left-justified and padded on the
right with a blank if necessary.

Programmer Response: Provide an 80-character date_pic_string parameter.

System Action: The date_pic_string is truncated and placed into the given parameter.

Symbolic Feedback Code: CEE3CA

 Chapter 9. Language Environment Run-Time Messages 315

 CEE3467E N CEE3471E

CEE3467E The country code country_code was invalid for CEEFMDA. The default date
picture string date_pic_string was returned.

Explanation: The country_code parameter was not a valid 2-character country code. The
default date picture string was returned.

Programmer Response: Provide a valid country_code parameter. A list of the valid country
codes is provided in OS/390 Language Environment Programming Reference.

System Action: The default date picture string is returned.

Symbolic Feedback Code: CEE3CB

CEE3468E The time picture string time_pic_string was truncated and was not defined in
CEEFMTM.

Explanation: The time_pic_string parameter must be an 80-character field. The resulting
time_pic_string might not be valid. The time_pic_string was left-justified and padded on the
right with a blank if necessary.

Programmer Response: Provide an 80-character time_pic_string parameter.

System Action: The time_pic_string is truncated and placed into the given parameter.

Symbolic Feedback Code: CEE3CC

CEE3469E The country code country_code was invalid for CEEFMTM. The default time
picture string time_pic_string was returned.

Explanation: The country_code parameter was not a valid 2-character country code. The
default time picture string was returned.

Programmer Response: Provide a valid country_code parameter. A list of the valid country
codes is provided in OS/390 Language Environment Programming Reference.

System Action: The default time picture string is returned.

Symbolic Feedback Code: CEE3CD

CEE3470E The date and time string datetime_str was truncated and was not defined in
CEEFMDT.

Explanation: The datetime_str parameter must be an 80-character field. The resulting
datetime_str might not be valid. The datetime_str was left-justified and padded on the right
with a blank if necessary.

Programmer Response: Provide an 80-character datetime_str parameter.

System Action: The datetime_str is truncated and placed into the given parameter.

Symbolic Feedback Code: CEE3CE

CEE3471E The country code country_code was invalid for CEEFMDT. The default date
and time picture string datetime_str was returned.

Explanation: The country_code parameter was not a valid 2-character country code. The
default date and time string was returned.

Programmer Response: Provide a valid country_code parameter. A list of the valid country
codes is provided in OS/390 Language Environment Programming Reference.

System Action: The default date and time string is returned.

Symbolic Feedback Code: CEE3CF

316 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3472S N CEE3480S

CEE3472S An internal message services error occurred while getting storage for the
message inserts.

Explanation: Insufficient heap storage was available to complete message services.

Programmer Response: If possible, free unneeded heap storage or contact your service
representative.

System Action: No message insert area is created.

Symbolic Feedback Code: CEE3CG

CEE3473S An internal message services error occurred while processing the inserts
for this message.

Explanation: Corrupted storage was encountered when attempting to initialize a message
insert block.

Programmer Response: Contact your service representative.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3CH

CEE3475S An internal message services error occurred while freeing the insert area.

Explanation: Corrupted storage was encountered when attempting to free a message
insert block.

Programmer Response: Contact your service representative.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3CJ

CEE3476S An internal message services error occurred while freeing storage for the
message inserts.

Explanation: Message services detected a heap storage freeing failure.

Programmer Response: Contact your service representative.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3CK

CEE3480S An internal message services error occurred while processing the inserts
for a message.

Explanation: Message services detected an insert error while formatting a message.

Programmer Response: Contact your service representative.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3CO

 Chapter 9. Language Environment Run-Time Messages 317

 CEE3481S N CEE3486S

CEE3481S An internal message services error occurred while processing the inserts
for a message.

Explanation: Corrupted storage was encountered when attempting to process a message
insert block.

Programmer Response: Contact your service representative.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3CP

CEE3482S An internal message services error occurred while processing the inserts
for a message.

Explanation: An invalid insert was encountered when attempting to process a message
insert block.

Programmer Response: Contact your service representative.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3CQ

CEE3484E A message could not be written to ddname because the message length of
message_length exceeded the allowable maximum of max-message-length.

Explanation: The message could not be written to ddname data set because message ser-
vices will not process a message whose length is greater than max-message-length.

Programmer Response: Reduce the size of the message or divide it into sections of
acceptable length.

System Action: The message is not written.

Symbolic Feedback Code: CEE3CS

CEE3485S An internal message services error occurred while locating the message
number within a message file.

Explanation: The message library for the given message number was located and loaded,
but the message number could not be found within the library.

Programmer Response: Contact your service representative.

System Action: The given message library is loaded, but no other action is performed.

Symbolic Feedback Code: CEE3CT

CEE3486S An internal message services error occurred while formatting a message.

Explanation: Corrupted storage was encountered when attempting to process a message
insert block.

Programmer Response: Contact your service representative.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3CU

318 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3487S N CEE3491S

CEE3487S An internal message services error occurred while locating a message
number within the ranges specified in the repository.

Explanation: The message number could not be found within the ranges in the
message_library_table.

Programmer Response: Contact your service representative.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3CV

CEE3488S An internal message services error occurred while formatting a message.

Explanation: An invalid internal message buffer length was detected while formatting a
message.

Programmer Response: Contact your service representative.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3D0

CEE3489S An internal message services error occurred while getting storage neces-
sary to format a message.

Explanation: No heap storage was available to get storage needed to complete the format-
ting of a message.

Programmer Response: If possible, free unneeded heap storage or contact your service
representative.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3D1

CEE3490S An internal message services error occurred while attempting to write a
message.

Explanation: The given ddname or destination was not valid or was not available.

Programmer Response: Contact your service representative.

System Action: The message is not written.

Symbolic Feedback Code: CEE3D2

CEE3491S An internal message services error occurred while getting storage.

Explanation: No heap storage was available to get storage needed to write out a message.

Programmer Response: If possible, free unneeded heap storage or contact your service
representative.

System Action: The message is not written.

Symbolic Feedback Code: CEE3D3

 Chapter 9. Language Environment Run-Time Messages 319

 CEE3492S N CEE3497E

CEE3492S An internal message services error occurred while attempting to write a
message.

Explanation: An error was detected while trying to OPEN, WRITE, or CLOSE a given
ddname or destination.

Programmer Response: Contact your service representative.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3D4

CEE3493W An internal message services error occurred while attempting to close the
message file.

Explanation: Language Environment could not close the specified ddname, because Lan-
guage Environment either did not own it, or the file was not currently open.

Programmer Response: Contact your service representative.

System Action: No system action is performed.

Symbolic Feedback Code: CEE3D5

CEE3494S An internal message services error occurred while attempting to close the
message file.

Explanation: An error was detected while trying to CLOSE the given ddname.

Programmer Response: Contact your service representative.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3D6

CEE3495S An internal message services error occurred while formatting a message.

Explanation: An error preventing the completion of message formatting was detected.

Programmer Response: Contact your service representative.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3D7

CEE3496I An internal message services error occurred while formatting a message.

Explanation: An internal error was detected while locating the inserts for a message.

Programmer Response: Contact your service representative.

System Action: No system action is performed.

Symbolic Feedback Code: CEE3D8

CEE3497E The message file was discovered to have an insufficient LRECL of
too-small.

Explanation: The message file cannot have an LRECL less than 14. This was to allow for
the message number and 4 characters of text per line.

Programmer Response: Specify an LRECL of 14 or greater.

System Action: The message file LRECL is forced to the default LRECL value.

Symbolic Feedback Code: CEE3D9

320 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3498I N CEE3502S

CEE3498I The message file was already open.

Explanation: A request to open the message file via CEEOPMF could not be completed
because it was already open.

Programmer Response: No programmer response is necessary.

System Action: No system action is taken.

Symbolic Feedback Code: CEE3DA

CEE3499E The message file was unable to be opened.

Explanation: A request to open the message file via CEEOPMF could not be completed.

Programmer Response: Ensure that the ddname to used for the message file is a valid
name, and the data set is usable.

System Action: No system action is taken.

Symbolic Feedback Code: CEE3DB

CEE3500S Not enough storage was available to load module-name.

Explanation: Not enough storage was available to load the requested module into virtual
memory.

Programmer Response: Ensure that the region size is sufficient to run the application. If
necessary, delete modules not currently needed by the application or free unused storage
and retry the load request.

System Action: Module is not loaded. The application might abend.

Symbolic Feedback Code: CEE3DC

CEE3501S The module module-name was not found.

Explanation: The system could not find the load module whose name was specified on the
parameter list to the Language Environment load service, in the indicated library (job library
or link library).

Programmer Response: Make sure the requesting program name was not incorrectly
modified. Make sure that the indicated library is correct in the job step. Correct the error, and
execute the job step again.

System Action: Module is not loaded. The application might abend.

Symbolic Feedback Code: CEE3DD

CEE3502S The module name module-name was too long.

Explanation: The module name length was greater than the name length supported by the
underlying operating system.

Programmer Response: Correct the module name length and execute the job step again.

System Action: Name length is truncated to the name length supported by the underlying
operating system. The requested module might or might not be loaded.

Symbolic Feedback Code: CEE3DE

 Chapter 9. Language Environment Run-Time Messages 321

 CEE3503S N CEE3507S

CEE3503S The load request for module module-name was unsuccessful.

Explanation: The system could not load the load module.

Programmer Response: Check the original abend from the operating system and refer to
the underlying operating system message manual for explanation and programmer's
response.

System Action: Module was not loaded. The application might abend.

Symbolic Feedback Code: CEE3DF

CEE3504S The delete request for module module-name was unsuccessful.

Explanation: The load module might already have been deleted or was never loaded.

Programmer Response: Make sure the requesting module name is not incorrectly modi-
fied.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3DG

CEE3505S The library vector table (LIBVEC) descriptor module module-name could not
be loaded.

Explanation: During LIBVEC initialization the library vector table descriptor module could
not be found.

Programmer Response: Make sure you passed the name of the library vector table
(LIBVEC) descriptor rather than the entry address. Make sure the name was not incorrectly
modified and the indicated library (job library or link library) is correct.

System Action: LIBVEC initialization is not performed.

Symbolic Feedback Code: CEE3DH

CEE3506S The library packaged subroutine module module-name could not be loaded.

Explanation: The system could not find the load module whose name was specified in the
library vector table (LIBVEC) descriptor module in the indicated library (job library or link
library).

Programmer Response: Make sure the requesting program name was not incorrectly
modified. Make sure that the indicated library is correct in the job step. Correct the error, and
execute the job step again.

System Action: Module is not loaded and LIBVEC initialization is not performed.

Symbolic Feedback Code: CEE3DI

CEE3507S Not enough storage was available for the library vector table (LIBVEC)
table-name.

Explanation: Insufficient storage was available to build the LIBVEC.

Programmer Response: If necessary, free available storage and retry LIBVEC initializa-
tion.

System Action: No storage is allocated for the LIBVEC. LIBVEC initialization did not com-
plete.

Symbolic Feedback Code: CEE3DJ

322 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3508S N CEE3512S

CEE3508S The number of library packaged subroutines specified in the descriptor
module module-name exceeded the maximum of 256 library packages.
 No library packages were loaded.

Explanation: The maximum number of library packages supported is 256.

Programmer Response: Repackage the library routines so that the number of library pack-
ages does not exceed the maximum supported.

System Action: LIBVEC initialization did not complete.

Symbolic Feedback Code: CEE3DK

CEE3509S The number of library vector slots specified in the descriptor module
module-name either exceeded 1024 or was less than 1.

Explanation: A minimum of 1 library routine entry name was required to build the library
vector table. A maximum of 1024 library routines entry names is allowed in a LIBVEC.

Programmer Response: If library vector slots exceed the maximum, you might have to
build more than one LIBVEC.

System Action: LIBVEC initialization did not complete.

Symbolic Feedback Code: CEE3DL

CEE3510S The module module-name is a member of the library packaged subroutine
module-name and could not be deleted.

Explanation: Library package subroutines are not allowed to be deleted.

Programmer Response: Correct your program so that it does not request a library
package subroutine be deleted.

System Action: Module not deleted.

Symbolic Feedback Code: CEE3DM

CEE3511S The function code function-code was invalid.

Explanation: Valid functions codes for the verify library vector subroutine are delete and
load.

Programmer Response: Make sure the function code passed to the verify library vector
subroutine is delete/load. Correct the program and execute job step again.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3DN

CEE3512S An HFS load of module module-name failed. The system return code was
return-code; the reason code was reason-code.

Explanation: The callable service BPX1LOD failed while attempting to load module
module-name from the HFS. The system return and reason codes were returned.

Programmer Response: See OS/390 UNIX System Services Messages and Codes for the
appropriate action to take for this return code and reason code. Consult with your system
support personnel if necessary.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3DO

 Chapter 9. Language Environment Run-Time Messages 323

 CEE3513S N CEE3531S

CEE3513S The library vector table (LIBVEC) table-name could not be terminated.

Explanation: LIBVEC termination failed due to an inability to delete library subroutines or
free the storage obtained for the LIBVEC.

Programmer Response: Contact your service representative.

System Action: LIBVEC termination did not complete.

Symbolic Feedback Code: CEE3DP

CEE3514C An internal error, Unknown Operating System, was detected.

Explanation: The underlying operating system was unsupported in Language Environment.

Programmer Response: Language Environment runs under the control of, or in conjunc-
tion with, the following operating systems/subsystems: MVS/ESA, VM/ESA, CICS/ESA,
IMS/ESA, DB2, SQL/DS, DFSORT, ISPF, and TSO/E.

System Action: The application is terminated.

Symbolic Feedback Code: CEE3DQ

CEE3515I No modules were loaded.

Explanation: No application load modules have been loaded via Language Environment
load service in the current application.

Programmer Response: No programmer response is necessary.

System Action: No system action is taken.

Symbolic Feedback Code: CEE3DR

| CEE3518S The module module-name was not found in an authorized library

| Explanation: An authorized program requested the load of a module that could not be
| found in an authorized library or concatenation of libraries.

| Programmer Response: If the requested module could not be found, make sure the
| module exists in a system or user-defined authorized library. Correct the error, and run the
| job step again.

| System Action: Module is not loaded. The application might abend.

| Symbolic Feedback Code: CEE3DU

CEE3530S The service was invoked for a load module.

Explanation: The CEEPPOS service was invoked for a load module. Only program objects
are supported. No action was taken.

Programmer Response: Contact your service representative.

System Action: Unless the condition is handled the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3EA

CEE3531S The entry point was not recognized by Language Environment.

Explanation: The CEEPPOS service was invoked and Language Environment was not
able to recognize the entry point style. Only Language Environment enabled entry point
styles are supported for program objects. No action was taken.

Programmer Response: Contact your service representative.

System Action: Unless the condition is handled the default action is to terminate the
enclave.

324 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3532S N CEE3535S

Symbolic Feedback Code: CEE3EB

CEE3532S The requested class does not exist in the program object.

Explanation: The CEEPPOS service was invoked. If this is an OBTAIN for class C_WSA
then this indicates that the program object does not have writable static. If this is a LOCATE
for class C_@@DLLI, C_@@STINIT or C_@@PPA2 then this indicates that the program
object does not contain the class. No action was taken.

Programmer Response: Contact your service representative.

System Action: Unless the condition is handled the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3EC

CEE3533S The service invoked a system function which was unsuccessful. The
system return code was return_code and the system reason code was
reason_code.

Explanation: The CEEPPOS service invoked program management system service for a
program object. The system return code and reason code were returned.

Programmer Response: Contact your service representative.

System Action: Unless the condition is handled the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3ED

CEE3534S The requested function is not supported.

Explanation: The CEEPPOS service was invoked with a function that is not recognized. No
action was taken.

Programmer Response: Contact your service representative.

System Action: Unless the condition is handled the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3EE

CEE3535S The requested class_name is not supported, or a required input value
 for the specified class_name was not correctly specified.

Explanation: The CEEPPOS service was invoked with class_name that is not recognized,
or the required input for the function with class_name CEE_ALL is incorrect. No action was
taken.

Programmer Response: If your application is involing CEEPPOS, then check that the
class_name specified is correct for the function being used. If you are using a function that
accepts the class_name CEE_ALL, make sure you specify the class_address and class_size
correctly. Otherwise, contact your service representative.

System Action: Unless the condition is handled the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3EF

 Chapter 9. Language Environment Run-Time Messages 325

 CEE3536S N CEE3540S

CEE3536S Not enough storage was available for the WSA.

Explanation: The CEEPPOS service was invoked to OBTAIN the WSA and storage was
not available to load the WSA into virtual memory. No action was taken.

Programmer Response: Contact your service representative.

System Action: Unless the condition is handled the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3EG

CEE3537S The request to release the WSA was unsuccessful.

Explanation: The CEEPPOS service was invoked to RELEASE the WSA and the system
could not release the WSA because the class_address was not valid.

Programmer Response: Contact your service representative.

System Action: Unless the condition is handled the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3EH

CEE3538S The request to refresh the WSA was unsuccessful.

Explanation: The CEEPPOS service was invoked to REFRESH the WSA and the system
could not refresh the WSA because the class_address was not valid.

Programmer Response: Contact your service representative.

System Action: Unless the condition is handled the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3EI

CEE3539S The load request for program object module-name was unsuccessful for the
current level of CICS.

Explanation: The load request for module, module-name resulted in loading a program
object. The load service does not support loading a program object for the current level of
CICS.

Programmer Response: Rebuild the module using the Language Environment Prelinker
Utility and reexecute.

System Action: The module is not loaded. Unless the condition is handled, the default
action is to terminate the enclave.

Symbolic Feedback Code: CEE3EJ

CEE3540S The load request for program object module-name was unsuccessful.

Explanation: The load request for module, module-name resulted in loading a program
object. The load service does not support loading a program object.

Programmer Response: Rebuild the module using the Language Environment Prelinker
Utility and reexecute.

System Action: The module is not loaded. Unless the condition is handled, the default
action is to terminate the enclave.

Symbolic Feedback Code: CEE3EK

326 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3541S N CEE3545E

CEE3541S A Writeable Static Area (WSA) associated with the entry point was not
found.

Explanation: The CEEPFWSA service was invoked and Language Environment was not
able to find an executable module containing the specified entry point. A serach is made of
the executable module containing main (if present), any fetched, dynamically-called,
PIPI-loaded modules, CEEFETCHed modules and any loaded DLLs.

Programmer Response: Verify that the entry point passed to CEEPFWSA is a valid C/370
or LE style entry point. Contact your service representative.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3EL

| CEE3542S Unable to find a valid Entry Point or PPA1 or PPA2 for this DSA.

| Explanation: DSA pointer, DSA format and Entry Point address are the required parame-
| ters for the CEEYEPAF callable service. They have to be passed to the CEEYEPAF CWI.
| PPA1 and PPA2 pointers are optional parameters. But if the PPA2 pointer is passed to the
| CEEYEPAF CWI, then the PPA1 pointer has to be passed to the CEEYEPAF CWI as well.

| Programmer Response: Pass the correct parameters to the CEEYEPAF callable service.
| PPA1 pointer has to be passed to the CEEYEPAF CWI, if PPA2 pointer is passed to it.

| System Action: The request was unsuccessful. The address of the Entry Point or PPA1 or
| PPA2 is not established.

| Symbolic Feedback Code: CEE3EM

| CEE3543E Requested optional field not found in the passed PPA1.

| Explanation: The optional field parameter passed to the CEEYPPAF callable service
| doesn't exist in the passed PPA1 structure.

| Programmer Response: Pass the correct optional name parameter to the CEEYPPAF
| CWI.

| System Action: The request was unsuccessful. The address of the optional field is evalu-
| ated to 0.

| Symbolic Feedback Code: CEE3EN

| CEE3544E Optional field requested is not valid (1 - 9).

| Explanation: The valid value for the optional field parameter passed to the CEEYPPAF
| callable service is from number 1 to number 9.

| Programmer Response: Pass the valid number as the optional field parameter to the
| CEEYPPAF callable service.

| System Action: The request was unsuccessful. The address of the optional field is evalu-
| ated to 0.

| Symbolic Feedback Code: CEE3EO

| CEE3545E Unable to verify the passed PPA1 as valid for XPLINK.

| Explanation: The PPA1 parameter passed to the CEEYPPAF callable service is not a valid
| XPLINK PPA1.

| Programmer Response: Pass the XPLINK PPA1 parameter to the CEEYPPAF callable
| service.

| System Action: The request was unsuccessful. The address of the optional field is not
| established.

| Symbolic Feedback Code: CEE3EP

 Chapter 9. Language Environment Run-Time Messages 327

 CEE3546E N CEE3550S

| CEE3546E An error occurred while attempting to find the previous DSA.

| Explanation: A program check occurred in the unwind process.

| Programmer Response: Make sure the input DSA is valid. Verify the DSA format is
| correct.

| System Action: The request was unsuccessful. A feedback is returned. If no feedback is
| requested and the raised condition is unhandled, the enclave terminates.

| Symbolic Feedback Code: CEE3EQ

| CEE3547E The DSA physical callee was requested and the physical callee format was
| not.

| Explanation: Callable service CEEYDSAF requires the physical callee format when the
| physical callee parameter is passed.

| Programmer Response: Make sure the physical callee format is passed if physical callee
| is requested.

| System Action: The request was unsuccessful. A feedback is returned. If no feedback is
| requested and the raised condition is unhandled, the enclave terminates.

| Symbolic Feedback Code: CEE3ER

| CEE3548E The callable service was passed a DSA format of -1 and was unable to
| determine the format of the passed DSA.

| Explanation: Unable to determine whether the DSA is up or down format.

| Programmer Response: Verify the DSA is valid.

| System Action: The callable service will return feedback. If feedback is not requested, a
| severity 1 condition will be raised. If the condition remains unhandled, processing continues.

| Symbolic Feedback Code: CEE3ES

| CEE3549S The service was invoked for a program object that contains both XPLINK
| and NOXPLINK-compiled parts..

| Explanation: An LE service found a program object that contains both XPLINK and
| NOXPLINK-compiled parts. You cannot mix both XPLINK and NOXPLINK-compiled parts in
| the same program object.

| Programmer Response: Rebind the program object after recompiling the parts so that they
| are all compiled either XPLINK or NOXPLINK. Alternatively, you can split the program object
| into two DLLs, one containing XPLINK-compiled parts and the other containing
| NOXPLINK-compiled parts. Then each of these DLLs would be bound with the DLL side
| deck of the other. Refer to OS/390 C/C++ Programming Guide for more details on DLLs.

| System Action: If the LE service that detected the condition was passed a feedback code
| parameter, then the feedback code representing this message is returned. Otherwise the
| enclave is terminated.

| Symbolic Feedback Code: CEE3ET

CEE3550S DLL dll-name does not contain a CEESTART CSECT.

Explanation: The application is attempting to load DLL dll-name implicitly or explicitly, but
the CEESTART csect cannot be located within it.

Programmer Response: Make sure that when you generate the DLL, it contains a
CEESTART CSECT.

System Action: If this was an implicit DLL reference, the condition is signaled. If the condi-
tion is not handled, the default action is to terminate the enclave. If this was an explicit DLL
Load request, the feedback code is returned to the caller.

328 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3551S N CEE3554S

Symbolic Feedback Code: CEE3EU

CEE3551S DLL dll-name does not contain any C functions.

Explanation: DLL dll-name does not contain any C functions.

Programmer Response: Make sure that you are loading the correct module, and that the
DLL is built correctly.

System Action: The condition is signaled. If the condition is not handled, the default action
is to terminate the enclave.

Symbolic Feedback Code: CEE3EV

CEE3552S DLL dll-name does not export any variables or functions.

Explanation: DLL dll-name does not export any variables or functions. Either the definition
side-deck supplied to your application is incorrect, or the DLL is generated incorrectly.

Programmer Response: Ensure that the DLL was built properly.

1. Specify #pragma export in your source or compile with EXPORTALL compiler option.

2. Compile with DLL, RENT, and LONGNAME compiler options.

3. Ensure that the DLL was built properly.

System Action: The condition is signaled. If the condition is not handled, the default action
is to terminate the enclave.

Symbolic Feedback Code: CEE3F0

CEE3553S DLL dll-name is part of a circular list.

Explanation: A deadlock condition was discovered while processing a DLL load request for
DLL dll-name. The deadlock condition exists because the DLLs that are being loaded
depend on each other. The following situation illustrates a deadlock condition. DLL A has
static constructors that require objects from DLL B. DLL B has static constructors that require
objects from DLL A. When DLL A is loaded, its static constructors require objects from DLL
B. This forces DLL B to be loaded, requiring objects from DLL A. Since the loading of DLL A
has not completed, a deadlock condition exists.

Programmer Response: Remove the circular list dependency from the DLLs.

System Action: The condition is signaled. If the condition is not handled, the default action
is to terminate the enclave.

Symbolic Feedback Code: CEE3F1

CEE3554S There is not enough storage to load DLL dll-name.

Explanation: There is insufficient storage to satisfy DLL load request for DLL dll-name..

Programmer Response: Increase the region size.

System Action: If this was an implicit DLL reference, the condition is signaled. If the condi-
tion is not handled, the default action is to terminate the enclave. If this was an explicit DLL
Load request, the feedback code is returned to the caller.

Symbolic Feedback Code: CEE3F2

 Chapter 9. Language Environment Run-Time Messages 329

 CEE3555S N CEE3558S

| CEE3555S A call was made from a NOXPLINK-compiled application to an
| XPLINK-compiled exported function in DLL dll-name and the XPLINK(ON)
| runtime option was not specified.

| Explanation: During LE initialization, XPLINK resources need to be allocated if any
| XPLINK-compiled functions are going to be called during the execution of the application. LE
| tries to detect this by inspecting the attributes of the initial program. If the initial program
| consists of NOXPLINK-compiled functions that may at some point call an XPLINK-compiled
| function, then the XPLINK(ON) runtime option must be used to indicate to LE initialization
| that XPLINK resources should be allocated.

| Programmer Response: Ensure that the DLL indicated in the job library or link library is
| the correct version, and that it contains the external variable.

| System Action: If this was an implicit DLL reference, the condition is signaled. If the condi-
| tion is not handled, the default action is to terminate the enclave. If this was an explicit DLL
| Load request, the feedback code is returned to the caller.

| Symbolic Feedback Code: CEE3F3

| CEE3556S An internal error was detected, no WSA could be found associated with
| entry point entry-pt.

| Explanation: This is an internal error. LE could not find the WSA associated with the caller
| of a DLL function (the entry point in the message is the address of the caller).

| Programmer Response: Contact your service representative.

| System Action: Unless the condition is handled, the default action is to terminate the
| enclave.

| Symbolic Feedback Code: CEE3F4

| CEE3557S An internal error was detected by LE during DLL load.

| Explanation: This is an internal error. LE could not complete DLL load processing because
| an unexpected condition was encountered in the format of either the DLL or the DLL applica-
| tion.

| Programmer Response: Contact your service representative.

| System Action: Unless the condition is handled, the default action is to terminate the
| enclave.

| Symbolic Feedback Code: CEE3F5

CEE3558S DLL dll-name does not export any variables.

Explanation: The application made an implicit reference to DLL dll-name. During the load
of the DLL, it was determined that the application references external variables from the
DLL. However, the DLL that was loaded does not contain any exported variables.

Programmer Response: Ensure that the DLL indicated in the job library or link library is
the correct version, and that it contains the external variable.

System Action: The condition is signaled. If the condition is not handled, the default action
is to terminate the enclave.

Symbolic Feedback Code: CEE3F6

330 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3559S N CEE3563S

CEE3559S External variable variable-name was not found in DLL dll-name.

Explanation: The application is attempting to refer to external variable, variable-name.
However, this variable is not defined in DLL, dll-name.

Programmer Response: Ensure that the DLL indicated in the job library or link library is
the correct version, and that it contains the external variable.

System Action: The condition is signaled. If the condition is not handled the default action
is to terminate the enclave.

Symbolic Feedback Code: CEE3F7

CEE3560S DLL dll-name does not export any functions.

Explanation: The application made an implicit reference to DLL, dll-name. During the load
of the DLL it was determined that the application references functions from the DLL.
However, the DLL that was loaded does not contain any exported functions.

Programmer Response: Ensure that the DLL indicated in the job library or link library is
the correct version, and that it contains the external function.

System Action: The condition is signaled. If the condition is not handled the default action
is to terminate the enclave.

Symbolic Feedback Code: CEE3F8

CEE3561S External function function-name was not found in DLL dll-name.

Explanation: The application is attempting to refer to an external function, function-name
that is not defined in the DLL, dll-name.

Programmer Response: Ensure that the DLL indicated in the job library or link library is
the correct version, and that it contains the external function.

System Action: The condition is signaled. If the condition is not handled the default action
is to terminate the enclave.

Symbolic Feedback Code: CEE3F9

CEE3562S There is not enough storage to obtain a function pointer for external func-
tion function-name in DLL dll-name.

Explanation: There is insufficient heap storage to satisfy a Query DLL Function request for
function function-name in DLL dll-name.

Programmer Response: Increase the region size.

System Action: The feedback code is returned to the caller.

Symbolic Feedback Code: CEE3FA

CEE3563S Attempted to load DLL dll-name while running C++ destructors.

Explanation: The application is attempting to load DLL dll-name while running C++
destructors.

Programmer Response: Make sure that you are not referring to DLL variables or functions
from your C++ destructors.

System Action: If this was an implicit DLL reference, the condition is signaled. If the condi-
tion is not handled, the default action is to terminate the enclave. If this was an explicit DLL
Load request, the feedback code is returned to the caller.

Symbolic Feedback Code: CEE3FB

 Chapter 9. Language Environment Run-Time Messages 331

 CEE3564S N CEE3568I

CEE3564S DLL constructors or destructors did not complete, so DLL dll-name cannot
be used.

Explanation: DLL dll-name, which was being loaded or freed, was in the process of
running static constructors or destructors. However, the process did not complete (probably
because the thread was abnormally terminated). The DLL is left in an indeterminate state.
This error was detected by a thread that was attempting to load or free the same DLL, and
was waiting for the constructors or destructors to complete.

Programmer Response: Determine the cause of the incomplete constructor or destructor
process. Ensure that the constructors or destructors are not the cause of the thread termi-
nation that lead to this condition.

System Action: The condition is signaled. If the condition is not handled, the default action
is to terminate the enclave.

Symbolic Feedback Code: CEE3FC

CEE3565I The input dll-token was NULL.

Explanation: The dll-token supplied to the DLL Free request is not valid.

Programmer Response: You must request a DLL Load to initialize a dll-token properly
before attempting to free a DLL.

System Action: The request is ignored.

Symbolic Feedback Code: CEE3FD

CEE3566I There are no DLLs to be freed.

Explanation: An attempt was made to free a DLL, but all DLLs are freed already, or the
dll-token passed is inactive.

Programmer Response: Ensure that the DLL Free request is invoked after the DLL Load
request has completed successfully, and that you have no extra DLL Free requests using
this dll-token in your application.

System Action: The request is ignored.

Symbolic Feedback Code: CEE3FE

CEE3567I A logical delete was performed for DLL dll-name, but the DLL was not phys-
ically deleted.

Explanation: The DLL Free request completed successfully. DLL dll-name is not physically
deleted because either there was an implicit DLL Load performed against this DLL by the
application, or multiple DLL Load requests were made for the DLL.

Programmer Response: If the DLL was loaded implicitly by referring to an external vari-
able or an external function, it will be physically deleted by Language Environment at
enclave termination. Otherwise, to free the DLL, issue a DLL Free request using the proper
dll-token.

System Action: Execution continues.

Symbolic Feedback Code: CEE3FF

CEE3568I No DLL could be found which matched the input dll-token.

Explanation: The dll-token supplied to the DLL Free request could not be matched to a
DLL loaded by this application.

Programmer Response: Ensure that the dll-token supplied to the DLL Free request is the
same as the one returned from the DLL Load request, and that it has not been overwritten.

System Action: The request is ignored.

Symbolic Feedback Code: CEE3FG

332 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3569E N CEE3573I

CEE3569E The DLL function was not allowed because destructors are running for the
DLL.

Explanation: A DLL Free, Query Variable, or Query Function request was made for a DLL
that is currently running destructors. Since destructors are running, the DLL is about to be
freed. Further function requests using this DLL are not allowed.

Programmer Response: Do not issue DLL function requests from one thread while the
DLL is being freed from another thread.

System Action: The feedback code is returned to the caller.

Symbolic Feedback Code: CEE3FH

CEE3570S DLL name dll-name was not valid.

Explanation: Either the DLL name provided as input was null, or the length of the DLL
name was negative.

Programmer Response: If this was an implicit DLL reference, make sure that the DLL was
built correctly. If this was an explicit DLL Load request, verify that the DLL name was speci-
fied correctly.

System Action: If this was an implicit DLL reference, the condition is signaled. If the condi-
tion is not handled, the default action is to terminate the enclave. If this was an explicit DLL
Load request, the feedback code is returned to the caller.

Symbolic Feedback Code: CEE3FI

CEE3571S Storage for writeable static was not available for DLL dll-name.

Explanation: Not enough storage was available for allocation of writeable static for DLL
dll-name.

Programmer Response: Increase the region size.

System Action: The request is ignored.

Symbolic Feedback Code: CEE3FJ

CEE3572I The input dll-token was not available for use.

Explanation: The dll-token supplied to a DLL Query Function or Query Variable request
could not be used because:

� the dll-token was null;
� the dll-token was not valid; or
� the dll-token had been marked inactive as a result of an explicit DLL Free request.

Programmer Response: Ensure that the proper dll-token is supplied to the DLL request,
and that the subject DLL is not freed prematurely.

System Action: The request is ignored.

Symbolic Feedback Code: CEE3FK

CEE3573I Dll dll-name does not export any functions.

Explanation: An attempt was made to query an external function, but DLL dll-name does
not contain any exported functions.

Programmer Response: Ensure that the DLL indicated in the job library or link library is
the correct version, and that it contains the external function.

System Action: The request is ignored.

Symbolic Feedback Code: CEE3FL

 Chapter 9. Language Environment Run-Time Messages 333

 CEE3574I N CEE3578I

CEE3574I External function function-name was not found in DLL dll-name.

Explanation: An attempt was made to query an external function, but function function-
name was not found in the export section of the DLL dll-name.

Programmer Response: Ensure that the function name specified on the DLL Query Func-
tion request is correct, that the DLL indicated in the job library or link library is the correct
version, and that it contains the external function.

System Action: The request is ignored.

Symbolic Feedback Code: CEE3FM

CEE3575I DLL dll-name does not export any variables.

Explanation: An attempt was made to query an external variable, but DLL dll-name does
not contain any exported variables.

Programmer Response: Ensure that the DLL indicated in the job library or link library is
the correct version, and that it contains the external variable.

System Action: The request is ignored.

Symbolic Feedback Code: CEE3FN

CEE3576I External variable variable-name was not found in DLL dll-name.

Explanation: An attempt was made to query an external variable, but variable-name was
not found in the export section of DLL dll-name.

Programmer Response: Ensure that the variable name specified on the DLL Query Vari-
able request is correct, that the DLL indicated in the job library or link library is the correct
version, and that it contains the external variable.

System Action: The request is ignored.

Symbolic Feedback Code: CEE3FO

CEE3577I The external function was not found in DLL dll-name.

Explanation: An attempt was made to query an external function in DLL dll-name, but
either the function name was null, or the length of the function name was negative.

Programmer Response: Ensure that the function name and length are specified correctly
on the DLL Query Function request.

System Action: The request is ignored.

Symbolic Feedback Code: CEE3FP

CEE3578I The external variable was not found in DLL dll-name.

Explanation: An attempt was made to query an external variable in DLL dll-name, but
either the variable name was null, or the length of the variable name was negative.

Programmer Response: Ensure that the variable name and length are specified correctly
on the DLL Query Variable request.

System Action: The request is ignored.

Symbolic Feedback Code: CEE3FQ

334 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3579S N CEE3583S

CEE3579S Attempted to free DLL dll-name while running C++ destructors.

Explanation: The application is attempting to free DLL dll-name while running C++
destructors.

Programmer Response: Make sure that you are not freeing this DLL from your C++
destructors.

System Action: The feedback code is returned to the caller.

Symbolic Feedback Code: CEE3FR

| CEE3580S External variable variable-name was not found in DLL dll-name.

| Explanation: An attempt was made to reference an external variable, but variable-name is
| not supported as an exported variable from DLL dll-name.

| Programmer Response: Verify that the side deck representing the DLL is correct. Since
| the DLL does not export this variable, it should not be present in the side deck. Contact the
| supplier of the DLL.

| System Action: The condition is signaled. If the condition is not handled, the default action
| is to terminate the enclave.

| Symbolic Feedback Code: CEE3FS

| CEE3581S An internal error was detected by LE during the load of DLL dll-name.

| Explanation: This is an internal error. LE could not complete DLL load processing because
| an unexpected condition was encountered in the format of either the DLL or the DLL applica-
| tion.

| Programmer Response: Contact your service representative.

| System Action: Unless the condition is handled, the default action is to terminate the
| enclave.

| Symbolic Feedback Code: CEE3FT

| CEE3582S An attempt was made to load a new module containing XPLINK-compiled
| functions and the XPLINK(ON) runtime option was not specified.

| Explanation: During LE initialization, XPLINK resources need to be allocated if any
| XPLINK-compiled functions are going to be called during the execution of the application. LE
| tries to detect this by inspecting the attributes of the initial program. If the initial program
| consists of NOXPLINK-compiled functions that may at some point call an XPLINK-compiled
| function, then the XPLINK(ON) runtime option must be used to indicate to LE initialization
| that XPLINK resources should be allocated.

| Programmer Response: Specify the XPLINK(ON) runtime option.

| System Action: If no feedback code was provided, the condition is signaled. If the condi-
| tion is not handled, the default action is to terminate the enclave.

| If a feedback code was provided, the feedback code is returned to the caller.

| Symbolic Feedback Code: CEE3FU

| CEE3583S The transition from standard LE linkage conventions to XPLINK linkage
| conventions could not be performed. The transition routine CEEVROND
| could not locate the information required to perform the transition or the
| information was not valid.

| Explanation: CEEVROND gains control before the routine actually being called. It uses
| information from the PPA1 of the called routine to perform parameter list and return value
| mapping between the two linkage conventions. On input, it expects register 0 to be the
| address of a function descriptor for a routine with an LE conforming XPLINK entry point.

 Chapter 9. Language Environment Run-Time Messages 335

 CEE3584E N CEE3586S

| Programmer Response: Depending on the TERMTHDACT run-time option, a CEEDUMP
| may be available for additional diagnosis. Use the traceback information in the CEEDUMP to
| determine the two routines involved.

| System Action: Unless the condition is handled, the default action is to terminate the
| enclave.

| Symbolic Feedback Code: CEE3FV

| CEE3584E The transition from standard LE linkage conventions to XPLINK linkage
| conventions could not be performed. The transition routine CEEVROND
| could not determine the length of the parameter list being passed to the
| called routine.

| Explanation: CEEVROND gains control before the routine actually being called. It uses
| information from the PPA1 of the called routine to perform parameter list and return value
| mapping between the two linkage conventions. The PPA1 indicated that the called routine
| expects a variable length parameter list. The parameter list was not located within a stack
| frame where its length could not be approximated.

| Programmer Response: Depending on the TERMTHDACT run-time option, a CEEDUMP
| may be available for additional diagnosis. Use the traceback information in the CEEDUMP to
| determine the two routines involved.

| System Action: Unless the condition is handled, the default action is to terminate the
| enclave.

| Symbolic Feedback Code: CEE3G0

| CEE3585E The transition from XPLINK linkage conventions to LE standard linkage
| conventions could not be performed. The transition routine CEEVRONU
| could not locate the information required to perform the transition or the
| information was not valid.

| Explanation: CEEVRONU gains control before the routine actually being called. It uses
| information from the PPA1 of the called routine and from the return address of the calling
| routine to perform parameter list and return value mapping between the two linkage con-
| ventions. On input, it expects register 5 to be the address of a function descriptor for or the
| entry point of a NOXPLINK-compiled routine. This routine must have an LE conforming entry
| point.

| Programmer Response: Depending on the TERMTHDACT run-time option, a CEEDUMP
| may be available for additional diagnosis. Use the traceback information in the CEEDUMP to
| determine the two routines involved.

| System Action: Unless the condition is handled, the default action is to terminate the
| enclave.

| Symbolic Feedback Code: CEE3G1

| CEE3586S An attempt was made to resolve DLL references from a NORENT compiled
| program that was loaded into read only storage.

| Explanation: When a program makes an implicit reference to a DLL, that reference is
| resolved at run-time by LE. When the program is non-reentrant or naturally-reentrant (i.e.
| NORENT compiled), it doesn't have a writeable static area (WSA) so the reference resides
| within the executable program itself. This requires that the program be loaded into read-write
| storage, which is normally the case. However, if the program resides in LPA, or was link-
| edited with the RENT option, then it may get loaded into read-only storage.

| Note that NOXPLINK compiled programs that call C RTL functions have those calls resolved
| statically via stubs in the SCEELKED data set, and therefore programs that call just C RTL
| (and other non-DLL) functions and are compiled NOXPLINK would never see this message.

336 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3601I N CEE3604I

| XPLINK compiled programs have their C RTL references resolved dynamically through the C
| RTL side deck (CELHS003 in SCEELIB), and as such XPLINK compiled programs call the C
| RTL using DLL call mechanisms.

| Programmer Response: The traceback in the CEEDUMP will show the load of a program
| in process. Ensure that this program resides in read-write storage. This can be done by
| link-editing the program NORENT, or STEPLIBing to it in an unauthorized data set. Do not
| put the program into LPA.

| Optionally, the program can be compiled and link-edited with the RENT option to provide
| constructed reentrancy, and all writeable references will reside in WSA.

| System Action: Unless the condition is handled, the default action is to terminate the
| enclave.

| Symbolic Feedback Code: CEE3G2

CEE3601I The string 'string' was found where a delimiter was expected following a
quoted suboption for the run-time option option.

Explanation: A quoted suboption must be followed by either a comma, right parenthesis, or
space.

Programmer Response: Correct the run-time options string.

System Action: The characters following suboption up to the next comma, space, or
parenthesis are ignored.

Symbolic Feedback Code: CEE3GH

CEE3602I An end quote delimiter did not occur before the end of the run-time option
string.

Explanation: Quotes, either single or double, must be in pairs.

Programmer Response: Correct the run-time options string.

System Action: The end quote is assumed.

Symbolic Feedback Code: CEE3GI

CEE3603I The character 'character' is not a valid run-time option delimiter.

Explanation: Options must be separated by either a space or a comma.

Programmer Response: Correct the run-time options string.

System Action: character is ignored.

Symbolic Feedback Code: CEE3GJ

CEE3604I The character 'character' is not a valid suboption delimiter for run-time
options.

Explanation: Suboptions must be separated by a comma.

Programmer Response: Correct the run-time options string.

System Action: The separator is assumed to be a comma.

Symbolic Feedback Code: CEE3GK

 Chapter 9. Language Environment Run-Time Messages 337

 CEE3605I N CEE3610I

CEE3605I The string 'string' was found where a delimiter was expected following the
suboptions for the run-time option option.

Explanation: Suboptions that are enclosed within parentheses must be followed by either a
space or a comma.

Programmer Response: Correct the run-time options string.

System Action: The characters following the right parenthesis up to the next comma or
space are ignored.

Symbolic Feedback Code: CEE3GL

CEE3606I The string 'string' was too long and was ignored.

Explanation: The maximum string length for an option or suboption was exceeded.

Programmer Response: Correct the run-time options string.

System Action: string is ignored.

Symbolic Feedback Code: CEE3GM

CEE3607I The end of the suboption string did not contain a right parenthesis.

Explanation: A left parenthesis did not have a matching right parenthesis.

Programmer Response: Correct the run-time options string.

System Action: The right parenthesis is assumed.

Symbolic Feedback Code: CEE3GN

CEE3608I The following messages pertain to the invocation command run-time
options.

Explanation: The messages after this one up to the next message of this type with a dif-
ferent source, pertain to the invocation command.

Programmer Response: No programmer response is required.

System Action: No system action is performed.

Symbolic Feedback Code: CEE3GO

CEE3609I The run-time option option is not supported.

Explanation: option was an option from a previous release that was not supported or
mapped by Language Environment.

Programmer Response: Consult the appropriate migration guide for a list of options sup-
ported for the language. Correct the run-time options string.

System Action: option is ignored.

Symbolic Feedback Code: CEE3GP

CEE3610I The run-time option old-option was mapped to the run-time option le-option.

Explanation: old-option was an option from a previous release that was supported by Lan-
guage Environment for compatibility.

Programmer Response: Consult the appropriate migration guide for a list of options sup-
ported for the language. Change the run-time options string to use the le-option instead.

System Action: old-option is mapped to le-option.

Symbolic Feedback Code: CEE3GQ

338 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3611I N CEE3615I

| CEE3611I The run-time option option was an invalid run-time option or is not sup-
| ported in this release of Language Environment.

| Explanation: option was not a valid option. Either the option is not valid for this release of
| Language Environment, or was recognized by Language Environment for previous release
| language campatibility.

| Programmer Response: Consult OS/390 Language Environment Programming Reference
| or the appropriate migration guide for a list of options supported on the release of Language
| Environment being used. Change the run-time options string, or execute this application on a
| level of Language Environment that supports this option.

System Action: The option option is ignored.

Symbolic Feedback Code: CEE3GR

CEE3612I Too many suboptions were specified for the run-time option option.

Explanation: The number of suboptions specified for option exceeded that defined for the
option.

Programmer Response: A list of valid run-time options is provided in OS/390 Language
Environment Programming Reference. Correct the run-time options string.

System Action: The extra suboptions are ignored.

Symbolic Feedback Code: CEE3GS

CEE3613I The run-time option old-option appeared in the options string.

Explanation: old-option (SPIE, NOSPIE, STAE, or NOSTAE) was an option from a pre-
vious release that was supported by Language Environment for compatibility, but ignored if
TRAP was specified. See OS/390 Language Environment Programming Reference for the
interactions between TRAP and SPIE, NOSPIE, STAE, or NOSTAE.

Programmer Response: Change the run-time options string to use the TRAP option
instead of SPIE, NOSPIE, STAE, or NOSTAE.

System Action: old-option is ignored if TRAP is specified, otherwise it is mapped to TRAP.

Symbolic Feedback Code: CEE3GT

CEE3614I An invalid character occurred in the numeric string 'string' of the run-time
option option.

Explanation: string did not contain all decimal numeric characters.

Programmer Response: Correct the run-time options string to contain all numeric charac-
ters.

System Action: The string is ignored.

Symbolic Feedback Code: CEE3GU

CEE3615I The installation default for the run-time option option could not be over-
ridden.

Explanation: option was defined as non-overridable at installation time.

Programmer Response: Correct the run-time options to not specify this option.

System Action: The option is ignored.

Symbolic Feedback Code: CEE3GV

 Chapter 9. Language Environment Run-Time Messages 339

 CEE3616I N CEE3620I

| CEE3616I The string 'string' was not a valid or supported suboption of the run-time
| option option in this release.

| Explanation: string was not in the set of recognized values or not supported in this release
| of Language Environment.

| Programmer Response: Consult OS/390 Language Environment Programming Reference
| or the appropriate migration guide for a list of suboptions for option option supported on the
| release of Language Environment being used. Change the invalid suboption string for the
| run-time option option or execute this application on a level of Language Environment that
| supports this suboption. Remove the invalid suboption string from the run-time.

System Action: The suboption is ignored.

Symbolic Feedback Code: CEE3H0

CEE3617I The number number of the run-time option option exceeded the range of
-2147483648 to 2147483647.

Explanation: number exceeded the range of -2147483648 to 2147483647.

Programmer Response: Correct the run-time options string to be within the acceptable
range of -2147483647 to 2147483647.

System Action: The number is ignored.

Symbolic Feedback Code: CEE3H1

CEE3618I The run-time option option was not valid from the invocation command.

Explanation: option was not valid from the invocation command.

Programmer Response: Remove the option run-time option from the invocation command.

System Action: option is ignored.

Symbolic Feedback Code: CEE3H2

CEE3619I The value value was not a valid MSGQ number.

Explanation: value must be greater than zero.

Programmer Response: Correct the value in the run-time options string to be greater than
zero.

System Action: value is ignored.

Symbolic Feedback Code: CEE3H3

CEE3620I The following messages pertain to the assembler user exit run-time
options.

Explanation: The messages after this one up to the next message of this type with a dif-
ferent source pertain to the assembler user exit.

Programmer Response: No response is required.

System Action: No system action is performed.

Symbolic Feedback Code: CEE3H4

340 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3621I N CEE3626I

CEE3621I The run-time option option was not valid from the assembler user exit.

Explanation: option was not valid from the assembler user exit.

Programmer Response: Remove the option from the run-time options specified in the
assembler user exit.

System Action: option is ignored.

Symbolic Feedback Code: CEE3H5

CEE3622I The STORAGE option quoted suboption string 'string' was not one char-
acter long.

Explanation: The only acceptable length for STORAGE suboptions within quotes is one.

Programmer Response: Correct the STORAGE run-time option quoted suboption string to
be one character long.

System Action: The suboption is ignored.

Symbolic Feedback Code: CEE3H6

CEE3623I The UPSI option suboption string 'string' was not eight characters long.

Explanation: The only acceptable length for the UPSI suboption is eight.

Programmer Response: Correct the UPSI run-time option suboption string to be eight
characters long.

System Action: The suboption is ignored.

Symbolic Feedback Code: CEE3H7

CEE3624I One or more error messages pertaining to the run-time options included in
the invocation command were lost.

Explanation: The run-time options error table (ROET) overflowed.

Programmer Response: Correct the reported errors so the discarded errors fit into the
error table.

System Action: The errors that are detected after the table overflowed are discarded.

Symbolic Feedback Code: CEE3H8

CEE3625I One or more error messages pertaining to the run-time options returned by
the assembler user exit were lost.

Explanation: The run-time options error table (ROET) overflowed.

Programmer Response: Correct the reported errors so the discarded errors fit into the
error table.

System Action: The errors that are detected after the table overflowed are discarded.

Symbolic Feedback Code: CEE3H9

CEE3626I One or more error messages pertaining to the run-time options contained
within the programmer defaults were lost.

Explanation: The run-time options error table (ROET) overflowed.

Programmer Response: Correct the reported errors so the discarded errors fit into the
error table.

System Action: The errors that are detected after the table overflowed are discarded.

Symbolic Feedback Code: CEE3HA

 Chapter 9. Language Environment Run-Time Messages 341

 CEE3627I N CEE3631I

CEE3627I The following messages pertain to the programmer default run-time
options.

Explanation: The messages after this one up to the next message of this type with a dif-
ferent source, pertain to the programmer default options.

Programmer Response: No response is required.

System Action: No system action is performed.

Symbolic Feedback Code: CEE3HB

CEE3628I The run-time option option was not valid from the programmer defaults.

Explanation: option was not valid from the programmer defaults.

Programmer Response: Correct the run-time options string by removing the option run-
time option.

System Action: The option is ignored.

Symbolic Feedback Code: CEE3HC

CEE3629I The run-time option old-option was partially mapped to the run-time option
le-option.

Explanation: old-option was an old language option that was being supported by Language
Environment for compatibility. The user should use the Language Environment option le-
option instead.

Programmer Response: Change the run-time options string to use the Language Environ-
ment option instead.

System Action: old-option is partially mapped to its Language Environment equivalent.

Symbolic Feedback Code: CEE3HD

CEE3630I One or more settings of the run-time options STAE or SPIE were ignored.

Explanation: STAE, SPIE, NOSTAE, and NOSPIE (options from a previous release) were
ignored when the TRAP option was specified. See OS/390 Language Environment Program-
ming Reference for the interactions between TRAP and SPIE, NOSPIE, STAE, or NOSTAE.

Programmer Response: Remove the STAE, SPIE, NOSTAE, or NOSPIE run-time options
if the TRAP run-time option is specified.

System Action: STAE, SPIE, NOSTAE, or NOSPIE are ignored.

Symbolic Feedback Code: CEE3HE

CEE3631I One or more settings of the run-time options STAE or SPIE were mapped to
TRAP.

Explanation: STAE, SPIE, NOSTAE, and NOSPIE are options from a previous release that
are supported by Language Environment for compatibility. See OS/390 Language Environ-
ment Programming Reference for the interactions between TRAP and SPIE, NOSPIE, STAE,
or NOSTAE.

Programmer Response: Change the run-time options string to use the TRAP option
instead of SPIE, STAE, NOSPIE, or NOSTAE.

System Action: STAE, SPIE, NOSTAE, or NOSPIE are mapped to TRAP.

Symbolic Feedback Code: CEE3HF

342 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3632I N CEE3636I

CEE3632I POSIX(ON) run-time option specified and the OpenEdition feature is not
available on the underlying operating system.

Explanation: The POSIX(ON) option was specified but the OpenEdition feature was not
available on the underlying operating system.

Programmer Response: Check with your system programmer to ensure that OpenEdition
feature is available. Remove the POSIX(ON) run-time option if the OpenEdition feature is not
available.

System Action: POSIX(ON) is ignored.

Symbolic Feedback Code: CEE3HG

CEE3633W The total length of the combined ENVAR strings exceeded 250 characters.

Explanation: The total length of the combined ENVAR strings exceeded the maximum limit
of 250 characters.

Programmer Response: Reduce the total length of the ENVAR strings to less than the
250 character maximum.

System Action: The ENVAR string is ignored.

Symbolic Feedback Code: CEE3HH

CEE3634I The number number of the run-time option option exceeded the range of
-32768 to 32767.

Explanation: number exceeded the range of -32768 to 32767.

Programmer Response: Correct the run-time options string to be within the range of
-32768 to 32767.

System Action: The number is ignored.

Symbolic Feedback Code: CEE3HI

CEE3635I The string string was not a valid RECFM suboption specification for run-
time option MSGFILE.

Explanation: string for RECFM suboption must be one of the following: F, FA, FB, FBA,
FBS, FBSA, U, UA, V, VA, VB, or VBA.

Programmer Response: Specify a valid RECFM suboption string of F, FA, FB, FBA, FBS,
FBSA, U, UA, V, VA, VB, or VBA.

System Action: string is ignored.

Symbolic Feedback Code: CEE3HJ

CEE3636I The value value exceeded the maximum allowable LRECL or BLKSIZE of
32760 bytes.

Explanation: value cannot be greater than 32760.

Programmer Response: Correct the LRECL or BLKSIZE suboption value to be less than
or equal to 32760 bytes.

System Action: value is ignored.

Symbolic Feedback Code: CEE3HK

 Chapter 9. Language Environment Run-Time Messages 343

 CEE3637I N CEE3641I

CEE3637I The number number specified in the suboption suboption of the run-time
option option is not a valid hexadecimal number in the range 0 to
FFFFFFFF.

Explanation: An invalid hexadecimal numeral was specified or the range of the number
exceeds 0 to FFFFFFFF.

Programmer Response: Correct the run-time options string to be a valid hexadecimal
number in the range of 0 to FFFFFFFF.

System Action: The number is ignored.

Symbolic Feedback Code: CEE3HL

CEE3638I The table size of size, specified in the TRACE run-time option, exceeds the
maximum allowed value of 16777215.

Explanation: size exceeded the maximum allowed value of 16777215.

Programmer Response: Correct the TRACE run-time options to not exceed the maximum
of 16777215.

System Action: The size is ignored.

Symbolic Feedback Code: CEE3HM

CEE3639I The ID suboption suboption of the TRACE run-time option must consist of
the keyword 'ID' followed by a one or two digit number in the range 0 to
number

Explanation: The format of the ID suboption of the TRACE run-time option is
IDxx=nnnnnnnn where xx is a one or two digit decimal number with no blanks between it and
either the ID or the equal-sign.

Programmer Response: Correct the ID suboption of the TRACE run-time option to be the
correct format where xx is a one or two digit decimal number with no blanks between it and
either the ID or the equal-sign.

System Action: The suboption is ignored.

Symbolic Feedback Code: CEE3HN

CEE3640W Multithreading function is being used in your application but the
OpenEdition feature is not available on the underlying operating system.

Explanation: Multithreading function is being used in your application and that function is
not supported. The underlying operating system must have the OpenEdition feature installed
and active when you run this application.

Programmer Response: If your application uses multithreading ensure that the underlying
operating system has the OpenEdition option installed and that it is active when your appli-
cation is running.

System Action: Execution continues.

Symbolic Feedback Code: CEE3HO

CEE3641I The number of the run-time option option exceeded the range of 0 to
2147483647.

Explanation: number exceeded the range of 0 to 2147483647.

Programmer Response: Correct the run-time option string to be within the range of 0 to
2147483647.

System Action: The number is ignored.

Symbolic Feedback Code: CEE3HP

344 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3642I N CEE3646I

CEE3642I The cell pool size number of the run-time option option is not valid.

Explanation: number is either not a multiple of 8 or not in the range from 8 to 2048.

Programmer Response: Correct the run-time options string so that the number is in the
range from 8 to 2048.

System Action: The number is ignored.

Symbolic Feedback Code: CEE3HQ

CEE3643I The cell pool percentage number of the run-time option option exceeded the
range of 1 to 90.

Explanation: number exceeded the range of 1 to 90.

Programmer Response: Correct the run-time options string so that the number is in the
range from 1 to 90.

System Action: The number is ignored.

Symbolic Feedback Code: CEE3HR

CEE3644I TEST option negates PROFILE option setting.

Explanation: The TEST and PROFILE run-time options cannot be active at the same time.
If TEST and PROFILE ON are specified together, Language Environment will not load the
profiler tool.

Programmer Response: To specify a PROFILE option, ensure the NOTEST run-time
option is specified for your application or as your system default. The NOTEST option should
be first when specifying NOTEST and PROFILE together via a compiler directive or on appli-
cation invocation.

System Action: The PROFILE option is ignored.

Symbolic Feedback Code: CEE3HS

CEE3645I Profiler not loaded; module CEEEVPRF not accessible.

Explanation: The PROFILE ON run-time option has been specified but Language Environ-
ment has not loaded the profiler tool.

Programmer Response: Ensure that the profile module CEEEVPRF exists and is acces-
sible to Language Environment. When calling the profiler application, Language Environment
must be able to locate and access the CEEEVPRF module.

System Action: The PROFILE option is ignored.

Symbolic Feedback Code: CEE3HT

CEE3646I The following messages pertain to the region default run-time options.

Explanation: The messages after this one, and up to the next message of this type with a
different source, pertain to the region default options.

Programmer Response: No response is required.

System Action: No system action is performed.

Symbolic Feedback Code: CEE3HU

 Chapter 9. Language Environment Run-Time Messages 345

 CEE3647I N CEE3702S

CEE3647I The region default for the run-time option option could not be overridden.

Explanation: option was defined as non-overridable at region initialization time.

Programmer Response: Correct the run-time options to not specify this option.

System Action: The option is ignored.

Symbolic Feedback Code: CEE3HV

CEE3648S POSIX(ON) run-time option in a nested enclave enclave-name is not sup-
ported.

Explanation: In Language Environment, a process can have only one enclave that is
running with POSIX(ON), and that enclave must be the first enclave. All nested enclaves
must be running with POSIX(OFF).

Programmer Response: Specify the POSIX(ON) run-time option for only the first enclave.
Make sure all nested enclaves specify POSIX(OFF).

System Action: The application will be terminated.

Symbolic Feedback Code: CEE3I0

CEE3649W The parameter string returned from CEE3PRM exceeded the maximum
length of 80 bytes and was truncated.

Explanation: The user parameters exceed 80 characters. The first 80 bytes are returned
and the remainder of the user parameters are truncated.

Programmer Response: Reduce the user parameter string to less than 80 bytes.

System Action: The user parameter string is truncated to 80 bytes. The truncated value is
returned to the caller in the character string parameter.

Symbolic Feedback Code: CEE3I1

CEE3700I The storage and options report heading replaced a previous heading.

Explanation: The specified report heading has replaced a heading set by an earlier call to
CEERPTH.

Programmer Response: None required.

System Action: The report heading is replaced by the new heading.

Symbolic Feedback Code: CEE3JK

CEE3701W Heap damage found by HEAPCHK run-time option.

Explanation: This is a title message for the heap check section of the message file.

Programmer Response: View the messages following this one to see where damage was
found.

System Action: No system action is performed.

Symbolic Feedback Code: CEE3JL

CEE3702S Program terminating due to heap damage.

Explanation: This is the last message in the heap check section of the message file.

Programmer Response: The message file will contain the address, expected and actual
data for each damaged area found.

System Action: The application is terminated.

Symbolic Feedback Code: CEE3JM

346 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3703I N CEE3707I

CEE3703I In controlblock Control Block, the fieldname is damaged.

Explanation: A Language Environment control block controlblock has damage in the
fieldname area.

Programmer Response: The message following this one in the message file will identify
the address of the damage and the expected data. If you did not use the HEAPCHK run-time
option, re-run the application with HEAPCHK(ON) to help locate the cause of the problem. If
you used the HEAPCHK run-time option and are unable to locate the cause of the problem,
contact your service representative.

System Action: No system action is performed.

Symbolic Feedback Code: CEE3JN

CEE3704I Expected data at address address:data.

Explanation: Provides the address address and expected data data when heap damage is
found.

Programmer Response: The data area following this message provides the actual data
found at the damaged location.

System Action: No system action is performed.

Symbolic Feedback Code: CEE3JO

CEE3705I Pointer at address should point to a valid controlblock.

Explanation: The pointer at location address should point to a Language Environment
control block with a controlblock eye catcher.

Programmer Response: The data area following this message provides the actual data
found at the damaged location.

System Action: No system action is performed.

Symbolic Feedback Code: CEE3JP

CEE3706I The contents of the free tree node at address1 in the heap segment begin-
ning at address2 do not match the STORAGE run-time option
heap_free_value.

Explanation: The contents of storage at address1 should match the heap_free_value spec-
ified with the STORAGE run-time option. The first 16 bytes at address1 provide header infor-
mation and are not expected to match the heap_free_value.

Programmer Response: The data area following this message provides the actual data
found at the damaged location.

System Action: No system action is performed.

Symbolic Feedback Code: CEE3JQ

CEE3707I branch pointer is bad in the free tree at address1 in the heap segment begin-
ning at address2.

Explanation: The pointer to the branch branch of the free tree node at address address1
does not point to another free tree node.

Programmer Response: The data area following this message provides the actual data
found at the damaged location.

System Action: No system action is performed.

Symbolic Feedback Code: CEE3JR

 Chapter 9. Language Environment Run-Time Messages 347

 CEE3708I N CEE3728S

CEE3708I branch length is bad in the free tree at address1 in the heap segment begin-
ning at address2.

Explanation: The length of the branch branch of the free tree node at address address1 is
damaged.

Programmer Response: The data area following this message provides the actual data
found at the damaged location.

System Action: No system action is performed.

Symbolic Feedback Code: CEE3JS

CEE3709I Either the branch pointer or length is damaged in the free tree at address1 in
the heap segment beginning at address2.

Explanation: The pointer to the branch branch of the free tree node at address address1
plus it's length does not match a heap storage element.

Programmer Response: The data area following this message provides the actual data
found at the damaged location.

System Action: No system action is performed.

Symbolic Feedback Code: CEE3JT

CEE3710I Heap element at address is damaged; expected data is word1:word2.

Explanation: The header of the heap storage element at address does not match the
expected data word1 and word2.

Programmer Response: The data area following this message provides the actual data
found at the damaged location.

System Action: No system action is performed.

Symbolic Feedback Code: CEE3JU

CEE3711I Processing of the HEAPCHK run-time option has been terminated due to a
previous error. Heaps are no longer being checked for damage.

Explanation: A message preceding this one in the message file will provide the actual error
which caused the HEAPCHK processing to be terminated.

Programmer Response: Locate the message that describes the actual error and take
appropriate action to correct the problem. If you are unable to locate the cause of the
problem, contact your service representative.

System Action: No system action is performed.

Symbolic Feedback Code: CEE3JV

| CEE3728S The use of a function, which is not supported by this release of Language
| Environment was detected

| Explanation: The application has exploited a new function not available on this release of
| Language Environment.

| Programmer Response: Remove the usage of the unsupported function from the applica-
| tion or execute this application on a release of Language Environment that supports this
| function. Depending on the TERMTHDACT run-time option, a CEEDUMP may be available
| for additional diagnosis. One can use the traceback information in the CEEDUMP to locate
| the specific Language Environment function used, that caused this message.

| System Action: Unless the condition is handled, the default action is to terminate the
| enclave.

| Symbolic Feedback Code: CEE3KG

348 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE3800S N CEE3821I

CEE3800S The address passed to the stack segment routine was not within any Lan-
guage Environment stack segment.

Explanation: The address passed to the stack segment routine was not within any cur-
rently allocated Language Environment stack segment.

Programmer Response: Contact your service representative. This is an internal error.

System Action: The bounds, segment type, and chain are undefined.

Symbolic Feedback Code: CEE3MO

CEE3817E The member event handler did not return a useable function pointer.

Explanation: The member language which compiled the input load module either does not
support the CEEPGFD CWI, or encountered an unrecoverable error.

Programmer Response: Ensure that the input load module is compiled from a language
which supports the CEEPGFD CWI.

System Action: CEEPGFD returns an unuseable function pointer.

Symbolic Feedback Code: CEE3N9

CEE3818E The member event handler encountered an error.

Explanation: The member language which compiled the input load module either does not
support the CEEPRFD CWI, or encountered an unrecoverable error.

Programmer Response: Ensure that the input load module is compiled from a language
which supports the CEEPRFD CWI, and that the function pointer is a valid pointer obtained
from the CEEPGFD CWI.

System Action: No function pointer is released.

Symbolic Feedback Code: CEE3NA

CEE3819I An invalid string string was found in the run-time option ENVAR.

Explanation: The string does not contain an equal sign. The input beginning at the string
will be ignored.

Programmer Response: ENVAR strings must be in the form of 'name=value'. The string
may be missing or have misplaced quotation marks. You can specify multople environment
variables, separating the name=value pairs with commas. Quotation marks are required
when specifying multiple variables.

System Action: The invalid ENVAR string is ignored.

Symbolic Feedback Code: CEE3NB

| CEE3821I The run-time option old-option appeared in the options string and is ignored
| when the THREADSTACK option is specified.

| Explanation: old-option (NONIPTSTACK or NONONIPSTACK) is an option from a previous
| release that is supported by Language Environment for compatibility, but ignored if
| THREADSTACK is specified.

| Programmer Response: Change the run-time options string to use the new option
| THREADSTACK instead of NONIPTSTACK or NONONIPTSTACK.

| System Action: old-option is ignored if THREADSTACK is specified.

| Symbolic Feedback Code: CEE3ND

 Chapter 9. Language Environment Run-Time Messages 349

 CEE3825I N CEE4001S

| CEE3825I The run-time option NONONIPTSTACK or NONIPTSTACK appeared in the
| options string. NONONIPTSTACK or NONIPTSTACK were mapped to
| THREADSTACK.

| Explanation: NONIPTSTACK and NONONIPSTACK are options from a previous realease
| that are supported by Language Environment for compatibility.

| Programmer Response: Change the run-time options string to use the THREADSTACK
| option instead of NONONIPTSTACK or NONIPTSTACK.

| System Action: NONONIPTSTACK or NONIPTSTACK is mapped to THREADSTACK.

| Symbolic Feedback Code: CEE3NH

CEE3900S The function code passed to CEE3USR was not 1 or 2.

Explanation: The function_code specified in a CEE3USR call was invalid

Programmer Response: Invoke CEE3USR with function_code 1 (for SET) or 2 (for
QUERY).

System Action: Neither SET nor QUERY is performed.

Symbolic Feedback Code: CEE3PS

CEE3901S The field number passed to CEE3USR was not 1 or 2.

Explanation: The field number specified in a CEE3USR call was invalid.

Programmer Response: Invoke CEE3USR with field_number 1 or 2.

System Action: Neither SET nor QUERY is performed.

Symbolic Feedback Code: CEE3PT

CEE3nnnS A Writeable Static Area (WSA) associated with the entry point was not
found.

Explanation: The CEEPFWSA service was invoked and Language Environment was not
able to find an executable module containing the specified entry point. A search is made of
the executable module containing main (if present), any fetched, dynamically-called,
PIPI-loaded modules, CEEFETCHed modules, and any loaded DLLs.

Programmer Response: Verify that the entry point point passed to CEEPFWSA is a valid
C/370 or LE style entry point. Contact your service representative.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE3EB

CEE4001S General Failure: Service could not be completed.

Explanation: An error was encountered attempting to complete a C/370 locale function.

Programmer Response: Contact your service representative.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE3T1

350 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE4015S N CEE5101C

CEE4015S Input Error: The number of characters to be transformed must be greater
than zero.

Explanation: An error was encountered attempting to complete a C/370 locale function.
The CEESTXF callable service was called with a number parameter that was non-positive.

Programmer Response: Make sure the parameter is positive.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE3TF

CEE4086S Input Error: The number of characters to be formatted must be greater than
zero.

Explanation: An error was encountered attempting to complete a C/370 locale function.
The CEEFMON or CEEFTDS callable service was called with a maxsize parameter that was
non-positive.

Programmer Response: Make sure the parameter is positive.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE3VM

CEE5001S POSIX function was not available. POSIX(ON) run-time option must be in
effect and OpenEdition system services started.

Explanation: The requested POSIX service failed because the POSIX(ON) run-time option
was not in effect and/or OpenEdition system services were not started.

Programmer Response: Specify the POSIX(ON) run-time option and/or contact your
system programmer to start the OpenEdition system services.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE4S9

CEE5002S POSIX function was not available. OpenEdition system services were not
started.

Explanation: The requested POSIX service failed because the OpenEdition system ser-
vices were not started.

Programmer Response: Contact your system programmer to start the OpenEdition system
services.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE4SA

CEE5101C During initialization, the OpenEdition callable service BPX1MSS failed. The
system return code was return_code; the reason code was reason_code. The
application will be terminated.

Explanation: The OpenEdition callable service BPX1MSS failed with return code
return_code and reason code reason_code because the id was not registered with
OpenEdition. The return_code is a decimal number and the reason_code is hexadecimal.

Programmer Response: Contact your system administrator to have the id registered with
OpenEdition to use the OpenEdition services. See OS/390 UNIX System Services
Programming: Assembler Callable Services Reference for the appropriate action to take for
this return code and reason code. Consult with your OpenEdition system support personnel
if necessary.

System Action: The application is terminated.

 Chapter 9. Language Environment Run-Time Messages 351

 CEE5102E N CEE5106S

Symbolic Feedback Code: CEE4VD

CEE5102E A request to dump process and enclave information could not be guaran-
teed to be consistent due to system constraints.

Explanation: A call to dump services was made in a multithread environment, but the
QUIESCE_FREEZE feature of the callable service BPX1PTQ was not available on the
release that was running.

Programmer Response: Check that the level of OpenEdition you are running supports the
QUIESCE_FREEZE feature of the OpenEdition callable service BPX1PTQ.
QUIESCE_FREEZE is an OpenEdition Release 2 feature.

System Action: A dump is taken with unpredictable results.

Symbolic Feedback Code: CEE4VE

CEE5103W The dump service was busy.

Explanation: A call to dump services was made in a multithread environment while another
thread had requested that all threads be frozen.

Programmer Response: To dump your active thread, put the call to the dump service in a
loop that iterates until the dump is successful. However, dump information for your thread
might already be in the dump report due to another thread requesting a dump of all threads
in the process.

System Action: No dump is taken. The thread is not terminated.

Symbolic Feedback Code: CEE4VF

CEE5104S The callable service BPX1PTQ failed. The system return code was
return_code, the reason code was reason_code.

Explanation: The callable service, BPX1PTQ, is called by LE/370 to freeze and unfreeze
threads. If this service fails, LE/370 will return the return_code and reason_code.

Programmer Response: Look up the return code and reason code in OS/390 UNIX
System Services Programming: Assembler Callable Services Reference and take the appro-
priate action. It is possible that the service failed due to the fact that another thread had
already given a freeze request. Consult with your system support personnel if necessary.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE4VG

CEE5105S A call was made to callable_service_name without the thread being frozen.

Explanation: A call was made to the CWI callable_service_name with a caaptr parameter
which pointed to a CAA pointer of a thread that was not frozen.

Programmer Response: Consult with your system support personnel.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE4VH

CEE5106S A call was made to callable_service_name with an invalid caaptr parameter.

Explanation: A call was made to the CWI callable_service_name with a caaptr parameter
which didn't point to a valid CAA.

Programmer Response: Consult with your system support personnel.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE4VI

352 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE5151S N CEE5155S

CEE5151S The POSIX fork() function could not operate on the Language Environment
member ID number member_id.

Explanation: The Language Environment member cannot be the object of a fork() or
vfork() function.

Programmer Response: Make sure that the member can be the object of a fork() or a
vfork() function before issuing the function.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE50V

CEE5152S The callable service BPX1FRK for the fork function was unsuccessful. The
system return code was return_code, the reason code was reason_code.

Explanation: The callable service BPX1FRK for the fork() or vfork() function failed. The
system return code and reason code were returned. The return_code and reason_code fields
are decimal numbers.

Programmer Response: See OS/390 UNIX System Services Programming: Assembler
Callable Services Reference for the appropriate action to take for this return code and
reason code. Consult with your system support personnel if necessary.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE510

CEE5154S The requested fork () service failed because it was invoked from a multi-
thread environment.

Explanation: The fork() and exec() services can be invoked only from a single-thread
environment.

Programmer Response: Try the requested service in a single-thread environment.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE512

CEE5155S The callable service BPX1SPN for the spawn function was unsuccessful.
The system return code was return_code, the reason code was reason_code.

Explanation: The callable service BPX1SPN for the spawn() or spawnp() function failed.
The system return code and reason code were returned. The return_code and reason_code
fields are decimal numbers.

Programmer Response: See OS/390 UNIX System Services Programming: Assembler
Callable Services Reference for the appropriate action to take for this return code and
reason code. Consult with your system support personnel if necessary.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE513

 Chapter 9. Language Environment Run-Time Messages 353

 CEE5161S N CEE5177S

CEE5161S The callable service BPX1EXC for the exec() family function was unsuc-
cessful. The system return code was return_code, the reason code was
reason_code.

Explanation: The callable service BPX1EXC for the exec() family function failed. The
system return code and reason code were returned.

Programmer Response: See OS/390 UNIX System Services Programming: Assembler
Callable Services Reference for the appropriate action to take for this return code and
reason code. Consult with your system support personnel if necessary.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE519

CEE5162S The environment variable, _CEE_RUNOPTS, was too long.

Explanation: During exec() processing, Language Environment propagated run-time
options from the program issuing the exec() by concatenating all run-time options that were
specified on invocation of this program with those specified in the environment variable
_CEE_RUNOPTS. The size of the work area used to perform this concatenation was insuffi-
cient.

Programmer Response: Verify that the value of the _CEE_RUNOPTS environment vari-
able does not contain superfluous blanks or invalid run-time options.

System Action: exec() family function failed.

Symbolic Feedback Code: CEE51A

CEE5176S There was insufficient storage to process an environment variable.

Explanation: The environment variable processing service CEEBENV was called to get,
set, or clear environment variable(s). However, there was insufficient system storage avail-
able to do so.

Programmer Response: Additional system storage is required before more environment
variables can be processed. Either free some heap storage or rerun the application with a
larger region size.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE51O

CEE5177S A bad input character was detected for the environment variable name.

Explanation: The internal environment variable processing service CEEBENV was called to
get or set an environment variable. However, the name specified contained an invalid = char-
acter.

Programmer Response: Correct the environment variable name and retry.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE51P

354 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE5178S N CEE5202S

CEE5178S The environment variable anchor or array contained an invalid address.

Explanation: The internal environment variable processing service CEEBENV was called to
get, set, or clear environment variable(s). However, it encountered an invalid anchor or array
address.

Programmer Response: If CCenviron is used to set or clear an environment variable,
make sure that the address is correct.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE51Q

CEE5179S A parameter to the internal environment variable processing routine con-
tained an invalid value.

Explanation: The internal environment variable processing service CEEBENV was called to
get or set an environment variable. However, one of the parameters specified contained an
invalid value. For instance, the name length or value length was negative, or the function
code was invalid.

Programmer Response: Correct the parameter and retry.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE51R

CEE5180I The specified environment variable name already exists.

Explanation: An attempt was made to set an environment variable whose name already
exists, but the 'overwrite' option was not set.

Programmer Response: If you want to modify the variable, specify the 'overwrite' option.

System Action: The operation returns a qualified success. The original variable is not mod-
ified.

Symbolic Feedback Code: CEE51S

CEE5201S The signal SIGFPE was received.

Explanation: A signal indicating an erroneous arithmetic operation was raised.

Programmer Response: None.

System Action: If the signal is unhandled, the default action is to terminate the POSIX
process and produce a traceback or dump, depending on how the TERMTHDACT run-time
option is set. The return code is set to 3000 and the signal number for the process termi-
nation is set to 8.

Symbolic Feedback Code: CEE52H

CEE5202S The signal SIGILL was received.

Explanation: A signal indicating an invalid hardware instruction was raised.

Programmer Response: None.

System Action: If the signal is unhandled, the default action is to terminate the POSIX
process and produce a traceback or dump, depending on how the TERMTHDACT run-time
option is set. The return code is set to 3000 and the signal number for the process termi-
nation is set to 4.

Symbolic Feedback Code: CEE52I

 Chapter 9. Language Environment Run-Time Messages 355

 CEE5203S N CEE5207E

CEE5203S The signal SIGSEGV was received.

Explanation: A signal indicating an invalid memory reference was raised.

Programmer Response: None.

System Action: If the signal is unhandled, the default action is to terminate the POSIX
process and produce a traceback or dump, depending on how the TERMTHDACT run-time
option is set. The return code is set to 3000 and the signal number for the process termi-
nation is set to 11.

Symbolic Feedback Code: CEE52J

CEE5204S The signal SIGABND was received.

Explanation: A signal indicating a user or system initiated abend was raised.

Programmer Response: None.

System Action: If the signal is unhandled, the default action is to terminate the POSIX
process and produce a traceback or dump, depending on how the TERMTHDACT run-time
option is set. The return code is set to 3000 and the signal number for the process termi-
nation is set to 18.

Symbolic Feedback Code: CEE52K

CEE5205S The signal SIGTERM was received.

Explanation: A signal indicating a termination signal was raised.

Programmer Response: None.

System Action: If the signal is unhandled, the default action is to terminate the POSIX
process and produce a traceback or dump, depending on how the TERMTHDACT run-time
option is set. The return code is set to 3000 and the signal number for the process termi-
nation is set to 15.

Symbolic Feedback Code: CEE52L

CEE5206S The signal SIGINT was received.

Explanation: A signal indicating an interruptive attention signal was raised.

Programmer Response: None.

System Action: If the signal is unhandled, the default action is to terminate the POSIX
process and produce a traceback or dump, depending on how the TERMTHDACT run-time
option is set. The return code is set to 3000 and the signal number for the process termi-
nation is set to 2.

Symbolic Feedback Code: CEE52M

CEE5207E The signal SIGABRT was received.

Explanation: A signal indicating an abnormal termination signal was raised.

Programmer Response: None.

System Action: If the signal is unhandled, the default action is to terminate the POSIX
process and produce a traceback or dump, depending on how the TERMTHDACT run-time
option is set. The return code is set to 3000 and the signal number for the process termi-
nation is set to 3.

Symbolic Feedback Code: CEE52N

356 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE5208S N CEE5212C

CEE5208S The signal SIGUSR1 was received.

Explanation: A signal indicating an application-defined signal 1 was raised.

Programmer Response: None.

System Action: If the signal is unhandled, the default action is to terminate the POSIX
process and produce a traceback or dump, depending on how the TERMTHDACT run-time
option is set. The return code is set to 3000 and the signal number for the process termi-
nation is set to 16.

Symbolic Feedback Code: CEE52O

CEE5209S The signal SIGUSR2 was received.

Explanation: A signal indicating an application-defined signal 2 was raised.

Programmer Response: None.

System Action: If the signal is unhandled, the default action is to terminate the POSIX
process and produce a traceback or dump, depending on how the TERMTHDACT run-time
option is set. The return code is set to 3000 and the signal number for the process termi-
nation is set to 17.

Symbolic Feedback Code: CEE52P

CEE5210S The signal SIGHUP was received.

Explanation: A signal indicating a hangup on the controlling terminal or the termination of
the controlling process was raised.

Programmer Response: None.

System Action: If the signal is unhandled, the default action is to terminate the POSIX
process and produce a traceback or dump, depending on how the TERMTHDACT run-time
option is set. The return code is set to 3000 and the signal number for the process termi-
nation is set to 1.

Symbolic Feedback Code: CEE52Q

CEE5211S The signal SIGSTOP was received.

Explanation: A signal indicating a 'STOP' was raised. This signal cannot be caught or
ignored.

Programmer Response: None.

System Action: The process is stopped.

Symbolic Feedback Code: CEE52R

CEE5212C The signal SIGKILL was received.

Explanation: A signal indicating a termination signal was raised. This signal cannot be
caught or ignored.

Programmer Response: None.

System Action: The system abnormally terminates the process.

Symbolic Feedback Code: CEE52S

 Chapter 9. Language Environment Run-Time Messages 357

 CEE5213S N CEE5218S

CEE5213S The signal SIGPIPE was received.

Explanation: A signal indicating a write to a pipe with no readers was raised.

Programmer Response: None.

System Action: If the signal is unhandled, the default action is to terminate the POSIX
process and produce a traceback or dump, depending on how the TERMTHDACT run-time
option is set. The return code is set to 3000 and the signal number for the process termi-
nation is set to 13.

Symbolic Feedback Code: CEE52T

CEE5214S The signal SIGALRM was received.

Explanation: A signal was raised, indicating a timeout condition such as initiated by the
alarm() function.

Programmer Response: None.

System Action: If the signal is unhandled, the default action is to terminate the POSIX
process and produce a traceback or dump, depending on how the TERMTHDACT run-time
option is set. The return code is set to 3000 and the signal number for the process termi-
nation is set to 14.

Symbolic Feedback Code: CEE52U

CEE5215W The signal SIGCONT was received.

Explanation: A signal indicating a 'continue if stopped' signal was raised.

Programmer Response: None.

System Action: If the default action is SIG_DFL, all stopped threads in the process are
continued.

Symbolic Feedback Code: CEE52V

CEE5216W The signal SIGCHLD was received.

Explanation: A signal indicating a terminated child process or stopped condition was
raised.

Programmer Response: None.

System Action: No system action is taken.

Symbolic Feedback Code: CEE530

CEE5217S The signal SIGTTIN was received.

Explanation: A signal was raised, indicating a read from a control terminal attempted by a
language run-time component of a background process group condition.

Programmer Response: None.

System Action: If the default action is SIG_DFL, all threads in the process are stopped.

Symbolic Feedback Code: CEE531

CEE5218S The signal SIGTTOU was received.

Explanation: A signal was raised, indicating a write to a control terminal attempted by a
language run-time component of a background process group condition.

Programmer Response: None.

System Action: If the default action is SIG_DFL, all threads in the process are stopped.

Symbolic Feedback Code: CEE532

358 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE5219W N CEE5224W

CEE5219W The signal SIGIO was received.

Explanation: A signal indicating the completion of an input or output operation was raised.

Programmer Response: None.

System Action: No system action is taken.

Symbolic Feedback Code: CEE533

CEE5220S The signal SIGQUIT was received.

Explanation: A signal indicating an interruptive terminal signal requesting the process ter-
mination was raised.

Programmer Response: None.

System Action: If the signal is unhandled, the default action is to terminate the enclave
with a return code of 3000 and the signal number for the process termination set to 24.

Symbolic Feedback Code: CEE534

CEE5221S The signal SIGTSTP was received.

Explanation: A signal was raised, indicating an interruptive stop signal by a language run-
time component of a background process group condition.

Programmer Response: None.

System Action: If the default action is SIG_DFL, all threads in the process are stopped.

Symbolic Feedback Code: CEE535

CEE5222S The signal SIGTRAP was received.

Explanation: A signal indicating a trap condition was raised.

Programmer Response: None.

System Action: If the signal is unhandled, the default action is to terminate the enclave
with a return code of 3000 and the signal number for the process termination set to 26.

Symbolic Feedback Code: CEE536

CEE5223W The signal SIGIOERR was received.

Explanation: A signal indicating an I/O error was raised.

Programmer Response: See OS/390 C/C++ Programming Guide for information on
SIGIOERR and how to respond to this error.

System Action: No system action is taken.

Symbolic Feedback Code: CEE537

CEE5224W The signal SIGDCE was received.

Explanation: The SIGDCE signal was generated as a result of a MODIFY DCEKERN,DEBUG
pid= command. It communicates to a DCE-enabled process a desire to enable DCE run-time
debug messages. If the target process is not a DCE process, the target process does not
know how to handle SIGDCE.

Programmer Response: None.

System Action: No system action taken.

Symbolic Feedback Code: CEE538

 Chapter 9. Language Environment Run-Time Messages 359

 CEE5225S N CEE5230S

CEE5225S The signal SIGPOLL was received.

Explanation: This signal indicates that a pollable event has occurred. If the signal is
unhandled, the following default action will be applied: The program (enclave) is terminated
and a traceback or dump is issued depending on the TERMTHDACT run-time option. The
return code is set to 3000 and the signal number for the process termination is set to 5.

Programmer Response: None.

System Action: No system action taken.

Symbolic Feedback Code: CEE539

CEE5226W The signal SIGURG was received.

Explanation: This signal indicates that high bandwidth data is available at a socket.

Programmer Response: None.

System Action: No system action taken.

Symbolic Feedback Code: CEE53A

CEE5227S The signal SIGBUS was received.

Explanation: This signal indicates that a bus error has occurred. If the signal is unhandled,
the following default action will be applied: The program (enclave) is terminated and a
traceback or dump is issued depending on the TERMTHDACT run-time option. The return
code is set to 3000 and the signal number for the process termination is set to 10.

Programmer Response: None.

System Action: No system action taken.

Symbolic Feedback Code: CEE53B

CEE5228S The signal SIGSYS was received.

Explanation: This signal indicates that a bad system call was detected. If the signal is
unhandled, the following default action will be applied: The program (enclave) is terminated
and a traceback or dump is issued depending on the TERMTHDACT run-time option. The
return code is set to 3000 and the signal number for the process termination is set to 12.

Programmer Response: None.

System Action: No system action taken.

Symbolic Feedback Code: CEE53C

CEE5229W The signal SIGWINCH was received.

Explanation: This signal indicates that the window size has changed.

Programmer Response: None.

System Action: No system action taken.

Symbolic Feedback Code: CEE53D

CEE5230S The signal SIGXCPU was received.

Explanation: This signal indicates that the CPU time limit has been exceeded. If the signal
is unhandled, the following default action will be applied: The program (enclave) is termi-
nated and a traceback or dump is issued depending on the TERMTHDACT run-time option.
The return code is set to 3000 and the signal number for the process termination is set to
29.

Programmer Response: None.

System Action: No system action taken.

360 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE5231S N CEE5301S

Symbolic Feedback Code: CEE53E

CEE5231S The signal SIGXFSZ was received.

Explanation: This signal indicates that the file size limit has been exceeded. If the signal is
unhandled, the following default action will be applied: The program (enclave) is terminated
and a traceback or dump is issued depending on the TERMTHDACT run-time option. The
return code is set to 3000 and the signal number for the process termination is set to 30.

Programmer Response: None.

System Action: No system action taken.

Symbolic Feedback Code: CEE53F

CEE5232S The signal SIGVTALRM was received.

Explanation: This signal indicates that a virtual timer has expired. If the signal is unhan-
dled, the following default action will be applied: The program (enclave) is terminated and a
traceback or dump is issued depending on the TERMTHDACT run-time option. The return
code is set to 3000 and the signal number for the process termination is set to 31.

Programmer Response: None.

System Action: No system action taken.

Symbolic Feedback Code: CEE53G

CEE5233S The signal SIGPROF was received.

Explanation: This signal indicates that a profiling timer has expired. If the signal is unhan-
dled, the following default action will be applied: The program (enclave) is terminated and a
traceback or dump is issued depending on the TERMTHDACT run-time option. The return
code is set to 3000 and the signal number for the process termination is set to 32.

Programmer Response: None.

System Action: No system action is taken.

Symbolic Feedback Code: CEE53H

CEE5234I The signal SIGDUMP was received.

Explanation: A signal indicating a dump signal was raised. This signal cannot be caught or
ignored.

Programmer Response: None.

System Action: The system will obtain a user address space dump.

Symbolic Feedback Code: CEE53I

CEE5301S An invalid message number was received by the internal signal handling
routine.

Explanation: The message number specified in the condition token passed to CEEOKILL
was invalid. Only those message numbers that correspond to valid POSIX signals (5201
through 5224) are allowed.

Programmer Response: None.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE55L

 Chapter 9. Language Environment Run-Time Messages 361

 CEE5302S N CEE5403I

CEE5302S A signal could not be raised due to a system-detected error, with return
code error-code and reason code reason-code.

Explanation: The Language Environment library routine called the callable services
BPX1KIL (for kill or raise) or BPX1PTK (all others including pthread_kill and CEESGL) and
the call was not successful. The system return code and reason code were returned. The
error-code is a decimal number, and the reason-code is hexadecimal.

Programmer Response: See OS/390 UNIX System Services Programming: Assembler
Callable Services Reference for the appropriate action to take for this return code and
reason code. Consult with your system support personnel if necessary.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE55M

CEE5401S The function code func_code to CEEMPMSG was invalid.

Explanation: A call to CEEMPMSG, the message handler, had an invalid function code.

Programmer Response: Report the error to your system support personnel.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE58P

CEE5402I The callable service BPX1OPN, when invoked to open the message file, was
unsuccessful. The system return code was posix_rc, the reason code was
posix_rsn.

Explanation: The callable service BPX1OPN, when invoked to open the message file,
failed. The system return code and reason code were returned. The posix_rc and posix_rsn
fields are decimal numbers.

Programmer Response: See OS/390 UNIX System Services Programming: Assembler
Callable Services Reference for the appropriate action to take for this return code and
reason code. Consult with your system support personnel if necessary.

System Action: No system action is taken.

Symbolic Feedback Code: CEE58Q

CEE5403I The callable service BPX1WRT, when invoked to write to the message file,
was unsuccessful. The system return code was posix_rc; the reason code
was posix_rsn.

Explanation: The callable service BPX1WRT, when invoked to write to the message file,
failed. The system return code and reason code were returned. The posix_rc and posix_rsn
fields are decimal numbers.

Programmer Response: See OS/390 UNIX System Services Programming: Assembler
Callable Services Reference for the appropriate action to take for this return code and
reason code. Consult with your system support personnel if necessary.

System Action: No system action is taken.

Symbolic Feedback Code: CEE58R

362 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE5404I N CEE5528S

CEE5404I The callable service BPX1CLO, when invoked to close the message file,
was unsuccessful. The system return code was posix_rc; the reason code
was posix_rsn.

Explanation: The callable service BPX1CLO, when invoked to close the message file,
failed. The system return code and reason code were returned. The posix_rc and posix_rsn
fields are decimal numbers.

Programmer Response: See OS/390 UNIX System Services Programming: Assembler
Callable Services Reference for the appropriate action to take for this return code and
reason code. Consult with your system support personnel if necessary.

System Action: No system action is taken.

Symbolic Feedback Code: CEE58S

CEE5405I The callable service BPX1GCW, when invoked to determine the current
working directory, was unsuccessful. The system return code was posix_rc;
the reason code was posix_rsn.

Explanation: The callable service BPX1GCW, when invoked to determine the current
working directory, failed. The system return code and reason code were returned. The
posix_rc and posix_rsn fields are decimal numbers.

Programmer Response: See OS/390 UNIX System Services Programming: Assembler
Callable Services Reference for the appropriate action to take for this return code and
reason code.

System Action: No Language Environment dump taken.

Symbolic Feedback Code: CEE58T

CEE5526S There was not enough storage to create the new key.

Explanation: There was not enough storage to create the new key. Keys are allocated in
heap storage.

Programmer Response: Increase the storage allocation available to the execution of the
program by either freeing some heap storage or rerunning the application with a larger
region size.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5CM

CEE5527S The key namespace was exhausted.

Explanation: The maximum number of keys allowed have been created.

Programmer Response: Use the sysconf() function to determine the maximum number of
keys that can be created within an enclave. Do not exceed this limit.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5CN

CEE5528S Termination was in progress. Key creates were not allowed.

Explanation: Key creates (CEEOPKC) calls were not allowed during thread termination
after all destructor routines have been executed.

Programmer Response: None.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5CO

 Chapter 9. Language Environment Run-Time Messages 363

 CEE5529S N CEE5533S

CEE5529S There was no storage to bind value to the key.

Explanation: There was not enough storage available in the address space to acquire suf-
ficient heap storage to satisfy the CEEOPSS call.

Programmer Response: Either free some heap storage or rerun the application with a
larger region size.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5CP

CEE5530S The specified key ID was invalid.

Explanation: The key identifier passed on the call to internal services CEEOPSS or
CEEOPGS did not refer to a valid key.

Programmer Response: Before setting or getting the value associated with a key, the key
must be created using the internal CEEOPKC service.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5CQ

CEE5531S The key set was not allowed.

Explanation: Key set operation (CEEOPSS) calls were not allowed during thread termi-
nation after all destructor routines had been executed.

Programmer Response: None.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5CR

CEE5532S The key get was not allowed.

Explanation: Key gets (CEEOPGS) calls were not allowed during thread termination after
all destructor routines had been executed.

Programmer Response: None.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5CS

CEE5533S An invalid key pointer was passed in key create operation.

Explanation: The pointer to the storage location for which the newly created key was to be
placed was invalid.

Programmer Response: None.

System Action: The key create is not performed.

Symbolic Feedback Code: CEE5CT

364 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE5551S N CEE5602S

CEE5551S The array entry described by the slot parameter was already set.

Explanation: Conditional invocation of CEEOSETE internal service failed because the
array entry described by the slot parameter was already set. The slot parameter described
an array entry that was already in use. The entry can be set by using UNCONDITIONAL
form of this CWI.

Programmer Response: None.

System Action: The entry is not set.

Symbolic Feedback Code: CEE5DF

CEE5552S The array entry described by the slot parameter was invalid or was
reserved.

Explanation: Invocation of the CEESETE internal service failed because the array entry
described by the slot parameter was invalid or was reserved. The slot parameter described
an array entry that was unavailable for use. The value of slot was invalid.

Programmer Response: Choose a value for slot that is not reserved.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5DG

CEE5553S The callable service BPX1IPT (run a program on the IPT task) was unsuc-
cessful. The system return code was return_code; the reason code was
reason_code.

Explanation: The callable service BPX1IPT (run a program on the IPT task) failed. The
system return code and reason code were returned. The return_code and reason_code fields
are decimal numbers.

Programmer Response: See OS/390 UNIX System Services Programming: Assembler
Callable Services Reference for the appropriate action to take for this return code and
reason code. Consult with your system support personnel if necessary.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5DH

CEE5601S The attributes object parameter did not contain a valid initialized attributes
object (POSIX PTAT).

Explanation: Each routine for which the thread attributes object was a parameter checks
certain fields in that object to verify that they contain valid values. If any of the fields that
were checked by the routine contained an invalid value, this condition was raised.

Programmer Response: Modify the calling program to pass a valid parameter object.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5F1

CEE5602S The detachstate parameter did not contain a valid value.

Explanation: The detachstate parameter must be a fullword containing binary 0 for unde-
tached or 1 for detached.

Programmer Response: Modify the calling program to pass a valid parameter value.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5F2

 Chapter 9. Language Environment Run-Time Messages 365

 CEE5603S N CEE5606S

CEE5603S The threadweight parameter did not contain a valid value.

Explanation: The threadweight parameter must be a fullword containing binary 0 for heavy-
weight, or 1 for medium-weight.

Programmer Response: Modify the calling program to pass a valid parameter value.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5F3

CEE5604S A new thread could not be created due to a system-detected error, with
error code error-code and reason code reason-code.

Explanation: The Language Environment library routine called OpenEdition and failed. The
error code and reason code were returned. The error-code and reason-code fields are
decimal numbers.

Programmer Response: See OS/390 UNIX System Services Programming: Assembler
Callable Services Reference or OpenEdition for VM/ESA: Callable Services Reference for
the appropriate action to take for this error code and reason code. Consult with your system
support personnel if necessary.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5F4

CEE5605S A new thread could not be created due to an insufficient storage condition.

Explanation: Storage resource was insufficient for a new thread to be created.

Programmer Response: Use a larger region size or release some heap storage, and retry
the application.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5F5

CEE5606S The callable service BPX1PTJ failed due to an invalid thread ID on a join
request. The system return code was return_code; the reason code was
reason_code.

Explanation: The callable service BPX1PTJ was called by the Language Environment
internal join service CEEOPJ to wait for a thread to terminate. However, BPX1PTJ returned
without waiting because the ID of the target thread specified on the join request was invalid.
The return_code and reason_code fields are decimal numbers.

Programmer Response: See OS/390 UNIX System Services Programming: Assembler
Callable Services Reference or OpenEdition for VM/ESA: Callable Services Reference for
the appropriate action to take for this return code and reason code. Consult with your
system support personnel if necessary.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5F6

366 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE5607S N CEE5612S

CEE5607S The callable service BPX1PTJ failed due to an invalid thread ID on a join
request. The system return code was return_code; the reason code was
reason_code.

Explanation: The callable service BPX1PTJ was called by the Language Environment
internal join service CEEOPJ to wait for a thread to terminate. However, BPX1PTJ returned
without waiting because the ID of the target thread specified on the join request was the
same as the ID of the calling thread that would result in a deadlock condition. The
return_code and reason_code fields are decimal numbers.

Programmer Response: See OS/390 UNIX System Services Programming: Assembler
Callable Services Reference or OpenEdition for VM/ESA: Callable Services Reference for
the appropriate action to take for this return code and reason code. Consult with your
system support personnel if necessary.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5F7

CEE5608S The callable service BPX1PTJ failed during a thread join request. The
system return code was return_code; the reason code was reason_code.

Explanation: The callable service BPX1PTJ was called by the Language Environment
internal join service CEEOPJ to wait for a thread to terminate. However, BPX1PTJ returned
without waiting. The return_code and reason_code fields are decimal numbers.

Programmer Response: See OS/390 UNIX System Services Programming: Assembler
Callable Services Reference or OpenEdition for VM/ESA: Callable Services Reference for
the appropriate action to take for this return code and reason code. Consult with your
system support personnel if necessary.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5F8

CEE5609S The callable service BPX1PTJ failed during a thread join request. The
system return code was return_code; the reason code was reason_code.

Explanation: The callable service BPX1PTJ was called by the Language Environment
internal join service CEEOPJ to wait for a thread to terminate. However, BPX1PTJ returned
without waiting indicating the target thread was not in an undetached state and could not be
joined. The return_code and reason_code fields are decimal numbers.

Programmer Response: See OS/390 UNIX System Services Programming: Assembler
Callable Services Reference or OpenEdition for VM/ESA: Callable Services Reference for
the appropriate action to take for this return code and reason code. Consult with your
system support personnel if necessary.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5F9

CEE5612S The stacksize parameter did not contain a valid value.

Explanation: The stacksize parameter must be a fullword containing a binary number that
is greater than or equal to zero. If positive, it specifies the number of bytes to be used for the
stack. If 0, it specifies that 1/2 of all available storage should be used for the stack.

Programmer Response: Modify the calling program to pass a valid parameter value.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5FC

 Chapter 9. Language Environment Run-Time Messages 367

 CEE5613S N CEE5629S

CEE5613S The synctype parameter did not contain a valid value.

Explanation: The synctype parameter must be a fullword containing binary 0 for synchro-
nous.

Programmer Response: Modify the calling program to pass a valid parameter value.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5FD

CEE5626S There was insufficient storage for cleanup push operation.

Explanation: The internal service CEEOPCPU failed while trying to acquire heap storage
for the cleanup routine registration.

Programmer Response: Either free some heap storage or rerun the application with a
larger region size.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5FQ

CEE5627S Cleanup push was not allowed during thread termination.

Explanation: Cleanup routine push operations (CEEOPCPU) were not allowed during
thread termination after all cleanup routines have been executed.

Programmer Response: None.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5FR

CEE5628S The cleanup pop was not allowed during thread termination.

Explanation: Cleanup routine pop operations (CEEOPCPO) were not allowed during thread
termination after all cleanup routines have been executed.

Programmer Response: None.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5FS

CEE5629S The cleanup stack was empty.

Explanation: The internal service CEEOPCPO failed because there were no cleanup rou-
tines available. The cleanup stack was empty.

Programmer Response: None.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5FT

368 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE5651S N CEE5704C

CEE5651S The oncecontrol parameter did not contain a valid value.

Explanation: The oncecontrol parameter must be a fullword containing binary 0 for initial
value, or one of the other defined but not externalized values set by the pthread_once
routine.

Programmer Response: Modify the calling program to pass a valid parameter value.
oncecontrol should be initialized by the caller to PTHREAD_ONCE_INIT(0). After initializa-
tion, it should not be modified directly but only by calling the pthread_once routine. It should
not be tested directly by the caller, but only implicitly by calling the pthread_once routine.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5GJ

CEE5701S The mutex object was not initialized.

Explanation: The mutex-related service that was invoked requires the mutex object speci-
fied as a parameter be initialized.

Programmer Response: Use the internal service CEEOPMI to initialize the mutex object
before invoking the service that failed.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5I5

CEE5702S The mutex was already owned.

Explanation: A thread invoked the mutex lock internal service CEEOPML specifying a
nonrecursive mutex that had already been locked by the thread. Only a mutex that had been
given the attribute RECURSIVE can be locked multiple times by the same thread.

Programmer Response: None.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5I6

CEE5703S An addressing exception occurred referencing a mutex object or mutex
attribute object.

Explanation: The address of a mutex object or mutex attribute object passed as an param-
eter on a mutex related service call was invalid. An addressing exception program interrupt
occurred when the called service referenced this address.

Programmer Response: Specify the correct mutex object or mutex attribute object when
passing parameters to the mutex-related service call.

System Action: The application is terminated.

Symbolic Feedback Code: CEE5I7

CEE5704C An addressing exception occurred referencing system storage allocated for
mutexes.

Explanation: An addressing exception program interrupt occurred when a mutex-related
service referenced system storage allocated for mutexes.

Programmer Response: Make sure that the application has not written over system
storage prior to issuing the service call.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE5I8

 Chapter 9. Language Environment Run-Time Messages 369

 CEE5705S N CEE5709S

CEE5705S A mutex object has been changed since it was initialized.

Explanation: The mutex destroy internal service CEEOPMD detected that a mutex object
(specified as a parameter) had changed since it was initialized by the mutex initialization
internal service CEEOPMI. The mutex was destroyed, but internal service CEEOPMD did not
alter the storage associated with the mutex object. However, if internal service CEEOPMI
was invoked, the storage was altered.

Programmer Response: Make sure the application is not incorrectly reusing storage asso-
ciated with the mutex object after initializing it.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5I9

CEE5706S The mutex was not owned by thread.

Explanation: A thread called the mutex unlock internal service CEEOPMU to unlock the
mutex but the mutex was not owned by the thread. A thread acquired a mutex with the
mutex lock internal service CEEOPML or mutex trylock internal service CEEOPMT and was
said to own the lock.

Programmer Response: Structure the application so that the thread that locks the mutex
also unlocks the mutex.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5IA

CEE5707I The mutex was busy.

Explanation: The mutex trylock internal service CEEOPMT was invoked to lock a
nonrecursive mutex that was already locked.

Programmer Response: None.

System Action: No system action is taken.

Symbolic Feedback Code: CEE5IB

CEE5708S The mutex object was already initialized.

Explanation: The mutex initialization internal service CEEOPMI was called to initialize a
mutex object that had already been initialized.

Programmer Response: Call the mutex destroy internal service CEEOPMD to destroy an
initialized mutex object before initializing it again.

System Action: The request is rejected.

Symbolic Feedback Code: CEE5IC

CEE5709S The mutex attribute object was not initialized.

Explanation: The mutex attribute-related services required that the mutex attribute object
specified as an parameter be initialized.

Programmer Response: Use internal service CEEOPXI to initialize the mutex attribute
object before invoking the service that failed.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5ID

370 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE5710S N CEE5714S

CEE5710S There was insufficient storage to initialize a mutex object.

Explanation: The mutex initialization internal service CEEOPMI was called to initialize a
mutex object. However, there was insufficient system storage available.

Programmer Response: Get additional system storage before initializing more mutex
objects.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5IE

CEE5711S A mutex attribute object has been changed since it was initialized.

Explanation: The mutex attribute destroy internal service CEEOPXD detected that a mutex
attribute object specified as a parameter was changed since it was initialized by the mutex
attribute initialization internal service CEEOPXI. The mutex attribute object was destroyed,
but internal service CEEOPXD did not alter the storage associated with the mutex attribute
object. However, if internal service CEEOPXI was invoked, the storage was altered.

Programmer Response: Make sure the application is not incorrectly reusing storage asso-
ciated with the mutex attribute object after initializing it.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5IF

CEE5712S The mutex attribute object was already initialized.

Explanation: The mutex attribute initialization internal service CEEOPXI was called to ini-
tialize a mutex attribute object that had already been initialized.

Programmer Response: Call the mutex attribute destroy internal service CEEOPXD to
destroy an initialized mutex attribute object before initialized it again.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5IG

CEE5713S There was insufficient storage to initialize a mutex attribute object.

Explanation: The mutex attribute initialization internal service CEEOPXI was called to ini-
tialize a mutex attribute object. However, there was insufficient system storage available.

Programmer Response: Acquire additional system storage before initializing more mutex
attribute objects.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5IH

CEE5714S The mutex was busy.

Explanation: The mutex destroy internal service CEEOPMD was invoked to destroy a
mutex that was in use. A mutex that was locked or associated with a condition wait or timed
wait cannot be destroyed.

Programmer Response: Verify that your applications owns the mutex before calling
CEEOPMD to destroy the mutex.

System Action: The request is rejected.

Symbolic Feedback Code: CEE5II

 Chapter 9. Language Environment Run-Time Messages 371

 CEE5715S N CEE5719S

CEE5715S An addressing exception occurred while referencing attribute kind storage.

Explanation: The address where to return attribute kind that was passed as an parameter
on a getkind_np service request, was invalid. An addressing exception occurred when the
getkind_np service CEEOPX attempted to store the attribute kind value at this address.

Programmer Response: Specify the correct attribute kind address parameter on the
getkind_np service call.

System Action: The application is terminated.

Symbolic Feedback Code: CEE5IJ

CEE5716C System mutex storage could not be freed.

Explanation: The destroy mutex internal service CEEOPMD was unable to free storage
allocated for a mutex by the mutex initialization service CEEOPMI.

Programmer Response: Check if the application might have written over system storage.
Report this problem to the storage administrator.

System Action: Thread is terminated.

Symbolic Feedback Code: CEE5IK

CEE5717C System mutex attribute storage could not be freed.

Explanation: The destroy mutex attribute internal service CEEOPXD was unable to free
storage allocated for a mutex attribute by the mutex attribute initialization service CEEOPXI.

Programmer Response: Check if the application might have written over system storage.
Report this problem to the system administrator.

System Action: Thread is terminated.

Symbolic Feedback Code: CEE5IL

CEE5718C There was invalid mutex attribute storage.

Explanation: The mutex attribute getkind_np internal service CEEOPXG found an invalid
value in system storage for mutex attributes.

Programmer Response: Check if the application might have written over system storage.
Report this problem to the system administrator.

System Action: Thread is terminated.

Symbolic Feedback Code: CEE5IM

CEE5719S There was an invalid attribute value.

Explanation: The attribute kind parameter in a call to internal service CEEOPXS specified
an invalid attribute kind value. Valid values for setkind_np are NONRECURSIVE (0),
RECURSIVE (1), NONRECURSIVE + NODEBUG (2), and RECURSIVE + NODEBUG (3).

Programmer Response: Specify a correct attribute kind value.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5IN

372 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE5720C N CEE5727S

CEE5720C A thread waiting for a mutex was forced to terminate.

Explanation: An event, such as the initial thread terminating, forced all threads to terminate
including threads waiting for a mutex.

Programmer Response: Check that all threads exit correctly.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE5IO

CEE5721C There was insufficient resource to initialize another mutex.

Explanation: The mutex init internal service, CEEOPMI, was invoked to initialize a mutex,
but not enough resource was available to initialize another mutex.

Programmer Response: None.

System Action: No system action is taken.

Symbolic Feedback Code: CEE5IP

CEE5722I There was insufficient privilege to initialize the mutex.

Explanation: The mutex init internal service, CEEOPMI, was invoked to initialize a mutex,
but not enough resource was available to initialize another mutex.

Programmer Response: None.

System Action: No system action is taken.

Symbolic Feedback Code: CEE5IP

CEE5724I There was insufficient resource to obtain the mutex.

Explanation: The mutex lock or trylock internal services CEEOPML or CEEOPMT was
invoked to lock a recursive mutex, but not enough resource was available to obtain this
recursive mutex another time.

Programmer Response: None.

System Action: No system action is taken.

Symbolic Feedback Code: CEE5IS

CEE5726S The condition object was not initialized.

Explanation: The condition-related service required that the condition object (specified as
an parameter) be initialized.

Programmer Response: Use internal service CEEOPCI to initialize the condition object
before invoking the service that failed.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5IU

CEE5727S The condition signal service (CEEOPCS) failed due to a system detected
error with error code return-code and reason code reason-code.

Explanation: The condition signal internal service CEEOPCS called the callable service
BPX1CPO to signal another thread waiting on the condition. BPX1CPO returned an unex-
pected error code and reason code.

Programmer Response: Report this failure to your system administrator.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

 Chapter 9. Language Environment Run-Time Messages 373

 CEE5728C N CEE5731S

Symbolic Feedback Code: CEE5IV

CEE5728C An addressing exception occurred referencing system storage related to
conditions variables.

Explanation: An addressing exception program interrupt occurred when a condition vari-
able related service referenced system storage allocated for a condition variable.

Programmer Response: Make sure that the application has not written over system
storage prior to issuing the service call.

System Action: The thread on which the addressing exception occurred is terminated.

Symbolic Feedback Code: CEE5J0

CEE5729S The mutex specified on a condition wait or timed wait request was a recur-
sive mutex. The request was rejected.

Explanation: The condition wait internal service CEEOPCW and condition timed wait
internal service CEEOPCT did not accept a request since the mutex associated with the
request was recursive.

Programmer Response: Do not specify a mutex with the recursive attribute on a condition
wait or timed wait request.

System Action: The request is rejected.

Symbolic Feedback Code: CEE5J1

CEE5730S The mutex specified on a condition wait or timed wait request was a dif-
ferent mutex than the one already associated with the condition variable.
The request was rejected.

Explanation: Different threads called the condition wait internal service CEEOPCW or con-
dition timed wait internal service CEEOPCT and specified the same condition object but dif-
ferent mutexes on the requests.

Programmer Response: Make sure that all threads waiting on a particular condition vari-
able specify the same mutex in their condition wait or timed wait requests.

System Action: The request is rejected.

Symbolic Feedback Code: CEE5J2

CEE5731S The condition wait service or timed wait service failed due to a system
detected error with error code return-code and reason code reason-code.

Explanation: The condition wait internal service CEEOPCW or timed wait internal service
CEEOPCT called the callable service BPX1CSE to set up for a condition wait. BPX1CSE
returned an unexpected error code and reason code.

Programmer Response: Report this failure to your system administrator.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5J3

374 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE5732S N CEE5736I

CEE5732S The condition wait service failed due to a system detected error with error
code return-code and reason code reason-code.

Explanation: The condition wait internal service CEEOPCW called the callable service
BPX1CWA to block a thread. BPX1CWA returned an unexpected error code and reason
code.

Programmer Response: Report this failure to your system administrator.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5J4

CEE5733S The value specified for number of seconds to wait was invalid. The condi-
tion wait request was rejected.

Explanation: The value for number of seconds to wait that was passed to the condition
timed wait internal service CEEOPCT must be a non-negative number of seconds since mid-
night, January 1, 1970. This value cannot exceed 2,147,483,647 seconds.

Programmer Response: Time to wait should be specified as current calendar in seconds
since midnight, January 1, 1970. Be sure the service you are using to get current calendar
time returns seconds since midnight, January 1, 1970, or that your program is correctly con-
verting the value obtained.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5J5

CEE5734S The value specified for number of nanoseconds to wait was invalid. The
condition wait request was rejected.

Explanation: The value for number of nanoseconds to wait that was passed to the condi-
tion timed wait internal service CEEOPCT must be a non-negative number that does not
exceed 1,000,000,000 (1,000 million).

Programmer Response: Be sure to initialize the nanosecond parameter to a value in the
range 0 to 1,000,000,000 before invoking the condition wait service.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5J6

CEE5735S The value for current calendar time was invalid. The condition wait request
was rejected.

Explanation: The system time of day (TOD) clock was not properly initialized or had over-
flowed. The value for current calendar time returned to the condition timed wait internal
service CEEOPCT by the store clock (STCK) instruction was invalid.

Programmer Response: Report this problem to your system administrator.

System Action: The condition wait is rejected.

Symbolic Feedback Code: CEE5J7

CEE5736I The time to wait specified on a condition timed wait request has elapsed.

Explanation: Current calendar time in seconds since midnight, January 1, 1970, was equal
to or greater than the time to wait. The time to wait was specified to the condition timed wait
internal service CEEOPCT in seconds plus nanoseconds. Internal service CEEOPCT
returned to allow the thread to continue processing.

Programmer Response: Be sure you are specifying seconds to wait as current calendar
time in seconds since midnight, January 1, 1970, plus some additional number of seconds.

 Chapter 9. Language Environment Run-Time Messages 375

 CEE5737S N CEE5741C

System Action: No system action is taken.

Symbolic Feedback Code: CEE5J8

CEE5737S The condition timed wait service failed due to a system error with error
code return-code and reason code reason-code.

Explanation: The condition timed wait internal service CEEOPCT called the callable
service CPX1CTW to block a thread. CPX1CTW returned an unexpected error code and
reason code.

Programmer Response: Report this failure to your system administrator.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5J9

CEE5738S The condition attribute object was already initialized.

Explanation: The condition attribute initialization internal service CEEOPDI was called to
initialize a condition attribute object that had already been initialized.

Programmer Response: Call the condition attribute destroy internal service CEEOPDD to
destroy an initialized condition attribute object before calling internal service CEEOPDI to
initializing it.

System Action: The request is rejected.

Symbolic Feedback Code: CEE5JA

CEE5739S There was insufficient storage to initialize a condition attribute object.

Explanation: The condition attribute initialization internal service CEEOPDI was called to
initialize a condition attribute object. However, there was insufficient system storage available
to do so.

Programmer Response: Additional system storage is required before attempting to ini-
tialize more condition attribute objects.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5JB

CEE5740S An addressing exception occurred referencing condition object or condi-
tion attribute object.

Explanation: The address of a condition object or condition attribute object passed as an
parameter on a condition variable related service call was invalid. An addressing exception
program interrupt occurred when the called service referenced this address.

Programmer Response: Make sure the application correctly specifies the condition object
or condition attribute object parameter in the service call.

System Action: The application is terminated.

Symbolic Feedback Code: CEE5JC

CEE5741C The system condition attribute storage could not be freed.

Explanation: The destroy condition attribute internal service CEEOPDD was unable to free
storage allocated for a condition attribute by the condition attribute initialization internal
service CEEOPDI.

Programmer Response: Check if the application might have written over system storage.
Report this problem to your system administrator.

System Action: Thread is terminated.

376 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE5742S N CEE5746S

Symbolic Feedback Code: CEE5JD

CEE5742S The condition object was already initialized.

Explanation: The condition initialization internal service CEEOPCI was called to initialize a
condition object that had already been initialized.

Programmer Response: Call the condition destroy internal service CEEOPCD to destroy
an initialized condition object before initializing it again.

System Action: The request is rejected.

Symbolic Feedback Code: CEE5JE

CEE5743S The condition attribute object was not initialized.

Explanation: An uninitialized condition attribute object was specified as an parameter on a
call to the condition initialization internal service CEEOPCI.

Programmer Response: Call internal service CEEOPDI to initialize the condition attribute
object before invoking internal service CEEOPCI.

System Action: The request is rejected.

Symbolic Feedback Code: CEE5JF

CEE5744S There was insufficient storage to initialize a condition object.

Explanation: The condition initialization internal service CEEOPCI was called to initialize a
condition object. However, there was insufficient system storage available to do so.

Programmer Response: Get additional system storage before initializing more condition
objects.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5JG

CEE5745C The system condition variable storage could not be freed.

Explanation: The destroy condition internal service CEEOPCD was unable to free storage
allocated for a condition variable by the condition initialization internal service CEEOPCI.

Programmer Response: Check if the application might have written over system storage.
Report this problem to your system administrator.

System Action: Thread is terminated.

Symbolic Feedback Code: CEE5JH

CEE5746S A condition attribute object had been changed since it was initialized.

Explanation: The condition attribute destroy internal service CEEOPDD detected that a
condition attribute object (specified as a parameter) had changed since it was initialized by
the condition attribute initialization internal service CEEOPDI. The condition attribute object
was destroyed, but internal service CEEOPDD did not alter the storage associated with the
condition attribute object. However, if internal service CEEOPDI was invoked, the storage
was altered.

Programmer Response: Check that the application is correctly reusing storage associated
with the condition attribute object after initializing it.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5JI

 Chapter 9. Language Environment Run-Time Messages 377

 CEE5747S N CEE5751C

CEE5747S The condition variable was busy.

Explanation: The condition destroy internal service CEEOPDD was invoked to destroy a
condition variable that was in use. A condition variable that was in use by one or more
threads for a condition wait or timed wait cannot be destroyed.

Programmer Response: Retry the request or determine why the condition variable is in
use.

System Action: The request is rejected.

Symbolic Feedback Code: CEE5JJ

CEE5748S A condition object had been changed since it was initialized.

Explanation: The condition destroy service CEEOPCD detected that a condition object
(specified as a parameter) was changed since it was initialized by the condition initialization
internal service CEEOPCI. The condition variable was destroyed, but internal service
CEEOPDD did not alter the storage associated with the condition object. However, if internal
service CEEOPCI was invoked, the storage was altered.

Programmer Response: Check that the application is correctly reusing storage associated
with the condition object after initializing it.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5JK

CEE5749S An invalid attribute kind value was passed.

Explanation: The attribute kind parameter setkind_np that was passed to internal service
CEEOPDS specified an invalid value. Valid values for setkind_np are NODEBUG (2).

Programmer Response: Specify a valid attribute kind value.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5JL

CEE5750S An addressing exception occurred referencing attribute kind storage.

Explanation: The address where to return attribute kind that was passed as a parameter
on a getkind_np service request, was invalid. An addressing exception occurred when the
internal service CEEOPDG attempted to store the attribute kind value at this address.

Programmer Response: Check that the application is correctly specifying the attribute kind
address parameter on the getkind_np service call.

System Action: The application is terminated.

Symbolic Feedback Code: CEE5JM

CEE5751C Invalid condition attribute storage detected.

Explanation: Internal service CEEOPDG found an invalid value in system storage for con-
dition attribute getkind_np.

Programmer Response: Check if the application might have written over system storage.
Report this problem to your system administrator.

System Action: Thread is terminated.

Symbolic Feedback Code: CEE5JN

378 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE5761C N CEE5765S

CEE5761C Latch services were not available. The application will be terminated.

Explanation: A Language Environment function invoked internal Language Environment
latch services when these services were not available. Latch services are initialized only
when the POSIX(ON) run-time option was in effect.

Programmer Response: Report problem to your system administrator.

System Action: The application is terminated.

Symbolic Feedback Code: CEE5K1

CEE5762C The latch was already owned. The application will be terminated.

Explanation: A Language Environment function invoked internal Language Environment
latch services to request a latch. The thread from which the request was made already holds
the latch.

Programmer Response: Report problem to your system administrator.

System Action: The application is terminated.

Symbolic Feedback Code: CEE5K2

CEE5763C The latch was not owned. The application will be terminated.

Explanation: A Language Environment function invoked internal Language Environment
latch services to release a latch. The thread from which the request was made did not hold
the latch.

Programmer Response: Report problem to your system administrator.

System Action: The application is terminated.

Symbolic Feedback Code: CEE5K3

CEE5764S The lock object was not initialized.

Explanation: The mutex or read-write lock related service that was invoked requires the
lock object specified as a parameter be initialized.

Programmer Response: Use the internal service CEEOPMI to initialize the mutex or read-
write lock object before invoking the service that failed.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5K4

CEE5765S The read-write lock was already held for writing.

Explanation: A thread invoked the read-write rdlock internal service CEEOPRL specifying a
read-write lock that had already been locked by the thread for writing. A read-write lock can
only be locked for reading multiple times by the same thread.

Programmer Response: None

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5K5

 Chapter 9. Language Environment Run-Time Messages 379

 CEE5766S N CEE5769S

CEE5766S An addressing exception occurred referencing a lock object or lock attri-
bute object.

Explanation: The address of a mutex or read-write lock object, or mutex or read-write lock
attribute object passed as a parameter on a lock related service call was invalid. An
addressing exception program interrupt occurred when the called service referenced this
address.

Programmer Response: Specify the correct lock object or lock attribute object when
passing parameters to the lock related service call.

System Action: The application is terminated.

Symbolic Feedback Code: CEE5K6

CEE5767S An addressing exception occurred referencing system storage allocated for
locks.

Explanation: An addressing exception program interrupt occurred when a mutex or read-
write lock-related service referenced system storage allocated for locks.

Programmer Response: Make sure that the application has not written over system
storage prior to issuing the service call.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE5K7

CEE5768S A lock object has been changed since it was initialized.

Explanation: The mutex or read-write lock destroy internal service CEEOPMD detected
that a lock object (specified as a parameter) had changed since it was initialized by the lock
initialization internal service CEEOPMI. The lock was destroyed, but internal service
CEEOPMD did not alter the storage associated with the read-write lock object. However, if
internal service CEEOPMI was invoked, the storage was altered.

Programmer Response: Make sure the application is not incorrectly reusing storage asso-
ciated with the read-write lock object after initializing it.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5K8

CEE5769S The read-write lock was not held by thread.

Explanation: A thread called the read-write lock unlock internal service CEEOPRU to
unlock the read-write lock but the read-write lock was not held by the thread. A thread
acquired a read-write lock with one of the following read-write lock internal services:

� rdlock internal service CEEOPRL
� tryrdlock internal service CEEOPRT
� wrlock internal service CEEOPWL
� trywrlock internal service CEEOPWT

and was said to have held the lock.

Programmer Response: Structure the application so that the thread that locks the read
lock also unlocks the read lock.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5K9

380 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE5770S N CEE5774S

CEE5770S The read-write lock was already held.

Explanation: A thread invoked the read-write wrlock internal service CEEOPWL specifying
a read-write lock that had already been locked by the thread. A read-write lock can only be
locked for reading multiple times by the same thread.

Programmer Response: Structure the application so that the thread that locks the read-
write lock also unlocks the read-write lock.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5KA

CEE5771S The read-write lock was already initialized.

Explanation: The read-write lock initialization internal service CEEOPMI was called to ini-
tialize a read-write lock object that had already been initialized.

Programmer Response: Call the real-write lock destroy internal service CEEOPMD to
destroy an initialized read-write lock object before initializing it again.

System Action: The request is rejected.

Symbolic Feedback Code: CEE5KC

CEE5772S The lock attribute object was not initialized.

Explanation: The mutex or read-write lock attribute related services required that the lock
attribute object specified as a parameter be initialized.

Programmer Response: Use internal service CEEOPXI to initialize the mutex or read-write
lock attribute object before invoking the service that failed.

System Action: No system action is taken.

Symbolic Feedback Code: CEE5KC

CEE5773S There was insufficient storage to initialize a read-write lock object.

Explanation: The read-write lock initialization internal service CEEOPMI was called to ini-
tialize a read-write lock object. However, there was insufficient system storage available.

Programmer Response: Get additional system storage before initializing more read-write
lock objects.

System Action: The request is rejected.

Symbolic Feedback Code: CEE5KD

CEE5774S A read-write lock attribute object has been changed since it was initialized.

Explanation: The read-write lock attribute destroy internal service, CEEOPXD, detected
that a read-write lock attribute object specified as a parameter was changed since it was
initialized by the read-write lock attribute initialization internal service, CEEOPXI. The read-
write lock attribute object was destroyed, but internal service, CEEOPXD, did not alter the
storage associated with the read-write lock attribute object. However, if internal service,
CEEOPXI, was invoked, the storage was altered.

Programmer Response: Make sure the application is not incorrectly reusing storage asso-
ciated with the read-write lock attribute object after initializing it.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5KE

 Chapter 9. Language Environment Run-Time Messages 381

 CEE5775S N CEE5779S

CEE5775S The read-write lock attribute object was already initialized.

Explanation: The read-write lock attribute initialization internal service, CEEOPXI, was
called to initialize a read-write lock attribute object that had already been initialized.

Programmer Response: Call the read-write lock attribute destroy internal service,
CEEOPXD, to destroy an initialized read-write lock attribute object before initializing it again.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5KF

CEE5776S There was insufficient storage to initialize a read-write lock attribute object.

Explanation: The read-write lock attribute initialization internal service, CEEOPXI, was
called to initialize a read-write lock attribute object, however, there was insufficient system
storage available.

Programmer Response: Acquire additional system storage before initializing more read-
write lock attribute objects.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5KG

CEE5777S The lock was busy.

Explanation: The mutex or read-write lock destroy internal service CEEOPMD was invoked
to destroy a lock that was in use. A mutex or read-write lock that is locked, or a mutex that is
associated with a condition wait or timed wait, cannot be destroyed.

Programmer Response: Verify that no other thread holds the lock before calling
CEEOPMD to destory the lock.

System Action: The request is rejected.

Symbolic Feedback Code: CEE5KH

CEE5778S An addressing exception occurred while referencing attribute return
storage.

Explanation: The address where to return attribute information that was passed as a
parameter on a call to the mutex and read-write lock attribute internal service, CEEOPXG,
was invalid. An addressing exception occurred when the CEEOPXG internal service
attempted to store the attribute value at this return address.

Programmer Response: Specify the correct attribute return address parameter on the
CEEOPXG internal service call.

System Action: The application is terminated.

Symbolic Feedback Code: CEE5KI

CEE5779S System lock storage could not be freed.

Explanation: The destroy mutex and read-write lock internal service, CEEOPMD, was
unable to free storage allocated for a mutex or read-write lock by the lock initialization
service, CEEOPMI.

Programmer Response: Check if the application might have written over system storage.
Report his problem to the storage administrator.

System Action: The thread is teminated.

Symbolic Feedback Code: CEE5KJ

382 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE5780S N CEE5783C

CEE5780S System lock attribute storage could not be freed.

Explanation: The destroy lock attribute internal service, CEEOPXD, was unable to free
storage allocated for a mutex or read-write lock attribute by the lock attribute initialization
service, CEEOPXI.

Programmer Response: Check if the application might have written over system storage.
Report his problem to the system administrator.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE5KK

CEE5781S There was invalid lock attribute storage.

Explanation: The mutex and read-write lock attribute internal service, CEEOPXG, found an
invalid value in system storage for lock attributes of the specified type.

Programmer Response: Check if the application might have written over system storage.
Report his problem to the system administrator.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE5KL

CEE5782S There was an invalid lock attribute value.

Explanation: The attribute parameter in a call to internal service, CEEOPXS, specified an
invalid attribute value for lock attributes of the specified type. Valid values for type
setkind_np or settype are:

� NONRECURSIVE + DEBUG + ERRORCHECK (0)
� RECURSIVE + DEBUG + ERRORCHECK (1)
� NONRECURSIVE + NODEBUG + ERRORCHECK (2)
� RECURSIVE + NODEBUG + ERRORCHECK (3)
� NONRECURSIVE + DEBUG + NOERRORCHECK (4)
� RECURSIVE + DEBUG + NOERRORCHECK (5)
� NONRECURSIVE + NODEBUG + NOERRORCHECK (6)
� RECURSIVE + NODEBUG + NOERRORCHECK (7)

Valid values for type setpshared are:

 � PRIVATE (0)
 � SHARED (8)

Programmer Response: Specify a correct attribute value.

System Action: Unless the condition is handled, the default action it to terminate the
enclave.

Symbolic Feedback Code: CEE5KM

CEE5783C A thread waiting for a read-write lock was forced to terminate.

Explanation: An event, such as the initial thread terminating, forced all threads to terminate
including threads waiting for a read-write lock.

Programmer Response: Check that all threads exit correctly.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE5KN

 Chapter 9. Language Environment Run-Time Messages 383

 CEE5784I N CEE5788I

CEE5784I There was insufficient resource to initialize another read-write lock.

Explanation: The read-write lock init internal service, CEEOPMI, was invoked to initialize a
read-write lock, but not enough resource was available to initialize another read-write lock.

Programmer Response: None.

System Action: No system action is taken.

Symbolic Feedback Code: CEE5KO

CEE5785I There as insufficient privilege to initialize the read-write lock.

Explanation: The read-write lock init internal service, CEEOPMI, was invoked to initialize a
read-write lock, but not enough privilege was available to initialize the read-write lock.

Programmer Response: None.

System Action: No system action is taken.

Symbolic Feedback Code: CEE5KP

CEE5786S The OS/390 UNIX callable service, BPX1SLK, failed during shared lock
processing. The system return code was return_code, the reason code was
reason_code. X'00'

Explanation: The OS/390 UNIX callable service, BPX1SLK, was called by a Language
Environment internal service for shared mutex or read-write lock processing. BPX1SLK
returned without performing the specified shared lock processing (initialize, lock, unlock, or
destroy).

Programmer Response: See OS/390 UNIX System Services Programming: Assembler
Callable Services Reference for the appropriate action to take for this return code and
reason code. Consult with your OS/390 UNIX system support personnel if necessary.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5KQ

CEE5787I There as insufficient resource to obtain the read-write lock.

Explanation: The read-write lock rdlock or tryrdlock internal services, CEEOPRL, or
CEEOPRT was invoked to lock a read-write lock, but not enough resource was available to
obtain this read-write lock another time for read.

Programmer Response: None.

System Action: No system action is taken.

Symbolic Feedback Code: CEE5KR

CEE5788I The read-write lock was busy.

Explanation: The read-write lock tryrdlock internal service, CEEOPRT, was invoked to lock
a read-write lock for read that was already locked for write or had an outstanding write lock
request.

Programmer Response: None.

System Action: No system action is taken.

Symbolic Feedback Code: CEE5KS

384 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 CEE5789I N CEE5791C

CEE5789I The read-write lock was busy.

Explanation: The read-write lock trywrlock internal service, CEEOPWT, was invoked to
lock a read-write lock for write that was already locked for read or write.

Programmer Response: None.

System Action: No system action is taken.

Symbolic Feedback Code: CEE5KT

CEE5790S There was insufficient storage to lock a read-write lock object.

Explanation: A thread attempted to lock a read-write lock by calling one of the following
read-write lock internal services:

� rdlock internal service, CEEOPRL
� tryrdlock internal service, CEEOPRT
� wrlock internal service, CEEOPWL
� trywrlock internal service, CEEOPWT

However, there was insufficient system storage available.

Programmer Response: Acquire additional system storage before attempting to lock more
read-write lock objects.

System Action: Unless the condition is handled, the default action is to terminate the
enclave.

Symbolic Feedback Code: CEE5KU

CEE5791C System read-write lock storage could not be freed.

Explanation: The read-write lock unlock internal service, CEEOPRU was unable to free
storage allocated for a read-write lock by one of the following read-write lock internal
services:

� rdlock internal service, CEEOPRL
� tryrdlock internal service, CEEOPRT
� wrlock internal service, CEEOPWL
� trywrlock internal service, CEEOPWT

Programmer Response: Check if the application might have written over system storage.
Report this problem to the storage administrator.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE5KV

 Chapter 9. Language Environment Run-Time Messages 385

386 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC4000S N EDC4000S

Chapter 10. C Prelinker and the C Object Library Utility
Messages

This chapter provides message information for the prelinker and object library utili-
ties.

A return code is generated to indicate the degree of prelinking success. The return
codes are as follows:

0 No error detected; processing completed; successful execution anticipated.

4 Possible error (warning) detected; processing completed; successful execution
probable.

8 Error detected; processing might have been completed; successful execution
impossible.

12 Severe error detected; processing terminated abnormally; successful execution
impossible.

The messages issued by the prelinker and object library utility have the following
format:

EDCnnnns text <&s>

where

nnnn Error message number

s Error severity

I Informational message
W Warning message
E Error message
S Severe error message

&s Substitution variable, such as &1

Note: For C messages less than 4000, see OS/390 C/C++ Compiler and Run-
Time Migration Guide.

The prelinker and object library utility can return the following messages:

EDC4000S Unable to open &1.

Explanation: An error was encountered during a file open.

Programmer Response: Make sure that the named file has the proper DCB requirements
(i.e., RECFM, BLKSIZE, LRECL).

System Action: Processing terminates.

 Copyright IBM Corp. 1991, 2000 387

 EDC4001S N EDC4008S

EDC4001S Unable to read &1.

Explanation: An error was encountered during a file read.

Programmer Response: Make sure that the named file has the proper DCB requirements
(i.e., RECFM, BLKSIZE, LRECL). If the file has been corrupted recreate it, then recompile
and run the new file.

System Action: Processing terminates.

EDC4002S Unable to write to &1.

Explanation: An error was encountered during a file write.

Programmer Response: Make sure that the named file has the proper DCB requirements
(i.e., RECFM, BLKSIZE, LRECL). Also make sure that sufficient write space is available.

Programmer Response: Ensure that sufficient disk space is available.

System Action: Processing terminates.

EDC4004W Invalid options: &1.

Explanation: The listed prelinker options were invalid.

Programmer Response: Enter the list of valid options.

System Action: The invalid prelinker options are ignored and processing continues.

EDC4005E No input decks were specified.

Explanation: No input decks were specified for the prelink.

Programmer Response: Input at least one deck.

System Action: The prelinker will process nothing.

EDC4006S Object deck was missing TXT cards.

Explanation: A corrupted input deck was encountered during the prelink.

Programmer Response: Recompile the source routine and run it again. If the problem per-
sists, call your IBM service representative.

System Action: Processing terminates.

EDC4007S Object deck had multiple initialized CSECTs.

Explanation: A corrupted input deck was encountered during the prelink.

Programmer Response: Recompile the source routine and run it again. If the problem per-
sists, call your IBM service representative.

System Action: Processing terminates.

EDC4008S Invalid initialization deck (RLDs span cards).

Explanation: A corrupted input deck was encountered during the prelink.

Programmer Response: Recompile the source routine and run it again. If the problem per-
sists, call your IBM service representative.

System Action: Processing terminates.

388 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC4009S N EDC4016W

EDC4009S Invalid initialization deck (RLDs and TXTs not in sync).

Explanation: A corrupted input deck was encountered during the prelink.

Programmer Response: Recompile the source routine and run it again. If the problem per-
sists, call your IBM service representative.

System Action: Processing terminates.

EDC4010W A zero length static object was found in assembler deck.

Explanation: A zero length static object was encountered in an assembler deck.

Programmer Response: Redefine the object with the appropriate size.

System Action: Incorrect or undefined execution could result.

EDC4011E Unresolved writable static references were detected.

Explanation: Undefined writable static objects were encountered at prelink termination.

Programmer Response: Prelink with the MAP option to find the objects in question and
include these objects with the prelink step.

System Action: Prelinker produces object module with unresolved writable static refer-
ences. Use of this object module could result in incorrect or undefined execution.

EDC4012E No input decks were found.

Explanation: Input decks were not found for the prelink.

System Action: The prelinker will process nothing.

EDC4013I No map displayed as no writable static was found.

Explanation: No writable static objects were found during the prelink.

System Action: If MAP option is specified, no static map is produced because no writable
static objects were found.

EDC4014E Undefined writable static objects were detected:

Explanation: The listed writable static objects were undefined at prelink termination.

Programmer Response: Include these objects during the prelink.

System Action: Incorrect or undefined execution could result.

EDC4015W Unresolved references were detected:

Explanation: The listed objects were unresolved at prelink termination. Unresolved C
library objects are not required for the prelink step, but should be resolved during the link-
edit step. Unresolved writable static objects or unresolved objects referring to writable static
objects are required for prelink.

Programmer Response: To correct the latter, include these objects during the prelink.

System Action: Prelinker only resolves writable static objects or unresolved objects refer-
ring to writable static objects.

EDC4016W Duplicate objects were detected:

Explanation: The listed objects were defined multiple times.

Programmer Response: Define the objects consistently.

System Action: Incorrect execution could occur unless the objects are defined consistently.

 Chapter 10. C Prelinker and the C Object Library Utility Messages 389

 EDC4017W N EDC4022W

EDC4017W Duplicate object &1 was defined with different sizes.

Explanation: An object had been defined multiple times with different sizes. The larger of
the different sizes was taken. Incorrect execution could occur unless the object is defined
consistently.

Programmer Response: Define the object consistently.

System Action: The largest size is used.

EDC4018E No member name specified and NAME card not found.

Explanation: For the ADD function, you must specify a member name, or a NAME card
indicating the member name must be present in the object module.

Programmer Response: Repeat the step specifying an appropriate member name.

System Action: Processing terminates.

EDC4019S Invalid or missing XSD cards.

Explanation: A corrupted input deck was encountered during processing.

Programmer Response: Recompile your source routine and repeat the step. If the
problem persists, call your IBM service representative.

System Action: Processing terminates.

EDC4020W Continuation card missing for &1 control card.

Explanation: A control card of type &1 was encountered with the continuation column set,
but there was no next card or the next card was not a valid continuation card.

Programmer Response: Add the appropriate continuation card or set continuation column
72 to blank if no continuation card is required.

System Action: The card is ignored and processing continues.

EDC4021W Invalid syntax specified on &1 control card.

Explanation: A control card with invalid syntax was encountered during processing.

Programmer Response: If the card is required, correct the syntax errors and repeat the
step. If the card is not required, the warning message can be removed by deleting the invalid
card.

System Action: If the card was an INCLUDE card, the card is processed up to the syntax
error and the remainder of the card is ignored. If the card was not an INCLUDE card, the
card is ignored. In either case, processing continues.

EDC4022W More than one &1 card found in &2.

Explanation: More than one control card of type &1 was encountered during the proc-
essing of &2.

Programmer Response: No recovery is necessary unless the incorrect card was chosen
or incorrect processing was performed. In this case, remove the offending card and repeat
the step.

System Action: If the card is a NAME card and this was encountered during the prelink
step, the last NAME card is used and processing continues.

If the card is a NAME card and this was encountered during the C370LIB ADD or GEN
steps, all NAME cards for &2 are ignored and processing continues.

390 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC4023W N EDC4028W

EDC4023W Continuation cards not allowed for &1 card. Card ignored.

Explanation: A control card of type &1 was found to be expecting a continuation card.
Information for a card of this type must be specified on one card.

Programmer Response: Correct the card if necessary, set continuation column 72 to
blank, and repeat the step.

System Action: The card is ignored and processing continues.

EDC4024W RENAME card cannot be used for short name &1.

Explanation: A RENAME card was encountered that attempted to rename a short name to
another name. RENAME cards are valid only for long names for which there is no corre-
sponding short name.

Programmer Response: The warning message can be removed by deleting the invalid
RENAME card.

System Action: The card is ignored and processing continues.

EDC4025W Multiple RENAME cards found for &1. First valid one taken.

Explanation: More than one RENAME card was encountered for the name &1.

Programmer Response: The prelinker map shows which output name was chosen. If this
was not the intended name, remove the duplicate RENAME card(s) and repeat the step.

System Action: The first RENAME card with a valid output name is chosen.

EDC4026W May not RENAME long name &1 to another long name &2.

Explanation: A RENAME card had been encountered that attempted to rename a long
name to another long name.

Programmer Response: The prelinker map shows which output name was chosen. If this
was not the intended name, replace the invalid RENAME card with a valid output name and
repeat the step. To remove the warning message, delete the invalid RENAME card.

System Action: The card is ignored and processing continues.

EDC4027W May not RENAME defined long name &1 to defined name &2.

Explanation: A RENAME card had been encountered that attempted to rename the defined
long name &1 to another defined name &2.

Programmer Response: The prelinker map shows which output name was chosen. If this
was not the intended name, replace the invalid RENAME card with a valid output name and
repeat the step. To remove the warning message, delete the invalid RENAME card.

System Action: The card is ignored and processing continues.

EDC4028W RENAME card of &1 to &2 ignored since &2 is target of another RENAME.

Explanation: Multiple RENAME cards had been encountered attempting to rename two dif-
ferent names the same name &2.

Programmer Response: The prelinker map shows which name was renamed to &2. If the
output name for &2 was not the intended name, change the name and repeat the step. To
remove the warning message, delete the extra RENAME card(s).

System Action: The first valid RENAME card for &2 is chosen.

 Chapter 10. C Prelinker and the C Object Library Utility Messages 391

 EDC4029W N EDC4034E

EDC4029W &1 and &2 mapped to same name (&3) due to UPCASE option.

Explanation: A name (&1) that was made uppercase because of the UPCASE option col-
lided with the output name (&3) of another name (&2).

Programmer Response: If both names (&1 and &2) correspond to the same object the
warning can be ignored. If the names do not correspond to the same object or if the warning
is to be removed, do one of the following:

� Use a RENAME card to rename one of the names to something other than &3.
� Change one of the names in the source routine.
� Use #pragma map in the source routine on one of the names.
� Do not run the step with the UPCASE option.

System Action: Both names (&1 and &2) are mapped to &3.

EDC4030E Missing command operands.

Explanation: One or more operands were missing on the invocation of object library utility
command.

Programmer Response: Add the proper operands and repeat the step.

System Action: Processing terminates.

EDC4031W File &1 not found.

Explanation: The specified file could not be located to perform the command.

Programmer Response: Try the command again, specifying the appropriate file.

System Action: If possible, processing continues ignoring the particular file.

EDC4032E Error with &1 command. Return code=&2.

Explanation: In order to perform the library command, the system command &1 was
issued and resulted in a return code of &2.

Programmer Response: Diagnose the problem using the return code and any messages
generated.

System Action: Processing terminates.

EDC4033E Invalid C370LIB-directory encountered in library &1.

Explanation: An invalid or corrupted C370LIB-directory had been encountered.

Programmer Response: Use the C370LIB DIR command to recreate the
C370LIB-directory and repeat the step.

System Action: Processing terminates.

EDC4034E Library &1 did not contain a C370LIB-directory.

Explanation: The library &1 did not contain a C370LIB-directory necessary to perform the
command.

Programmer Response: The library was not created with the C370LIB command. Use the
C370LIB DIR command to create the C370LIB-directory and repeat the step.

System Action: Processing terminates.

392 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC4035W N EDC4043E

EDC4035W Member &1 not found in library &2.

Explanation: The specified member &1 was not found in the library.

Programmer Response: Use the C370LIB MAP command to display the names of library
members.

System Action: Processing continues.

EDC4036E Invalid command operands: &1.

Explanation: Invalid operands were specified on the invocation of this command.

Programmer Response: Specify the correct operands and repeat the step.

System Action: Processing terminates.

EDC4037E File &1 had invalid format.

Explanation: The specified file, &1, did not have the proper format. The file should be
fixed-format with a record length of 80.

Programmer Response: Correct the file or file specification and repeat the step.

System Action: The file is ignored and processing continues.

EDC4038E Library &1 not found.

Explanation: The library, &1, could not be found to perform the command.

Programmer Response: Try the command again, specifying the correct library.

System Action: Processing terminates.

EDC4039E Library &1 had invalid format.

Explanation: The specified library, &1, did not have the proper format. The library must
contain object modules as members and be fixed-format with a record length of 80.

Programmer Response: Correct the library or library specification and repeat the step.

System Action: Processing terminates.

EDC4042S Virtual storage exceeded.

Explanation: The utility ran out of memory. This sometimes happens with large files or
routines with large functions. Very large routines limit the optimization that can be done.

Programmer Response: Divide the file into several smaller sections or shorten the func-
tion.

System Action: Processing terminates.

EDC4043E Invalid symbol table encountered in archive library &1.

Explanation: The archive library from the MVS system had invalid information in its symbol
table.

Programmer Response: Rebuild the archive library.

System Action: The invalid archive library is ignored and processing continues.

 Chapter 10. C Prelinker and the C Object Library Utility Messages 393

 EDC4044E N EDC4051W

EDC4044E Archive library &1 did not contain a symbol table.

Explanation: The symbol table for the archive library from the MVS system could not be
found.

Programmer Response: Rebuild the archive library.

System Action: The invalid archive library is ignored and processing continues.

EDC4045E Archive library &1 not found.

Explanation: The archive library could not be found.

Programmer Response: Try the command again specifying the appropriate file.

System Action: The invalid archive library is ignored and processing continues.

EDC4046E Archive library &1 had invalid format.

Explanation: The file was found but did not have the correct information to be recognized
as an archive library.

Programmer Response: Rebuild the archive library.

System Action: The invalid archive library is ignored and processing continues.

EDC4048W Card &1 of &2 is invalid.

Explanation: The card shown is not valid.

Programmer Response: Prelink the DLL and generate a new, uncorrupted definition side-
deck.

EDC4049E Unresolved references could not be imported.

Explanation: The same symbol was referenced in both DLL and non-DLL code. The DLL
reference could have been satisfied by an IMPORT control statement which was processed,
but the non-DLL reference could not.

Programmer Response: You must either supply a definition for the referenced symbol
during the prelink step or recompile the code containing the non-DLL reference with the DLL
compiler option so that it becomes a DLL reference.

EDC4050W Card &1 of &2 is not the continuation of an IMPORT control statement.

Explanation: The object deck of IMPORT control statements is corrupted.

Programmer Response: Prelink the exporting DLL again to generate a new object deck of
control statements or get a new copy from the DLL provider.

EDC4051W Duplicate IMPORT definitions are detected.

Explanation: A name referenced in DLL code was not defined within the application but
more than one IMPORT control statement was seen with that symbol name. The first one
seen by the prelinker was used.

Programmer Response: Check the Import Symbol Map section of the Prelinker Map to
see if you are importing the symbol from the correct DLL. If not, change the input order of
the IMPORT control statements.

394 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC4052W N EDC4052W

EDC4052W Module name &1 chosen for generated IMPORT control statements.

Explanation: The prelinker has assigned the default name TEMPNAME to the module in
the Definition Side-Deck.

Programmer Response: Include a NAME control statement in the prelinker input or specify
the output object module of the prelinker to be a PDS member so that the prelinker will use
that as the module name in generated IMPORT control statements.

Severe Error Messages
The following error messages are produced by the prelinker or the Object Library
Utility if the message file is itself invalid.

EDC0090 Unable to open message file &1.
EDC0091 Invalid offset table in message file &1.
EDC0092 Message component &1 is not found.
EDC0093 Message file &1 corrupted.
EDC0094 Integrity check failure on msg &1.
EDC0095 Bad substitution number in message &1.
EDC0096 Virtual storage exceeded.

 Chapter 10. C Prelinker and the C Object Library Utility Messages 395

 EDC0096

396 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Chapter 11. C Utility Messages

This chapter provides message information for the localedef utility, the iconv
utility, and the genxlt utility.

 localedef Messages
This section contains the localedef messages.

 Return Codes
The localedef utility returns the following return codes:

0 No errors were detected and the locales were generated successfully .

4 Warning messages were issued and the locales were generated successfully,
or error messages were issued but the BLDERR option was specified.

4 Warning or errors were detected and the locale was not generated.

 Messages
The messages issued by the localedef utility have the following format.

Message Format: EDCnnnn ss text <%n$x>

nnnn Error message number

ss Error severity

10 Warning message
30 Error message
40 Severe error

%n$x Substitution variable

% The start of the substitution variable
n The number that represents the line position of the variable
$ A delimiter
x The kind of variable (d=decimal, c=character, s=string)

Warning messages will be issued when the FLAG(E) option is not specified. The
default FLAG(W), will produce warnings. When warning messages (severity of 10)
are issued, the minimum return code from the localedef utility is 4.

When error messages (severity of 30) are issued, the locale is built only if the
BLDERR option is specified. The default is NOBLDERR. If BLDERR is specified,
the return code would be set to a minimum of 4. If error messages are issued and
NOBLDERR was specified (or by default), the return code will be set to a minimum
of 8.

When severe error messages (severity of 40) are issued, the locale is not built and
the return code from the localedef utility is 12.

The messages that can be issued are as follows:

 Copyright IBM Corp. 1991, 2000 397

 EDC4100 40 N EDC4106 40

EDC4100 40 The symbolic name '%1$s' was not the correct type.

Explanation: This message is issued in the locale definition file when using a symbolic
name that was not the expected type. The most common time this error occurs is when the
LC_CTYPE keywords are used as character references in any locale definition file category.

Programmer Response: Use a symbolic name instead of a character reference.

System Action: The locale has not been created.

EDC4101 40 Could not open '%1$s' for read.

Explanation: This message is issued if the open for read failed for any file required by the
localedef utility. The file name passed to fopen() is included in the message. The locale is
not created.

Programmer Response: Verify the file name is correct and the file/data set exists.

System Action: The locale has not been created.

EDC4102 40 Internal error in file %1$s on line %2$d.

Explanation: An internal error had occurred in the localedef utility.

Programmer Response: Examine the locale definition and charmap files for possible
errors. Report error to IBM.

System Action: The locale has not been created.

EDC4103 40 Syntax Error: expected %1$d arguments and received %2$d arguments.

Explanation: This message is issued in the locale definition file when a keyword was
expecting a fixed number of arguments and not enough arguments were supplied.

Programmer Response: Add the missing arguments to the keyword in the locale definition
file.

System Action: The locale has not been created.

EDC4104 40 Illegal limit in range specification.

Explanation: An error had occurred in a range in the LC_CTYPE category of the locale
definition file. The locale was not created.

Programmer Response: Examine the locale definition file for possible errors.

System Action: The locale has not been created.

EDC4105 40 Memory allocation failure on line %1$d in module %2$s.

Explanation: The localedef utility was unable to allocate memory.

Programmer Response: Under MVS and TSO, increase region size and rerun the
localedef utility. Under CMS, increase the virtual machine size and rerun the localedef
utility.

System Action: The locale has not been created.

EDC4106 40 Could not open file '%1$s' for write.

Explanation: This message is issued if the open for write failed when the localedef utility
attempted to generate the C program. The file name passed to fopen() is included in the
message.

Programmer Response: Under CMS, verify the A-Disk exists and is in WRITE mode.

System Action: The locale has not been created.

398 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC4107 40 N EDC4111 40

EDC4107 40 The '%1$s' symbol was longer than <mb_cur_max>.

Explanation: The length of value assigned to the specified symbol in the charmap file must
not be as big as the value assigned to <mb_cur_max>. <mb_cur_max> defaults to 1 and can
only have the values 1 or 4. If multibyte characters are required then the value of
<mb_cur_max> must also include the shift_in and shift_out characters even though the
shift_in and shift_out characters are not entered into the charmap file as part of a character
definition.

Programmer Response: Increase the size of <mb_cur_max> or remove the extra byte in
multibyte sequence assigned to the symbol specified.

System Action: The locale has not been created.

EDC4108 10 The '%1$s' symbolic name was undefined and has been ignored.

Explanation: The specified symbolic name used in the locale definition file was not defined
in the charmap file. When a symbolic name that is not defined is used in the LC_CTYPE or
LC_COLLATE categories, the warning is issued.

Programmer Response: Define the specified symbol name in the charmap file.

System Action: The character has been ignored and the locale has been created.

EDC4109 40 The '%1$s' symbolic name was undefined.

Explanation: The specified symbolic name used in the locale definition file was not defined
in the charmap file. When a symbolic name that is not defined is used in categories other
than LC_CTYPE or LC_COLLATE, an error message is issued.

Programmer Response: Define the specified symbol name in the charmap file.

System Action: The locale has not been created.

EDC4110 40 The start of the range, '%1$s', must be numerically less than the end of
the range, '%2$s'.

Explanation: In the collation section of the locale definition file, the start range codepoint
specified must be less than the end range codepoint specified. These codepoints were
assigned values in the charmap file where the codepoints can be assigned in any order.

Programmer Response: Change the collation range codepoints in the locale definition file
so that the start of the range is less than the end of the range.

System Action: The locale has not been created.

EDC4111 40 The symbol range containing %1$s and %2$s was incorrectly formatted.

Explanation: The symbolic names used in range definition in the charmap file should
consist of zero or more nonnumeric characters, followed by an integer formed by one or
more decimal digits. The characters preceding the integer should be identical in the two sym-
bolic names, and the integer formed by the digits in the second name should be equal to or
greater than the integer formed by the digits in the first name. This is interpreted as a series
of symbolic names formed from the common part and each of the integers between the first
and second integer, inclusive.

In the following example, the first line is valid as both names have the same prefix, followed
by four digits, whereas the second example has a different prefix for the first and second
name, and is invalid.

<ab#1#1>...<ab#12#> \x42\xc1
<abc#1#1>...<ab#12#> \x42\xc1

Programmer Response: Check the specified symbolic names to ensure compliance to the
above rules.

System Action: The locale has not been created.

 Chapter 11. C Utility Messages 399

 EDC4112 40 N EDC4117 30

EDC4112 40 Illegal character reference or escape sequence in '%1$s'.

Explanation: A character reference or escape sequence had been defined that was not
legal.

Programmer Response: Make the character reference or escape sequence legal.

System Action: The locale has not been created.

EDC4113 30 The symbolic name '%1$s', had already been specified.

Explanation: The specified symbolic name in the charmap file had already been specified.
A symbolic name should only be defined once.

Programmer Response: Remove the duplicate symbolic name from the charmap file.

System Action: The locale has not been created.

EDC4114 10 There are characters in the codeset which were unspecified in the col-
lation order.

Explanation: There were characters defined in the charmap file that were not used in the
collation category of the locale definition file. The locale was still created. The characters
were added at the end of the collation sequence.

Programmer Response: If required, add the missing characters from the charmap file to
the collation category of the locale definition file.

System Action: The locale has been created and the characters were added at the end of
the collation sequence.

EDC4115 30 Illegal decimal constant '%1$s'.

Explanation: The decimal constant of type '\dnnn' specified in the charmap file was greater
than decimal 255.

Programmer Response: Change the decimal constant in the charmap file to a value less
than or equal to 255.

System Action: The locale has not been created.

EDC4116 30 Illegal octal constant '%1$s'.

Explanation: The octal constant of type '\nnn' specified in the charmap file was greater
than octal 377.

Programmer Response: Change the octal constant in the charmap file to a value less than
or equal to octal 377.

System Action: The locale has not been created.

EDC4117 30 Illegal hexadecimal constant '%1$s'.

Explanation: The hexadecimal constant of type '\xnn' specified in the charmap file was
greater than hexadecimal FF.

Programmer Response: Change the hexadecimal constant in the charmap file to a value
less than or equal to hexadecimal FF.

System Action: The locale has not been created.

400 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC4118 30 N EDC4123 30

EDC4118 30 Missing closing quote in string '%1$s'.

Explanation: The string specified had a opening double quote but no closing double quote.
The closing quote will be added.

Programmer Response: Add the closing double quote after the string.

System Action: The locale has not been created. If BLDERR option is specified, the char-
acters between the opening double quote and the end of line character will be used.

EDC4119 30 Illegal character, '%1$c', in input file.

Explanation: An illegal character had been found in the charmap or locale definition file.

Programmer Response: Remove the character.

System Action: The locale has not been created. If BLDERR option is specified, the char-
acter is ignored.

EDC4120 30 The character for '%1$s' statement is missing.

Explanation: When defining the escape character or comment character in the charmap or
locale definition file, a character was not supplied.

Programmer Response: Insert a character to be defined as the escape character or
comment character in the charmap or locale definition file.

System Action: The statement was ignored and the escape character or comment char-
acter was not changed. The locale has not been created. If BLDERR option is specified, the
default comment or escape character is used.

EDC4121 30 '%1$c' is not a POSIX Portable Character.

Explanation: When defining escape_char or comment_char in the charmap or locale defi-
nition file, the character was less than space.

Programmer Response: Define the escape_char or comment_char in the charmap or
locale definition file with a character greater than space.

System Action: The statement was ignored and the escape character or comment char-
acter was not changed. The locale has not been created. If BLDERR option is specified, the
default comment or escape character is used.

EDC4122 30 The character symbol '%1$s' is missing the closing '>'.

Explanation: The character symbol specified had a less than sign at the beginning of the
symbol but no closing greater than sign. The symbol was accepted.

Programmer Response: Add the greater than sign after the symbol.

System Action: The locale has not been created. If BLDERR option is specified, the char-
acters between the open '<' and the end of line character is used.

EDC4123 30 Unrecognized keyword, '%1$s'.

Explanation: When a dot is not used in a string or as part as of an ellipses (...), the
keyword is unrecognized, the statement is ignored.

Programmer Response: Remove the dot which is part of the unrecognized keyword or
add the missing dots to make up ellipses (...).

System Action: The locale has not been created.

 Chapter 11. C Utility Messages 401

 EDC4124 40 N EDC4129 30

EDC4124 40 The encoding specified for the '%1$s' character is unsupported.

Explanation: The multibyte character was not valid, contains a shift out without a corre-
sponding shift in or a shift in character without a corresponding shift out. The locale was not
created.

Programmer Response: If the string contains unmatched shift in or shift out characters,
remove them.

System Action: The locale has not been created.

EDC4125 30 The character, '%1$s', had already been assigned a weight.

Explanation: The specified character or symbolic name in the collation category of the
locale definition file, had already been defined.

Programmer Response: Remove the duplicate character or symbolic name for the col-
lation category.

System Action: The locale has not been created. If BLDERR option is specified, the
second definition is ignored.

EDC4126 30 A character in range '%1$s...%2$s' already had a collation weight.

Explanation: A character or symbolic name in the specified range in the collation category
of the locale definition file, had already been defined in the collation category.

Programmer Response: Remove the duplicate character or adjust the range so as not to
cover duplicate characters.

System Action: The locale has not been created. If BLDERR option is specified, the
second definition is ignored.

EDC4127 10 No toupper section defined for this locale source file.

Explanation: The toupper keyword in the LC_CTYPE category in the locale definition file
was not specified. The lowercase character 'a' to 'z' are mapped to the characters 'A' to
'Z'.

Programmer Response: Add the lowercase characters 'a' to 'z' and 'A' to 'Z' to the
toupper section of the LC_CTYPE category in the locale definition file.

System Action: The locale has been created.

EDC4128 10 The use of the '...' keyword assumed that the codeset was contiguous
between the two range endpoints specified.

Explanation: This warning is always produced when ellipses (...) are used in defining col-
lation sequences in the locale definition file because the locale may not be portable when-
ever ellipses are used.

Programmer Response: Instead of using ellipses, insert all the symbol names between the
two range endpoints.

System Action: The locale is still created.

EDC4129 30 The symbolic name, '%1$s', referenced had not yet been specified in the
collation order.

Explanation: Collation weights in the locale definition file must use symbolic names that
have already been specified in the collation order.

Programmer Response: Remove the reference to the symbolic name from the collation
weights that have not yet been specified in the collation order.

System Action: The locale has not been created. If BLDERR option is specified, the
unspecified reference to the symbolic name is ignored.

402 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC4130 30 N EDC4135 30

EDC4130 30 Error in file %1$s, on line %2$d, at character %3$d.

Explanation: An error had occurred in the charmap or locale definition file on the line
number supplied and at the character position supplied. The line number and character posi-
tion in the message indicates the position within the file when the error was detected. This
may be after the line containing the error.

Programmer Response: See the message following for more information.

EDC4131 10 Warning in file %1$s, on line %2$d, at character %3$d.

Explanation: A warning message had been produced for the line number supplied, at the
character position supplied in the charmap or locale definition file name supplied. The line
number and character position in the message indicates the position within the file when the
error was detected. This may be after the line containing the error.

Programmer Response: See the message following for more information.

EDC4132 30 Syntax error in file %1$s, on line %2$d, at character %3$d.

Explanation: A syntax error had been found in the charmap or local definition file name
supplied, on the line number supplied and at the character position supplied. The line
number and character position in the message indicates the position within the file when the
error was detected. This may be after the line containing the error.

Programmer Response: Change the line in the charmap or locale definition file to conform
to the POSIX standard format.

EDC4133 40 Specific collation weight assignment was not valid when no sort
keywords have been specified.

Explanation: The number of sort rules, such as forward, backward, no-substitute or posi-
tion, specified after the order_start keyword must be greater than or equal to the number of
weights assigned to any one character in the collation category of the locale definition file.
When no sort rules are specified, one forward sort rule is assumed.

Programmer Response: Add additional sort rules to the order_start keyword.

System Action: The locale has not been created.

EDC4134 10 The <mb_cur_min> keyword must be defined as 1, you had defined it as
%1$d.

Explanation: The <mb_cur_min> keyword in the charmap file can only be set to 1.

Programmer Response: Change the value of the <mb_cur_min> keyword in the charmap
file to 1.

System Action: The Value was ignored and the locale has been created.

EDC4135 30 The <code_set_name> must contain only characters from the POSIX port-
able character set, '%1$s' is not valid.

Explanation: The <code_set_name> in the charmap file must only use graph characters. It
must contain only characters from the portable character set. The character %1$s is not
valid.

Programmer Response: Remove the character from the <code_set_name> in the charmap
file that is not in the portable character set.

System Action: The locale has not been created. If BLDERR option is specified, the
<code_set_name> is used anyway.

 Chapter 11. C Utility Messages 403

 EDC4136 30 N EDC4141 10

EDC4136 30 The sort rules forward and backward are mutually exclusive.

Explanation: Each sort rules of the order_start keyword of the collation category in the
locale definition file can consist of one or more sort rules separated by commas. The sort
rules forward and backward, cannot be used at the same time.

Programmer Response: Specify only forward or backward but not both.

System Action: The locale has not been created.

EDC4137 30 Received too many arguments, expected %1$d.

Explanation: This message is issued in the locale definition file when a keyword is
expecting a fixed number of arguments and too many arguments are supplied.

Programmer Response: Remove the unnecessary argument in the locale definition file.

System Action: The locale has not been created. If BLDERR option is specified, the extra
arguments are ignored.

EDC4138 30 The %1$s category had already been defined.

Explanation: The specified category in the locale definition file should only be defined
once.

Programmer Response: Remove the specified duplicate category.

System Action: The locale has not been created. If BLDERR option is specified, the
second definition of the duplicate category is ignored.

EDC4139 10 The %1$s category was empty.

Explanation: The specified category in the locale definition file did not contain any
keywords.

Programmer Response: Remove the empty category or add keywords to the specified cat-
egory.

System Action: The locale has been created.

EDC4140 30 Unrecognized category %1$s was not processed by localedef.

Explanation: User defined categories in the locale definition file were not supported. That
is, categories that are not LC_CTYPE, LC_COLLATE, LC_MONETARY, LC_NUMERIC,
LC_TIME, LC_MESSAGES, LC_SYNTAX or LC_TOD were not processed by the localedef
utility.

Programmer Response: Remove the unrecognized category from the locale definition file.

System Action: The locale has not been created. If BLDERR option is specified, the
unsupported categories are ignored.

EDC4141 10 The POSIX defined categories must appear before any unrecognized cate-
gories.

Explanation: User defined categories in the locale definition file must appear after the
POSIX defined categories LC_CTYPE, LC_COLLATE, LC_MONETARY, LC_NUMERIC,
LC_TIME, LC_MESSAGES, LC_SYNTAX and LC_TOD.

Programmer Response: Move the unrecognized category to the end of locale definition
file.

System Action: The locale has been created.

404 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC4142 30 N EDC4145 10

EDC4142 30 The file code for the digit %1$s was not one greater than the file code for
%2$s.

Explanation: The values assigned to the digit symbolic names <zero> to <nine> in the
charmap file must be in sequence and be contiguous.

Programmer Response: Change the value assigned to the specified digit symbolic name
in the charmap file so that it is one greater than the value assigned to the preceding digit
symbolic name.

System Action: The locale has not been created.

EDC4143 30 The process code for the digit %1$s is not one greater than the process
code for %2$s.

Explanation: The wide character values assigned to the digit symbolic names <zero> to
<nine> in the charmap file must be in sequence and be contiguous.

Programmer Response: Change the wide character value assigned to the specified digit
symbolic name in the charmap file so that it is one greater than the wide character value
assigned to the preceding digit symbolic name.

System Action: The locale has not been created. If BLDERR option is specified, the
values are forced to be used.

EDC4144 30 The symbol %1$s has already been defined.

Explanation: The collation symbol must be a symbolic name, enclosed between angle
brackets (< and >), and should not duplicate any symbolic name in the charmap file or any
other name defined in the collation definition.

Programmer Response: Use another symbolic name for the collating symbol.

System Action: The locale has not been created. If BLDERR option is specified, the defi-
nition as a collating-symbol is ignored.

EDC4145 10 Locale did not conform to POSIX specifications for the LC_CTYPE
'%1$s' keyword.

Explanation: The specified keyword in the LC_CTYPE category in the locale definition con-
tained characters that conflict with the POSIX definition of the category. This may be caused
by the following:

� The upper keyword contained characters from the cntrl, digit, punct or space keywords.

� The lower keyword contained characters from the cntrl, digit, punct or space keywords.

� The alpha keyword contained characters from the cntrl, digit, punct or space keywords.

� The space keyword contained characters from the digit, upper, lower, alpha or xdigit
keywords.

� The cntrl keyword contained characters from the digit, upper, lower, alpha, graph, punct,
print or xdigit keywords.

� The punct keyword contained characters from the digit, upper, lower, alpha, cntrl, space
or xdigit keywords.

� The graph keyword contained characters from the cntrl keyword.

� The print keyword contained characters from the cntrl keyword.

Programmer Response: Remove the character from the specified keyword that conflicts
with characters from one of the other keywords.

System Action: The locale has been created.

 Chapter 11. C Utility Messages 405

 EDC4146 10 N EDC4150 30

EDC4146 10 Locale did not specify the minimum required for the LC_CTYPE '%1$s'
keyword. Setting to POSIX defined defaults.

Explanation: The specified keyword in the LC_CTYPE category in the locale definition file
did not contain the minimum characters required by the keyword. The minimum requirements
for the keywords are as follows:

� The upper keyword does not contain the required characters 'A' to 'Z'.

� The lower keyword does not contain the required characters 'a' to 'z'.

� The digit keyword does not contain the required digits 0 through 9.

� The xdigit keyword does not contain the required digits 0 through 9,the uppercase letters
'A' through 'F' and the lowercase letters 'a' through 'f'.

� The space keyword does not contain the required characters space, form feed, newline,
carriage return, horizontal tab and vertical tab.

� The blank keyword does not contain the required characters space and tab.

Programmer Response: Specify the minimum requirements for the specified keyword.

System Action: The locale has been created.

EDC4147 10 Locale did not specify only '0', '1', - '2', '3', '4', '5', '6', '7', '8', and
'9' for LC_CTYPE digit keyword.

Explanation: The digit keyword in the LC_CTYPE category in the locale definition file can
only contain the characters required, '0' to '9'.

Programmer Response: Remove the character outside the '0' to '9' range in the digit
keyword.

System Action: The locale will still be created.

EDC4148 10 Locale did not specify only '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'a' through 'f', and 'A' through 'F' for LC_CTYPE xdigit keyword.

Explanation: The xdigit keyword in the LC_CTYPE category in the locale definition file can
only contain the characters required, '0' to '9' and 'A' to 'F' or 'a' to 'f'. The locale will
still be created.

Programmer Response: Remove the character outside the range '0' to '9' and 'A' to
'F' or 'a' to 'f' to the xdigit keyword.

System Action: The locale will still be created.

EDC4149 30 The number of operands to LC_COLLATE order exceeded
COLL_WEIGHTS_MAX.

Explanation: The number of sort rules, such as forward, backward, no-substitute or posi-
tion, specified after the order_start keyword must not exceed COLL_WEIGHTS_MAX in the
collation category of the locale definition file.

Programmer Response: Reduce the number of sort rules to the order_start keyword.

System Action: The locale has not been created. If BLDERR option is specified, the extra
operands are ignored.

EDC4150 30 Both '%1$s' and '%2$s' symbols must be characters and not collation
symbols or elements.

Explanation: When defining ranges using ellipses (...) in the collation category of the locale
definition file, the endpoints of the range must be characters or symbolic names defined in
the charmap file. They should not be collating-symbol operands or collating-element oper-
ands.

Programmer Response: Use different characters for the range endpoints.

406 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC4151 10 N EDC4156 30

System Action: The locale has not been created. If the BLDERR option is specified, the
defined ranges will not be used.

EDC4151 10 Option %1$s is not valid and was ignored.

Explanation: The option specified in the message is not a valid localedef utility option or a
valid option has been specified with an invalid value.

Programmer Response: Rerun the localedef utility with the correct option.

System Action: The specified option was ignored and the locale has been created.

EDC4152 10 No matching right parenthesis for %1$s option.

Explanation: The option specified had a sub option beginning with a left parenthesis but no
right parenthesis was present. The option and suboption were accepted and the locale was
still produced.

Programmer Response: Add the right parenthesis after the sub option.

System Action: The option and sub option has been accepted and the locale was still
produced.

EDC4153 10 Symbol name %1$s is undefined and was required in the charmap file.

Explanation: The symbolic name specified is not defined in the charmap file and must be
specified.

Programmer Response: Define the missing symbol name in the charmap file.

System Action: The locale has been produced.

EDC4154 30 Keyword 'copy' cannot be nested.

Explanation: A locale category specifies the copy keyword, and the locale from which the
category is being copied from also includes copy keyword for the same category.

Programmer Response: Change the name of the existing locale to be copied to the name
specified in existing locale copy keyword.

System Action: The locale has not been created. If BLDERR option is specified, the
default is used for the category.

EDC4155 30 'copy' keyword category '%1$s' not found.

Explanation: The specified category cannot be found in the locale definition file that was
included using the copy keyword. The category is not copied.

Programmer Response: Change the name of the existing locale to be copied or add the
specified category to the locale definition file.

System Action: The category is not copied and the locale has not been created.

EDC4156 30 LC_SYNTAX '%1$s' character can only be a punctuation character.

Explanation: The specified character defined in the LC_SYNTAX category of the locale
definition file, must be a punctuation character. The character was ignored.

Programmer Response: Only use punctuation characters as LC_SYNTAX characters.

System Action: The locale has not been created.

 Chapter 11. C Utility Messages 407

 EDC4157 10 N EDC4162 30

EDC4157 10 LC_SYNTAX '%1$s' character can only have a length of 1. Ignoring addi-
tional characters.

Explanation: The specified character defined in the LC_SYNTAX category of the locale
definition file contained more than one character, or specified a multibyte character. The
LC_SYNTAX characters must only be single-byte characters.

Programmer Response: Only use single-byte characters as LC_SYNTAX characters.

System Action: The locale is created ignoring additional characters.

EDC4158 10 LC_SYNTAX '%1$s' character could not be found in the charmap file.
Assigned code page IBM-1047 symbol '%2$s'.

Explanation: The LC_SYNTAX category was omitted, or the character was omitted from
the LC_SYNTAX category, and the localedef utility attempted to assign the default value.
The specified symbolic name was not found in the charmap file, and the character has been
assigned the code point value from the IBM-1047 code page.

Programmer Response: Specify the character in the LC_SYNTAX category that exists in
charmap file, or change the charmap file to include the specified symbolic name.

System Action: The local is still created.

EDC4159 30 Duplicate characters for '%1$s' and '%2$s' found in LC_SYNTAX.

Explanation: The specified characters from the LC_SYNTAX category have the same code
points assigned.

Programmer Response: Change the characters to specify different code points for each of
the LC_SYNTAX characters.

System Action: The locale has not been build.

EDC4160 10 The '%1$s' keyword is not supported and was ignored.

Explanation: The specified keyword is not defined in the POSIX standard.

Programmer Response: Remove the specified keyword.

System Action: The undefined keyword is ignored and locale has been created.

EDC4161 10 The <mb_cur_max> keyword must be defined as 1 or 4, you have defined
it as %1$d. Value is ignored.

Explanation: The <mb_cur_max> keyword can have the value of 1 for single-byte charac-
ters only, or 4 to support DBCS characters. Values of other than 1 or 4 are ignored.

Programmer Response: Specify <mb_cur_max> as either 1 or 4.

System Action: The value is ignored and locale has been created. If BLDERR option is
specified, the value of 1 is used.

EDC4162 30 Both <shift_in> and <shift_out> must be specified or neither specified.

Explanation: Either the <shift_in> keyword or the <shift_out> keyword have been specified,
but not both.

Programmer Response: Specify either both or neither <shift_in> and <shift_out>.

System Action: The locale has not been created.

408 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC4163 30 N EDC4168 10

EDC4163 30 You have exceeded the maximum number of alternate strings for
alt_digits.

Explanation: Up to 100 alternate strings can be specified for the alt_digits keyword for the
values from zero to 99.

Programmer Response: Remove the extra alternate strings.

System Action: The locale has not been created. If BLDERR option is specified, the extra
strings are ignored.

EDC4164 30 The grouping string '%1$s' is invalid.

Explanation: The string specified for the LC_NUMERIC grouping keyword or
LC_MONETARY mon_grouping keyword is not in the correct format. The string should
consist of numbers in the range −1 and 254 separated by semicolons.

Programmer Response: Correct the grouping or mon_grouping string to be in the correct
format.

System Action: The locale has not been created.

EDC4165 10 The grouping string '%1$s' is invalid and had been truncated to '%2$s'.

Explanation: The string specified for the LC_NUMERIC grouping keyword or
LC_MONETARY mon_grouping keyword is not in the correct format. The string should
consist of numbers in the range −1 and 254 separated by semicolons, with no other numbers
or semicolons following the −1.

Programmer Response: Remove the characters from the grouping or mon_grouping string
following the −1.

System Action: The characters following the −1 were ignored and the locale has been
created.

EDC4166 30 The value '%1$d' for '%2$s' is invalid.

Explanation: The value %1$d specified is not a value for the specified keyword. For
example, the day is not valid for the specified month, or the month is not in the range from 1
to 12.

Programmer Response: Correct the value for the specified keyword to be within the
correct range for that keyword.

System Action: The locale has not been created. If BLDERR option is specified, localdef
assign 0 to value '%1$d'.

EDC4167 30 '%1$s' specified with no '%2$s'.

Explanation: The keyword specified can only be specified if the other keyword is also
specified. Either both or neither should be specified.

Programmer Response: Either remove the first keyword specified, or add the other
required keyword.

System Action: The locale has not been created.

EDC4168 10 'daylight_name' must be specified if Daylight Saving Time information is
to be used by the mktime and localtime functions.

Explanation: Keywords had been specified in the LC_TOD category, but the 'daylight_time'
keyword had not been specified. The other keywords will be ignored.

Programmer Response: Remove the other keywords from the LC_TOD category, or add
the 'daylight_time' keyword.

System Action: The locale has been build.

 Chapter 11. C Utility Messages 409

 EDC4169 30 N EDC4171 30

EDC4169 30 One-to-many mappings cannot be specified against a collating-symbol,
collating-element or the UNDEFINED symbol.

Explanation: A one-to-many mapping has been specified in the LC_COLLATE category
against a collating-symbol, collating-element or the UNDEFINED symbol. For example, all of
the following would cause this error message:

collating-symbol <HIGH>
collating-element <ch> from "<c><h>"
<HIGH> "<A>"
<ch> ""
UNDEFINED "<C>"

Programmer Response: Remove the one-to-many mapping from the collating-symbol,
collating-element or the UNDEFINED symbol.

System Action: The locale has not been build.

EDC4170 40 Write failed while writing to file %1$s.

Explanation: The write failed to the specified file.

Programmer Response: Look for a basic problem, such as insufficient disk space or lack
of access to the file. If you are still unable to determine the cause of the write failure, contact
your system programmer.

System Action: The locale has not been created.

EDC4171 30 The process code of the first character of the collating-element was
greater than the maximum process code.

Explanation: The wchar_t value for the first character in a collating-element was greater
than the largest character specified in the charmap file. This may occur if the charmap file
specifies <mb_cur_max> of 4, but did not specify the DBCS characters, and the collating-
element begins with a DBCS character.

Programmer Response: Either use a charmap file that specifies <mb_cur_max> of 1, or
change the collating-element to not start with a DBCS character.

System Action: The locale has not been created.

iconv Utility Messages
This section contains the iconv return codes and messages.

 Return Codes
The iconv utility returns the following return codes:

0 No errors were detected and the file was successfully converted from
the input codeset to the output codeset.

4 The specified conversions are not supported, the given input file cannot
be read, or there is a usage-syntax error.

8 An unusable character was encountered in the input file.

>8 A severe error occurred.

410 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC4151 10 N EDC4182 30

 Messages
The messages issued by the iconv utility have the following format:

Message Format: EDCnnnn s text <%n$x>

nnnn Error message number

s Error severity

10 Warning message
30 Error message

%n$x Substitution variable

% The start of the substitution variable
n The number that represents the line position of the variable
$ A delimiter
x The kind of variable (d=decimal, c=character, s=string)

The messages that can be issued are as follows:

EDC4151 10 Option %1$s is not valid and was ignored.

Explanation: The option specified in the message is not a valid iconv utility message, or a
valid option had been specified with an invalid value.

System Action: The specified option has been ignored.

Programmer Response: Rerun the iconv utility, specifying the correct option.

EDC4152 10 No matching right parenthesis for %1$s option.

Explanation: The option specified had a suboption beginning with a left parenthesis, but no
right parenthesis was present.

Programmer Response: Add the right parenthesis.

System Action: The option has been accepted as entered.

EDC4180 30 FROMCODE option had not been specified.

Explanation: The FROMCODE option is required, but had not been specified.

Programmer Response: Rerun the iconv utility, specifying the FROMCODE option.

System Action: The file has not been converted.

EDC4181 30 TOCODE option has not been specified.

Explanation: The TOCODE option is required, but has not been specified.

Programmer Response: Rerun the iconv utility, specifying the TOCODE option.

System Action: The file has not been converted.

EDC4182 30 Cannot open converter from %1$s to %2$s.

Explanation: The iconv utility could not locate the conversion from %1$s to %2$s.

Programmer Response: Check the %1$s and %2$s specified to ensure they are correct.

System Action: The file has not been converted.

 Chapter 11. C Utility Messages 411

 EDC4183 30 N EDC4189 30

EDC4183 30 Cannot open input file.

Explanation: The iconv utility could not open the input file.

Programmer Response: Verify that the correct file name has been specified and rerun the
iconv utility.

System Action: The file has not been converted.

EDC4184 30 Cannot open output file.

Explanation: The iconv utility could not open the output file.

Programmer Response: Correct the cause of the error and rerun the iconv utility.

System Action: The file has not been converted.

EDC4185 30 Invalid character found.

Explanation: An invalid character was detected in the input file and could not be converted.

Programmer Response: Correct the invalid character in the input file, or specify a different
FROMCODE and TOCODE.

System Action: The file is converted up to the record in error.

EDC4186 30 Truncated character found.

Explanation: The end of the file has been reached, and a truncated multibyte character
was detected.

Programmer Response: Correct the invalid character in the input file, or specify a different
FROMCODE and TOCODE.

System Action: The last character has not been converted.

EDC4187 30 Unable to allocate enough memory.

Explanation: The iconv utility could not allocate buffers for use when converting the file.

Programmer Response: Rerun the iconv utility with more memory.

System Action: The file has not been converted.

EDC4188 30 I/O error on file filename.

Explanation: An input or output error was detected with the filename.

This message is issued if the record format of the output file was fixed and the output
records did not have the same length as the output file, or if the record format of the output
file was variable and the output records were longer than the maximum record length.

Programmer Response: Correct the cause of the input/output error and rerun the iconv
utility.

System Action: The file is converted up to the record in error.

EDC4189 30 Unable to fetch messages file EDCIMSGE.

Explanation: The iconv utility could not fetch the message file EDCIMSGE.

Programmer Response: Ensure that the iconv utility has sufficient storage to run. Under
CMS, ensure that the GLOBAL LOADLIB command has been issued. Under MVS and TSO,
ensure that the correct libraries are specified on the STEPLIB DD statement.

System Action: The file has not been converted.

412 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC4151 10 N EDC4193 30

genxlt Utility Messages
The messages issued by the genxlt utility have the following format:

Message Format: EDCxxxx nn text <%n$x>

xxxx Error message number

nn Error severity

10 Warning message
30 Error message

%n$x Substitution variable

% The start of the substitution variable
n The number that represents the line position of the variable
$ A delimiter
x The kind of variable (d=decimal, s=string)

The messages that can be issued are as follows:

EDC4151 10 Option %1$s is not valid and was ignored.

Explanation: The option specified in the message is not a valid genxlt utility message, or
a valid option had been specified with an invalid value.

Programmer Response: Rerun the genxlt utility, specifying the correct option.

System Action: The specified option is ignored.

EDC4190 30 Unable to open data file.

Explanation: The genxlt utility could not open the input file.

Programmer Response: Check that the correct file name has been specified and rerun the
genxlt utility.

System Action: The conversion table has not been built.

EDC4191 30 Unable to open target file.

Explanation: The genxlt utility could not open the output file.

Programmer Response: Correct the cause of the error, and rerun the genxlt utility.

System Action: The conversion table has not been built.

EDC4192 30 There was no assignment for index %1$d.

Explanation: The character %1$d had not been assigned a character to which it must be
converted.

Programmer Response: Update the input file to specify a conversion value for the char-
acter specified.

System Action: The conversion table has not been built.

EDC4193 30 Unable to write for target file.

Explanation: An output error was detected with the output file.

Programmer Response: Correct the cause of the output error and rerun the genxlt utility.

 Chapter 11. C Utility Messages 413

 EDC4194 30 N EDC4195 30

EDC4194 30 Invalid format at line %1$d.

Explanation: The line %1$d is not valid. The conversion table has not been built.

Programmer Response: Correct the line in error and rerun the genxlt utility.

System Action: The conversion table has not been built.

EDC4195 30 Unable to fetch messages file EDCGMSGE.

Explanation: The genxlt utility could not fetch the message file EDCGMSGE.

Programmer Response: Ensure that the genxlt utility has sufficient storage to run. Under
CMS, ensure that the GLOBAL LOADLIB command has been issued. Under MVS and TSO,
ensure that the correct libraries are specified on the STEPLIB DD statement.

System Action: The file has not been converted.

414 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC5000I N EDC5002I

Chapter 12. C/C++ Run-Time Messages

The following run-time messages pertain to C/C++. Each message is followed by
an explanation describing the condition that caused the message, a programmer
response suggesting how you might prevent the message from occurring again,
and a system action indicating how the system responds to the condition that
caused the message.

The messages also contain a symbolic feedback code, which represents the first 8
bytes of a 12-byte condition token. You can think of the symbolic feedback code as
the nickname for a condition. As such, the symbolic feedback code can be used in
user-written condition handlers to screen for a given condition, even if it occurs at
different locations in an application.

The messages in this section contain alphabetic suffixes that have the following
meaning:

I Informational message
W Warning message
E Error message
S Severe error message
C Critical error message

EDC5000I No error occurred.

Explanation: The value of errno is zero.

Programmer Response: None.

System Action: None.

Symbolic Feedback Code: EDC4S8

EDC5001I A domain error occurred.

Explanation: An input argument to one of the math functions was outside the domain over
which the mathematical function is defined.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the math
functions that produced this error.

System Action: The math function fails.

Symbolic Feedback Code: EDC4S9

EDC5002I A range error occurred.

Explanation: The result of the math function could not be represented as a double value.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the math
functions that produced this error.

System Action: The math function fails.

Symbolic Feedback Code: EDC4SA

 Copyright IBM Corp. 1991, 2000 415

 EDC5003I N EDC5007I

EDC5003I Truncation of a record occurred during an I/O operation.

Explanation: Truncation occurred because: 1) the specified record length on the write
operation was larger than the record buffer size; 2) an attempt to extend the record buffer for
a CMS variable length file failed which caused record truncation; or 3) the record read in was
larger than the record buffer size.

Programmer Response: For a text stream, place the newline character earlier in the
record to shorten the record size. For a file opened for record I/O, specify a smaller number
of bytes for fread(), fwrite(), or fupdate().

System Action: The return value depends on the operation attempted. In all cases, the
buffer will be read or written up to the point where truncation occurred.

Symbolic Feedback Code: EDC4SB

EDC5004I The size of the specified record was too small.

Explanation: The record length was too small because the specified record size for an
fwrite() or fupdate() function was smaller than the minimum record length allowed for the
file.

Programmer Response: Increase the size or count parameter on the fwrite() or
fupdate() function.

System Action: In all cases, the write or update operation fails.

Symbolic Feedback Code: EDC4SC

EDC5005I A write operation may not immediately follow a read operation.

Explanation: If the last operation on a non-VSAM file opened for record I/O was a read, a
write operation may not directly follow.

Programmer Response: Invoke fflush(), rewind(), fseek(), or fsetpos() between the
read and write operations on the file stream.

System Action: The write operation fails.

Symbolic Feedback Code: EDC4SD

EDC5006I A read operation may not immediately follow a write operation.

Explanation: If the last operation on a file was a write, a read operation may not directly
follow.

Programmer Response: Invoke fflush(), rewind(), fseek(), or fsetpos() between the
write and read operations on the file stream.

System Action: The read operation fails.

Symbolic Feedback Code: EDC4SE

EDC5007I The I/O buffer could not be allocated.

Explanation: Memory was not available for the allocation of various buffers when invoking
any of the I/O functions.

Programmer Response: Run the program in a larger region.

System Action: The I/O function returns NULL or EOF.

Symbolic Feedback Code: EDC4SF

416 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC5008I N EDC5012I

EDC5008I The LRECL or BLKSIZE exceeded the maximum allowable value.

Explanation: On CMS, the resultant CMS LRECL was greater than 65535. On MVS, the
specified LRECL or BLKSIZE was greater than 32760.

Programmer Response: Change the open attributes specified to be within the valid limits.

System Action: The fopen()/freopen() function returns NULL.

Symbolic Feedback Code: EDC4SG

EDC5009I An I/O operation was attempted using an invalid FILE pointer.

Explanation: The FILE pointer that was input to the I/O function was not an active FILE
pointer created by fopen()/freopen().

Programmer Response: Ensure that the FILE pointer was created by fopen()/freopen(),
and that no I/O operation is attempted after fclose().

System Action: The specified I/O operation fails.

Symbolic Feedback Code: EDC4SH

EDC5010I A read operation was attempted on a file that was not opened for reading.

Explanation: When a read operation (for example, fgetc(), fread()) is invoked, the file
specified must be opened in a mode that supports reading.

Programmer Response: Open the file with a mode that supports reading. The following
modes do NOT support reading: 'w', 'wb', 'a', or 'ab'.

System Action: The read operation fails.

Symbolic Feedback Code: EDC4SI

EDC5011I The number of ungetc() push-back characters has exceeded the maximum
allowed.

Explanation: An ungetc() was attempted but could not be honored because there were
already pushed-back characters waiting to be read, and the number of pushed-back charac-
ters already equalled the maximum allowed.

Programmer Response: Either read a pushed-back character, or reposition the file before
attempting to push back another character.

System Action: The ungetc() function returns EOF.

Symbolic Feedback Code: EDC4SJ

EDC5012I File positioning is not allowed for this data set.

Explanation: An attempt was made to either acquire the file position or reposition the file
using an I/O function that is not supported by the file.

Programmer Response: For non-VSAM files, do not open the file with the NOSEEK
option. For VSAM PATH data sets, position the FILE pointer to the beginning of the data set,
or do not issue the ftell() or fseek() functions. If the data set resides on a device that
does not support repositioning, either move the data set or do not use the positioning func-
tions.

System Action: The function fails.

Symbolic Feedback Code: EDC4SK

 Chapter 12. C/C++ Run-Time Messages 417

 EDC5013I N EDC5017I

EDC5013I No hiperspace blocks are available for expansion.

Explanation: A hiperspace has been filled to its maximum allowed size. An attempt has
been made to add more data to the hiperspace.

Programmer Response: Check with your system programmer to see if there is currently a
shortage of resources for hiperspaces.

System Action: The write operation fails.

Symbolic Feedback Code: EDC4SL

EDC5014I An attempt was made to acquire a position that is before the start of the
file.

Explanation: The ftell() and fgetpos() functions cannot return a file position when char-
acters are pushed back using ungetc() at the start of the file. This is because the resultant
position ends up being before the start of the file, and this is not a valid position.

Programmer Response: Do not call ftell() or fgetpos() if you push back characters
before the start of the file, unless you either read them or discard them using a reposition
first.

System Action: Function ftell() or fgetpos() fails.

Symbolic Feedback Code: EDC4SM

EDC5015I The file position value was beyond the limits that ftell() can represent in a
long integer value.

Explanation: The current position lies outside the bounds that can be represented by the
ftell() encoding scheme. For fixed format binary streams, this is a file position beyond rela-
tive byte number 2147483647. For other files, the limit is based on the relative block or
record number. For CMS files with LRECL between 32KB and 64KB, this limit is 65536
records. For all other files, the maximum depends on the block size. Smaller block sizes
allow more records to be encoded. The maximum is at least 131072 records.

Programmer Response: The fgetpos() function can be used to report file positions that
ftell() cannot. The fsetpos() function must then be used to perform the repositioning at a
later time.

System Action: The ftell() function fails (return -1 (EOF)).

Symbolic Feedback Code: EDC4SN

EDC5016I Byte I/O was attempted on a file that was opened for record I/O.

Explanation: One of the byte I/O functions was invoked with a file that was opened using
'type=record'.

Programmer Response: Only the fread(), fwrite(), and fupdate() functions may be
used to read, write, or update a file opened for record I/O.

System Action: The requested function fails.

Symbolic Feedback Code: EDC4SO

EDC5017I A write operation was attempted on a file that was not opened for writing.

Explanation: When a write operation (for example, fputc(), fwrite()) is invoked, the file
specified must have been opened for writing.

Programmer Response: Open the file with a mode that supports writing. The following
modes do not support writing: 'r', 'rb'.

System Action: The write operation fails.

Symbolic Feedback Code: EDC4SP

418 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC5018I N EDC5022I

EDC5018I An ungetc() function call cannot immediately follow a write operation.

Explanation: A reposition function or flush must occur between a write operation and
ungetc().

Programmer Response: Invoke either fflush(), rewind(), fseek(), or fsetpos() before
calling ungetc().

System Action: The ungetc() function returns EOF.

Symbolic Feedback Code: EDC4SQ

EDC5019I An unrecoverable error has permanently marked the file in error.

Explanation: A previous I/O operation has failed such that the current file pointer is no
longer valid. Only the fclose() and freopen() functions are permitted.

Programmer Response: Check the return codes of previous I/O operations, or set up a
SIGIOERR handler to determine the source of the error. When you have determined which C
function has generated the error, issue perror() to get the original error message.

System Action: The operation fails.

Symbolic Feedback Code: EDC4SR

EDC5020I An attempt to allocate memory in the Language Environment has failed.

Explanation: The Language Environment's attempt to obtain memory in order to satisfy the
current library request has failed.

Programmer Response: Run the program in a larger region, or use the HEAP(,,FREE)
run-time option instead of the HEAP(,,KEEP) option.

System Action: The requested function fails.

Symbolic Feedback Code: EDC4SS

EDC5021I The file attributes for open create an invalid combination.

Explanation: An invalid combination was caused by merging the characteristics specified
on the fopen()/freopen() call, the ddname declaration, or the existing file attributes.

Programmer Response: Adjust the LRECL and BLKSIZE parameters on the
fopen()/freopen() call, or adjust the attributes specified with the ddname so a valid combi-
nation will be created. See OS/390 C/C++ Programming Guide for details on attribute
merging and valid combinations.

System Action: The fopen()/freopen() function returns NULL.

Symbolic Feedback Code: EDC4ST

EDC5022I An error occurred while generating a temporary name.

Explanation: The tmpnam() function was called to generate a temporary file name.
However, a name, which did not already exist, could not be generated within the maximum
number of attempts.

Programmer Response: Verify that the time() and clock() functions are working correctly
on your system. If so, try erasing all unused files that were created by the tmpnam() function,
and retry the function. Contact your IBM Support Center if error still occurs.

System Action: The tmpnam() function fails and returns NULL.

Symbolic Feedback Code: EDC4SU

 Chapter 12. C/C++ Run-Time Messages 419

 EDC5023I N EDC5027I

EDC5023I An attempt to back up position has failed.

Explanation: One or more ungetc() calls are outstanding when an fgetpos() or ftell() is
called such that the file position is really in the previous physical block. An attempt by the
Language Environment to back up the file to acquire the position has failed.

Programmer Response: Check the __amrc structure for more information. See OS/390
C/C++ Programming Guide for more information on the __amrc structure.

System Action: The ftell()/fgetpos() function fails.

Symbolic Feedback Code: EDC4SV

EDC5024I An attempt was made to close a file that had been opened on another
thread.

Explanation: A file that was opened on one thread was closed on another.

Programmer Response: All files must be closed on the same thread on which they were
opened.

System Action: The close operation fails.

Symbolic Feedback Code: EDC4T0

EDC5025I An I/O function was invoked when a read was pending for a file that had
been intercepted.

Explanation: A file that was intercepted under the debugging tool was expecting input
when an I/O function for that file was invoked from the debugging session.

Programmer Response: Do not recursively invoke library I/O functions when a read is
pending. Supply the expected data and then invoke the I/O function.

System Action: The I/O function fails.

Symbolic Feedback Code: EDC4T1

EDC5026I An error occurred when expanding hiperspace.

Explanation: An error occurred trying to expand a hiperspace to more than its current size,
but less than equal to its maximum allowable size.

Programmer Response: Check the __amrc structure for the return code from HSPSERV.
See OS/390 C/C++ Programming Guide for more information on the __amrc structure.

System Action: The write operation fails.

Symbolic Feedback Code: EDC4T2

EDC5027I The position specified to fseek() was invalid.

Explanation: One of the following occurred: 1) a whence value other than SEEK_SET,
SEEK_CUR, or SEEK_END was specified; 2) the specified position was before the start of
the stream; or 3) the specified position was beyond the end of the stream and the stream
was not a binary file.

Programmer Response: Correct the offset/whence parameters on the fseek() function to
be a valid position, or open the file in binary mode if the user wants file positions beyond
EOF to result in null extension to the file.

System Action: The fseek() function fails.

Symbolic Feedback Code: EDC4T3

420 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC5028I N EDC5032I

EDC5028I A previous I/O error has marked the stream invalid for further I/O proc-
essing.

Explanation: A serious error has occurred in a previous I/O operation such that further I/O
cannot be continued. The routine that caused the original error had set errno previously, but
it will have changed because of this errno value. The clearerr() function will not clear this
type of error.

Programmer Response: Check the return code values of previous I/O operations to detect
which operation originated the system I/O failure and get the errno value. Use this list to find
a prescribed action, or attempt a rewind() or fsetpos() to clear the internal error marker
and reestablish the file position.

System Action: The current I/O operation fails.

Symbolic Feedback Code: EDC4T4

EDC5029I An unrecognized signal value was passed to the signal() or raise() function.

Explanation: The signal value passed into the signal() or raise() function was not one of
the valid signals as defined in signal.h.

Programmer Response: Pass either SIGIOERR, SIGFPE, SIGSEGV, SIGILL, SIGABRT,
SIGTERM, SIGINT, SIGTERM, SIGUSR1, SIGUSR2, or SIGABND to the signal() or
raise() function.

System Action: The signal() or raise() function returns SIG_ERR.

Symbolic Feedback Code: EDC4T5

EDC5030I An invalid argument was passed.

Explanation: The setenv() function has been called with a '=' sign in the environment
variable name. This is an invalid argument.

Programmer Response: Remove the '=' sign from the environment variable name.

System Action: The setenv() function fails.

Symbolic Feedback Code: EDC4T6

EDC5031I An attempt was made to close a stream not belonging to the current main
program.

Explanation: The user has passed a file pointer across a system call boundary and has
attempted to close or reopen the file in the child program.

Programmer Response: The program is invalid and must be changed. The suggested
change is to close the file in the parent program before the system() call. The file can then
be reopened in the child program, if required. Upon returning to the parent program, the file
can again be reopened.

System Action: The fclose()/freopen() function fails.

Symbolic Feedback Code: EDC4T7

EDC5032I An error was detected in the input string passed to the system() function.

Explanation: When the system() function was invoked and 'PGM=' was specified for an
MVS-style parameter list, either the 'PARM=' string was not specified or invalid characters
were found on the 'PARM=' string.

Programmer Response: Correct the parameter string passed to the system() function, or
use a VM-style parameter list.

System Action: The system() function fails.

Symbolic Feedback Code: EDC4T8

 Chapter 12. C/C++ Run-Time Messages 421

 EDC5033I N EDC5037I

EDC5033I An attempt was made to extend a non-extendable file.

Explanation: While updating a partitioned data set member or a concatenated dataset, an
attempt was made to extend the file.

Programmer Response: If extension is required to a member, open the old member in
read mode and copy the contents to a new member that is opened for write. Because the
new member is opened in write mode, it can be extended. Close both the old and new
members, and then delete the old member with the remove() function. Rename the new
member using the rename() function so that it appears to be the old member, now extended.
You cannot extend the concatenation for a concatenated data set.

System Action: The I/O write operation fails.

Symbolic Feedback Code: EDC4T9

EDC5034I An unsupported buffering mode was specified for the setvbuf() function.

Explanation: The buffer type specified as a parameter for the setvbuf() function was
unsupported, or a buffer mode other than line buffered (_IOLBF) was specified for a terminal
device type.

Programmer Response: Specify one of the following supported buffer types: _IOFBF (full
buffering) or _IOLBF (line buffering).

System Action: The setvbuf() function fails.

Symbolic Feedback Code: EDC4TA

EDC5035I An attempt was made to change the buffering mode after an operation on a
file.

Explanation: A call was made to the setvbuf() function after the file had been read or
written.

Programmer Response: Use the setvbuf() function to set the buffering mode before any
read or write I/O operations are done.

System Action: The setvbuf() function returns EOF.

Symbolic Feedback Code: EDC4TB

EDC5036I The specification of a member is invalid.

Explanation: On a remove() or rename() function call, a member has been specified for a
file that does not have members, or a member has been specified for one name of a
rename() function call, but not for the second name.

Programmer Response: If the file does not have members, remove the member specifica-
tion. If this is a rename() call and only one name specifies a member, either remove the
member specification or add a member specification to the second name.

System Action: The remove()/rename() function fails.

Symbolic Feedback Code: EDC4TC

EDC5037I The specified ddname was not found.

Explanation: A ddname was specified for a file name parameter, but the ddname was not
defined. The functions that support ddnames as file names are fopen(), freopen(), and
remove().

Programmer Response: See OS/390 C/C++ Programming Guide for details on how to
define a ddname in the environments supported. See OS/390 C/C++ Run-Time Library Ref-
erence for the math functions.

System Action: The function fails.

Symbolic Feedback Code: EDC4TD

422 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC5038I N EDC5042I

EDC5038I An error occurred when the system flushed terminal output before
retrieving terminal input.

Explanation: When a terminal read cannot get any data from the buffer and must perform
a system terminal read, all terminal output data not yet flushed to the system must be output.
While writing the unflushed terminal output data, an error occurred.

Programmer Response: Change the code so all terminal output is completed and flushed
to the terminal before the terminal input operation. Check all return codes to find out if any
output operation gets an error; then check the errno value for further information regarding
any errors encountered.

System Action: The terminal input operation fails.

Symbolic Feedback Code: EDC4TE

EDC5039I A writable CMS minidisk could not be found to hold the output file speci-
fied.

Explanation: An attempt has been made to open a CMS minidisk file for 'write' or
'append', but there is no CMS minidisk accessed 'r/w' to write the output file.

Programmer Response: Access a CMS minidisk in 'r/w' mode.

System Action: The fopen()/freopen() function fails.

Symbolic Feedback Code: EDC4TF

EDC5040I An attempt was made to open a flat file as a PDS.

Explanation: When a memory file is created without members, its name cannot be used
with a member specified.

Programmer Response: Either specify a memory file that already has members, or
remove the flat memory file before specifying the open with the member specified and open
the file for 'write'.

System Action: The fopen()/freopen() function fails.

Symbolic Feedback Code: EDC4TG

EDC5041I An error was detected at the system level when opening a file.

Explanation: A system level error was detected.

Programmer Response: Look in the __amrc structure for further details regarding the
error. See OS/390 C/C++ Programming Guide for more information on the __amrc structure.
Or check the MVS job log for an error message.

System Action: The fopen()/freopen() function fails.

Symbolic Feedback Code: EDC4TH

EDC5042I A special internally-generated memory file name was specified for opening,
but a memory file with this name does not exist.

Explanation: A name was specified of the form: '((x))', where 'x' is a decimal number,
but the name did not match an existing memory file. A name of this format may not be used
to create a memory file. The name is generated internally by C/MVS when a user opens a
memory file with a name of '*' for output. C/MVS generates the name so that the user can
acquire it using the fldata() function and then can read, update, append, or remove the
memory file.

Programmer Response: If using memory files created with a name of '*', issue fldata()
to acquire the correct name. If the name was properly acquired using fldata(), make sure it
has not been closed and removed before opening the generated name.

System Action: The fopen()/freopen() function fails.

 Chapter 12. C/C++ Run-Time Messages 423

 EDC5043I N EDC5047I

Symbolic Feedback Code: EDC4TI

EDC5043I An attempt was made to open a non-memory file as a memory file.

Explanation: An open for read has specified 'type=memory', but the file is not a memory
file.

Programmer Response: Remove the 'type=memory' specification on the
fopen()/freopen().

System Action: The fopen()/freopen() function fails.

Symbolic Feedback Code: EDC4TJ

EDC5044I An error occurred when attempting to erase a CMS file.

Explanation: When the remove() function was invoked, either the CMS file was not found
to be erased, or an error occurred when the system attempted to erase the file.

Programmer Response: Ensure that the file name specified to the remove() function exists
and is on a disk accessed for write.

System Action: The remove() function fails.

Symbolic Feedback Code: EDC4TK

EDC5045I The operation attempted could not be performed because the file was open.

Explanation: An attempt was made to remove or rename a file that was still open, or an
attempt was made to open a file for output or append that was already open.

Programmer Response: The remove() function can only be invoked with files that have
been closed. The fopen() function cannot open a memory or disk file for
write/update/append if the file is already opened. A memory file opened with a member spec-
ified will prevent the name from being used without a member, and vice-versa. For example,
it is not possible to have memory files: 'a.b' and 'a.b(c)' opened at the same time. In either
case, the original open file must be closed.

System Action: The remove(), rename(), fopen(), or freopen() function fails.

Symbolic Feedback Code: EDC4TL

EDC5046I The file could not be deleted.

Explanation: The remove() function could not remove the file specified on MVS.

Programmer Response: Verify that the file name specified to the remove() function is
erasable.

System Action: The remove() function fails.

Symbolic Feedback Code: EDC4TM

EDC5047I An invalid file name was specified as a function parameter.

Explanation: The name specified to the remove(), rename(), fopen(), or freopen() func-
tions was invalid. The name is either not valid for the system (MVS, CMS), is not a valid
memory file name, or is a '*' or GDG data set name specified to the rename() function.

Programmer Response: Specify a valid file name according to the system, or to the
memory file name rules to the remove(), rename(), fopen(), and freopen() functions.

System Action: The invoked function fails.

Symbolic Feedback Code: EDC4TN

424 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC5048I N EDC5053S

EDC5048I A Language Environment internal routine has failed unexpectedly.

Explanation: An internal call to a Language Environment internal routine has failed, but the
failure is not anticipated, and recovery is not possible.

Programmer Response: Contact your IBM Support Center.

System Action: Current library function using an internal routine fails.

Symbolic Feedback Code: EDC4TO

EDC5049I The specified file name could not be located.

Explanation: When the rename() function was invoked, the old file name could not be
found or the new file name could not be allocated or, when the fopen()/freopen() function
was invoked, the specified file name opened for read could not be found.

Programmer Response: Verify that the specified file exists.

System Action: The fopen(), freopen(), or rename() function fails.

Symbolic Feedback Code: EDC4TP

EDC5051I An error occurred when renaming a file.

Explanation: A rename error has occurred.

Programmer Response: For disk files, ensure that the old file name exists. For memory
files, ensure that different names are specified to the rename() function and that PDS-style
naming conventions are used consistently for old and new names. For MVS, check the
__amrc for further details.

System Action: The rename() function fails.

Symbolic Feedback Code: EDC4TR

EDC5052S The application is running with AMODE=24 while the run-time library was
installed above the line.

Explanation: The application which is accessing the run-time library is running with
AMODE=24. But the run-time library was installed above the 16MB line, which the applica-
tion cannot address.

Programmer Response: Ensure the AMODE of the application matches that of the run-
time library. If you must run with AMODE=24, then the run-time library must be installed
below the line. Otherwise, relink your application to have AMODE=31. If the application is
using Language Environment Preinitialization services, ensure that the high order bit is on in
either the supplied entry point address of PIPI table entries or the specified routine entry on
the PIPI call to add_entry for adding an entry to the PIPI table.

System Action: Application is terminated with 3000 abend.

Symbolic Feedback Code: EDC4TS

EDC5053S The Language Environment run-time library load module EDCZ24 could not
be loaded.

Explanation: An error has occurred when Language Environment tried to load the run-time
library load module EDCZ24.

Programmer Response: Check the data sets in the go steplib for the job to ensure that
EDCZ24 is available. (For example, check SCEERUN.)

System Action: The program ends and a traceback or dump is issued, depending on the
TERMTHDACT run-time option. A return code of 3000 is returned.

Symbolic Feedback Code: EDC4TT

 Chapter 12. C/C++ Run-Time Messages 425

 EDC5054I N EDC5060I

EDC5054I An attempt to override the disposition was ignored. The file may still be
removed.

Explanation: The remove() function attempted to delete the data set by using a disposition
of DELETE. The data set would not allow an override of the disposition.

Programmer Response: Change the disposition on the original allocation, or remove the
data set outside of your C program.

System Action: The remove() function fails, but the data set may have been removed if
the original allocation specified DELETE as the normal disposition.

Symbolic Feedback Code: EDC4TU

EDC5055I An error occurred trying to remove the file before its expiration date.

Explanation: When the remove() function attempted to erase the file, an error was returned
indicating that the expiration date had not yet occurred.

Programmer Response: Change the expiration date of the data set.

System Action: The remove() function fails.

Symbolic Feedback Code: EDC4TV

EDC5057I The open mode string was invalid.

Explanation: The mode string passed to the fopen()/freopen() function was found to have
invalid keywords, combinations, or characters.

Programmer Response: Correct the mode string and reissue the fopen()/freopen().

System Action: The fopen()/freopen() function fails.

Symbolic Feedback Code: EDC4U1

EDC5059I An attempt to reposition a VSAM file failed.

Explanation: When the flocate() function was invoked, the reposition was not successful,
or rewind() could not position to the beginning of the file.

Programmer Response: For flocate(), verify that the attributes of the VSAM file match
the type of repositioning being attempted. For a rewind() error, check the __amrc structure.
See OS/390 C/C++ Programming Guide for more information on the __amrc structure.

System Action: The flocate() function fails. The rewind() function does not reposition to
the start of the data set.

Symbolic Feedback Code: EDC4U3

EDC5060I An invalid file position was passed to the fsetpos() function.

Explanation: When fsetpos() was invoked, the fpos_t structure passed did not represent a
valid position in the current file.

Programmer Response: Verify that the fpos_t structure set by fgetpos() is a valid file
position before calling fsetpos(). Also verify that the file has not changed between the time
of the fgetpos() and fsetpos().

System Action: The fsetpos() function fails.

Symbolic Feedback Code: EDC4U4

426 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC5061I N EDC5072I

EDC5061I An error occurred when attempting to define a file to the system.

Explanation: The fopen()/freopen() function or the remove() function could not success-
fully allocate or FILEDEF the specified file.

Programmer Response: Check the __amrc structure for more information. See OS/390
C/C++ Programming Guide for more information on the __amrc structure.

System Action: The fopen(), freopen(), or remove() function fails.

Symbolic Feedback Code: EDC4U5

EDC5063I An error was detected in an internal control block.

Explanation: One of the internal I/O control blocks was corrupted and is causing unex-
pected behavior.

Programmer Response: Ensure that the application program is not overwriting storage. If
the error cannot be located, contact the IBM Support Center.

System Action: The I/O operation fails and the stream is marked as invalid for further I/O.

Symbolic Feedback Code: EDC4U7

EDC5065I A write system error was detected.

Explanation: A system level write error has occurred.

Programmer Response: Check the __amrc structure for more information. See OS/390
C/C++ Programming Guide for more information on the __amrc structure.

System Action: The write operation fails.

Symbolic Feedback Code: EDC4U9

EDC5066I A read system error was detected.

Explanation: A system level read error has occurred.

Programmer Response: Check the __amrc structure for more information. See OS/390
C/C++ Programming Guide for more information on the __amrc structure.

System Action: The read operation fails.

Symbolic Feedback Code: EDC4UA

EDC5067I An attempt was made to open a nonexistent file for read.

Explanation: The fopen()/freopen() function was invoked for read, but the file specified
did not exist, or the data set name '*' was attempted to be opened for read in MVS batch.

Programmer Response: Ensure that the file to be opened for read exists, or that the inter-
active terminal is not being opened for read in MVS batch.

System Action: The fopen()/freopen() function fails.

Symbolic Feedback Code: EDC4UB

EDC5072I An attempt was made to open a KSDS or Path VSAM data set without spec-
ifying record I/O.

Explanation: Key Sequenced VSAM data sets and Path VSAM data sets may not be
opened as streams for writing. Only Entry Sequenced VSAM data sets and Relative Record
VSAM data sets may be opened this way.

Programmer Response: Change the type string parameter on the fopen() function to
include 'type=record'.

System Action: The fopen()/freopen() function returns NULL.

 Chapter 12. C/C++ Run-Time Messages 427

 EDC5073I N EDC5078I

Symbolic Feedback Code: EDC4UG

EDC5073I The maximum number of attempts to obtain temporary names was
exceeded.

Explanation: The tmpnam() function was invoked more than the maximum number of times
allowed.

Programmer Response: The programmer should alter the application to minimize the
number of calls to tmpnam(). The system can only ensure that TMP_MAX calls will work.

System Action: The tmpnam() function returns NULL and does not generate any more
unique names.

Symbolic Feedback Code: EDC4UH

EDC5074I The open parameters were missing the 'type=record' specifier.

Explanation: The open type keyword parameter 'acc=' is not valid unless 'type=record' is
also specified.

Programmer Response: Specify 'type=record' on the fopen()/freopen() statement.

System Action: The fopen()/freopen() function returns NULL.

Symbolic Feedback Code: EDC4UI

EDC5076I An fread() was not performed before calling the fdelrec() or fupdate() func-
tions.

Explanation: The fdelrec() and fupdate() functions may not be invoked without first
calling the fread() function.

Programmer Response: Invoke the fread() function directly before these functions.

System Action: The fdelrec() and fupdate() functions fail.

Symbolic Feedback Code: EDC4UK

EDC5077I An error occurred trying to erase a VSAM record.

Explanation: The fdelrec() function could not successfully erase the last record read from
the specified VSAM file.

Programmer Response: Examine the values of __amrc__code__feedback__rc and
__amrc__code__feedback__fdbk immediately after receiving this errno. Look up the __rc
and __fdbk values in a VSAM Macro Reference manual, such as MVS/ESA VSAM
Administration: Macro Instruction Reference. __rc corresponds to the register 15 value,
__fdbk corresponds to the Reason Code. See OS/390 C/C++ Programming Guide for more
information on the __amrc structure.

System Action: The fdelrec() function fails.

Symbolic Feedback Code: EDC4UL

EDC5078I The requested operation is valid only for VSAM data sets.

Explanation: The fdelrec(), flocate() and fupdate() functions may only be invoked with
VSAM data sets.

Programmer Response: Use the fseek()/ftell() or fgetpos()/fsetpos() functions for
positioning within a non-VSAM file. To update, use fread()/fwrite() or the byte I/O func-
tions instead of fupdate().

System Action: The fdelrec(), flocate() and fupdate() functions fail.

Symbolic Feedback Code: EDC4UM

428 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC5079I N EDC5086I

EDC5079I The file was not opened with a 'type=record' specification.

Explanation: The fdelrec() and fupdate() functions are not valid for VSAM data sets
opened as streams.

Programmer Response: Change the fopen() type parameter string to include
'type=record'.

System Action: The fdelrec() and fupdate() functions failed.

Symbolic Feedback Code: EDC4UN

EDC5080I An invalid option was passed to the flocate() function.

Explanation: The parameter that specifies the position options to the flocate() function
contained an invalid value.

Programmer Response: Use one of the following as the options parameter:
__KEY_FIRST, __KEY_LAST, __KEY_EQ, __KEY_EQ_BWD, __KEY_GE, __RBA_EQ or
__RBA_EQ_BWD, as defined in stdio.h.

System Action: The flocate() function fails.

Symbolic Feedback Code: EDC4UO

EDC5083I An error occurred attempting to load a module into storage.

Explanation: The library has attempted to dynamically load a module and a failure
resulted. This is usually as a result of a system() call.

Programmer Response: Verify that the specified program/command has been made
accessible for loading. You may also need to adjust your region size. For MVS batch, check
the job log for messages which will help to pinpoint the name of the module.

System Action: The called library function fail.

Symbolic Feedback Code: EDC4UR

EDC5084I The program was not run because of redirection errors on the command
line.

Explanation: An error was detected when the input string to main() was being parsed. One
of the following may have occurred: 1) the file name specified with the redirection symbols
could not be opened (for read, write, or append); 2) the file name specified with the write
redirection symbol was already opened; or 3) the same redirection symbol was specified
more than once in the command string.

Programmer Response: Correct the input string passed to main and if the system() call is
being used to invoke another C main() program, the files that are still open in the first
program will be considered open when the redirection statements are being verified.

System Action: This errno is used internally to generate the redirection error message.
The program is terminated or the system() call returns the failure and does not invoke the
second program.

Symbolic Feedback Code: EDC4US

EDC5086I An unsupported open mode was specified for a PDS member.

Explanation: The fopen()/freopen() function was incorrectly invoked specifying write-
update, append, or append-update for a PDS member.

Programmer Response: Open a PDS member with open modes: read, read-update, or
write.

System Action: The fopen()/freopen() function fails.

Symbolic Feedback Code: EDC4UU

 Chapter 12. C/C++ Run-Time Messages 429

 EDC5087I N EDC5092I

EDC5087I The specified file characteristics did not match those of the existing file.

Explanation: The fopen()/freopen() was attempting to perform an open that used an
existing data set, but found that the specified attributes did not match the existing file attri-
butes; specifically, LRECL, BLKSIZE, or record format.

Programmer Response: Verify that the attributes of the physical file are as expected by
the application program.

System Action: The fopen()/freopen() function fails.

Symbolic Feedback Code: EDC4UV

EDC5088I An invalid open mode was specified for the current device.

Explanation: The following open modes and device types are invalid combinations: 1)
opening the interactive terminal for update; 2) reading a display or printer; 2) writing to a
character reader; 3) updating a magnetic tape device; 4) opening SYSIN or SYSOUT for
'append' or 'update'; 5) opening SYSIN for anything except 'read'; or 6) opening
SYSOUT 'read'.

Programmer Response: Correct the open mode on the fopen()/freopen() call and/or
verify the that the current device type is what is expected.

System Action: The fopen()/freopen() function fails.

Symbolic Feedback Code: EDC4V0

EDC5089I Open mode is invalid for a SYSIN or SYSOUT data set.

Explanation: One of the following was attempted: 1) opening a JCL instream data set for
'update', 'write', or 'append'; 2) opening a SYSOUT data set for 'read' or 'update'.

Programmer Response: Correct the open mode on the fopen()/freopen() call.

System Action: The fopen()/freopen() function fails.

Symbolic Feedback Code: EDC4V1

EDC5091I The requested function could not be performed because a system utility
failed.

Explanation: A system level utility used by the library unexpectedly returned a failure code.

Programmer Response: Check the __amrc structure and OS/390 C/C++ Programming
Guide for further details.

System Action: The requested function fails.

Symbolic Feedback Code: EDC4V3

EDC5092I An I/O abend was trapped.

Explanation: An I/O abend has occurred during an I/O operation (open, read, write, posi-
tion, or close) and has been trapped. Recovery was attempted.

Programmer Response: Check the __amrc structure defined in OS/390 C/C++ Program-
ming Guide for an explanation of the fields.

System Action: The I/O operation fails. The stream is marked in error and all further I/O
operations on this stream fail.

Symbolic Feedback Code: EDC4V4

430 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC5094I N EDC5101I

EDC5094I An attempt was made to push back the EOF character using ungetc().

Explanation: The ungetc() function may not be invoked with the EOF character.

Programmer Response: Do not call ungetc() with EOF.

System Action: The ungetc() function fails.

Symbolic Feedback Code: EDC4V6

EDC5095I The requested CMS minidisk was not accessed.

Explanation: The fopen()/freopen() function could not open the CMS file specified
because the specified minidisk was not accessed.

Programmer Response: Access the correct disk when attempting to open a file.

System Action: The fopen()/freopen() function fails.

Symbolic Feedback Code: EDC4V7

EDC5098I An invalid RECFM was specified when opening a PDS member.

Explanation: The resultant record format for the open function is invalid. Under CMS,
record formats containing ASA characters or machine characters are invalid for PDS
members, as well as files with the spanned attribute. Under MVS, spanned record formats
are not valid.

Programmer Response: Issue the fopen()/freopen() function with valid attributes, or
verify the attributes specified when the ddname is defined.

System Action: The fopen()/freopen() function fails.

Symbolic Feedback Code: EDC4VA

EDC5099I The function specified is not supported under CICS.

Explanation: The function specified is not supported under CICS.

Programmer Response: Refer to OS/390 C/C++ Programming Guide for more information
on running with C/MVS under CICS.

System Action: The specified function fails.

Symbolic Feedback Code: EDC4VB

EDC5100I An attempt was made to perform disk file I/O under CICS.

Explanation: The fopen(), freopen(), rename() and remove() functions only support
memory files. The standard streams must be memory files or use the specified queues.

Programmer Response: Only invoke fopen(), freopen(), rename() or remove() with
memory files when running under CICS.

System Action: The fopen(), freopen(), rename(), and remove() functions fail, and all
writes to stdout/stderr fail.

Symbolic Feedback Code: EDC4VC

EDC5101I The transient data queue was not enabled for the standard streams.

Explanation: An attempt was made to write to stdout or stderr, when running under CICS,
when the requested transient data queue was not enabled.

Programmer Response: Ensure that the DFHDCT macro has been assembled and
defined correctly in the start-up CICS JCL. The systems programmer will know the name,
type of queue, and associated ddnames at your installation.

System Action: The write I/O operation fails.

 Chapter 12. C/C++ Run-Time Messages 431

 EDC5102I N EDC5108I

Symbolic Feedback Code: EDC4VD

EDC5102I The transient data queue was not opened for the standard streams.

Explanation: When the first I/O operation was requested for stdout or stderr when running
under CICS, the Transient Data Queue inquiry indicated that the requested TD queue was
not opened.

Programmer Response: Verify that the start-up CICS JCL opened the specified TD
queues correctly.

System Action: The write I/O operation fails.

Symbolic Feedback Code: EDC4VE

EDC5103I An attempt was made to map remote queues to the standard streams under
CICS.

Explanation: When the first I/O operation was requested for stdout or stderr when running
under CICS, the Transient Data Queue inquiry indicated that the requested queue was a
REMOTE queue.

Programmer Response: Correct the start-up JCL to specify (using the DFHDCT macro)
the standard stream queues to be EXTRAPARTITION, INTRAPARTITION, or INDIRECT.

System Action: The write I/O operation fails.

Symbolic Feedback Code: EDC4VF

EDC5106I An error occurred creating a hiperspace memory file.

Explanation: An error has occurred while trying to create a hiperspace for a
'type=memory(hiperspace)' file. The error may result from a shortage of resources.

Programmer Response: Check with your system programmer if hiperspace facilities are
available at your installation, and if available, if there is currently a shortage of resources for
hiperspaces.

System Action: The fopen()/freopen() or other I/O operation fails.

Symbolic Feedback Code: EDC4VI

EDC5107I An error occurred writing to a hiperspace memory file.

Explanation: An error occurred when writing to a hiperspace memory file. The return code
from the HSPSERV macro was greater than 4.

Programmer Response: Check the __amrc structure for the return code from HSPSERV.
Refer to OS/390 MVS Programming: Assembler Services Reference for more information
regarding the return code. See OS/390 C/C++ Programming Guide for more information on
the __amrc structure.

System Action: The write I/O operation fails.

Symbolic Feedback Code: EDC4VJ

EDC5108I An error occurred reading from a hiperspace memory file.

Explanation: An error occurred when reading from a hiperspace memory file. The return
code from the HSPSERV macro was greater than 4.

Programmer Response: Check the __amrc structure for the return code from HSPSERV.
Refer to OS/390 MVS Programming: Assembler Services Reference for more information
regarding the return code. See OS/390 C/C++ Programming Guide for more information on
the __amrc structure.

System Action: The read I/O operation fails.

Symbolic Feedback Code: EDC4VK

432 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC5111I N EDC5115I

EDC5111I Permission denied.

Explanation: An attempt was made to access a file in a way that violates its file access
permissions. This message is equivalent to the POSIX.1 EACCES errno.

Programmer Response: The specific reason for the access denial depends on the function
being attempted. Refer to OS/390 C/C++ Run-Time Library Reference for the function being
attempted for the specific reason for failure.

System Action: The access request is denied. The application continues to run.

Symbolic Feedback Code: EDC4VN

EDC5112I Resource temporarily unavailable.

Explanation: A (temporary) condition has occurred which makes the resource unavailable.
Later calls may complete normally. This message is equivalent to the POSIX.1 EAGAIN
errno.

Programmer Response: The reason for the resource being unavailable depends on the
function being attempted. Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for the specific reason for failure.

System Action: The request has failed. The application continues to run.

Symbolic Feedback Code: EDC4VO

EDC5113I Bad file descriptor.

Explanation: The file descriptor used referred to a file which was not open or was out of
range, or a read request was made to a file that was only open for writing, or a write request
was made to a file that was open only for reading. This message is equivalent to the
POSIX.1 EBADF errno.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for the specific reason for failure.

System Action: The request has failed. The application continues to run.

Symbolic Feedback Code: EDC4VP

EDC5114I Resource busy.

Explanation: An attempt was made to use a system resource that was not available
because it was being used by another process or thread in a manner that would have con-
flicted with the request being made by this process/thread. This message is equivalent to the
POSIX.1 EBUSY errno.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for the specific reason for failure.

System Action: The request has failed. The application continues to run.

Symbolic Feedback Code: EDC4VQ

EDC5115I No child processes.

Explanation: A wait() or waitpid() function was executed by a process that had no
existing or unwaited-for child processes. This message is equivalent to the POSIX.1 ECHILD
errno.

Programmer Response: Ensure that a child process exists.

System Action: The request has failed. The application continues to run.

Symbolic Feedback Code: EDC4VR

 Chapter 12. C/C++ Run-Time Messages 433

 EDC5116I N EDC5120I

EDC5116I Resource deadlock avoided.

Explanation: An attempt was made to lock a system resource that would have resulted in
a deadlock situation. This message is equivalent to the POSIX.1 EDEADLK errno.

Programmer Response: Refer to OS/390 C/C++ Programming Guide for the function being
attempted for the specific reason for failure.

System Action: The request has failed. The application continues to run.

Symbolic Feedback Code: EDC4VS

EDC5117I File exists.

Explanation: An inappropriate action was requested for an existing file. For instance, a
mkdir() is attempted for a file that already exists. This message is equivalent to the POSIX.1
EEXIST errno.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for the specific reason for failure.

System Action: The request has failed. The application continues to run.

Symbolic Feedback Code: EDC4VT

EDC5118I Incorrect address.

Explanation: The system detected an invalid address when using an argument of a call.
Note that not all functions detect this error. This message is equivalent to the POSIX.1
EFAULT errno.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for the specific reason for failure. This failure is usually caused by an
invalid argument address.

System Action: The request has failed. The application continues to run.

Symbolic Feedback Code: EDC4VU

EDC5119I File too large.

Explanation: The size of a file would exceed the maximum allowed. The maximum file size
allowed for HFS files is 2 gigabytes. This message is equivalent to the POSIX.1 EFBIG
errno.

Programmer Response: Ensure that enough space is available in the file.

System Action: The request has failed. The application continues to run.

Symbolic Feedback Code: EDC4VV

EDC5120I Interrupted function call.

Explanation: An asynchronous signal was caught by the (POSIX) process during the exe-
cution of an interruptible function, and the signal handler (or default action) resulted in a
normal return. This resulted in the interrupted function returning this error condition. This
message is equivalent to the POSIX.1 EINTR errno.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for possible side effects from the function being interrupted.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC500

434 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC5121I N EDC5125I

EDC5121I Invalid argument.

Explanation: An argument supplied was invalid. This message is equivalent to the
POSIX.1 EINVAL errno.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for the specific reason for failure.

System Action: The request has failed. The application continues to run.

Symbolic Feedback Code: EDC501

EDC5122I Input/output error.

Explanation: An input or output error occurred. This message is equivalent to the POSIX.1
EIO errno.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for the specific reason for failure.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC502

EDC5123I Is a directory.

Explanation: The program attempted to write to a file descriptor that is a directory. This
message is equivalent to the POSIX.1 EISDIR errno.

Programmer Response: Ensure that the file being written to is not a directory.

System Action: The request has failed. The application continues to run.

Symbolic Feedback Code: EDC503

EDC5124I Too many open files.

Explanation: An attempt was made to open more than the maximum number of file
descriptors allowed for this (POSIX) process. This message is equivalent to the POSIX.1
EMFILE errno.

Programmer Response: The maximum number of files allowed per (POSIX) process is
controlled by the OPEN_MAX run-time invariant, which can be determined during program
execution using the sysconf() function.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC504

EDC5125I Too many links.

Explanation: An attempt was made to have the link count of a file exceed the maximum
value allowed. For instance, this can occur while using the link() or rename() functions.
This message is equivalent to the POSIX.1 EMLINK errno.

Programmer Response: The maximum number of links for a file is established by the
LINK_MAX pathname variable value, and which can be determined at execution time using
the pathconf() function.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC505

 Chapter 12. C/C++ Run-Time Messages 435

 EDC5126I N EDC5130I

EDC5126I Filename too long.

Explanation: The size of a pathname string exceeded the maximum allowed, or a
pathname component was longer than the maximum allowed and no truncation is in effect.
This message is equivalent to the POSIX.1 ENAMETOOLONG errno.

Programmer Response: The maximum allowable pathname is controlled by the
PATH_MAX pathname variable value, which can be determined at execution time using the
pathconf() function. The maximum allowable file name is controlled by the NAME_MAX
pathname variable value, which can be determined at execution time using the pathconf()
function. Truncation of the pathname component is not allowed if the _POSIX_NO_TRUNC
execution time symbolic is set. This can be determined by using the pathconf() function.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC506

EDC5127I Too many open files in system.

Explanation: The system reached its predefined limit for files open at one time. This
message is equivalent to the POSIX.1 ENFILE errno.

Programmer Response: The request may succeed later if fewer files are in use.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC507

EDC5128I No such device.

Explanation: The function being attempted is not allowed by the specified device. For
instance, the program attempted to read from a printer. This message is equivalent to the
POSIX.1 ENODEV errno.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for the specific reason for failure.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC508

EDC5129I No such file or directory.

Explanation: A name in the pathname does not exist, or the pathname is an empty string.
This message is equivalent to the POSIX.1 ENOENT errno.

Programmer Response: Ensure the pathname for the object being accessed is correct.
Refer to OS/390 C/C++ Run-Time Library Reference for the function being attempted, for the
specific reason for failure.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC509

EDC5130I Exec format error.

Explanation: A request was made to execute a file that was not in a format that may be
executed (however, the file does have the appropriate permissions). This message is equiv-
alent to the POSIX.1 ENOEXEC errno.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for the specific reason for failure.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC50A

436 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC5131I N EDC5135I

EDC5131I No locks available.

Explanation: No file and/or record locks are available. The system limit has been reached.
This message is equivalent to the POSIX.1 ENOLCK errno.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for the specific reason for failure.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC50B

EDC5132I Not enough memory.

Explanation: There is not enough memory space available to create the new object. This
message is equivalent to the POSIX.1 ENOMEM errno.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for the specific reason for failure.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC50C

EDC5133I No space left on device.

Explanation: During a write() function to a file, there was no free space left in the HFS.
This error may also occur when extending a directory. This message is equivalent to the
POSIX.1 ENOSPC errno.

Programmer Response: Allocate additional space for the file system. Refer to OS/390
C/C++ Run-Time Library Reference for the function being attempted for the specific reason
for failure.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC50D

EDC5134I Function not implemented.

Explanation: The function to be executed has not been implemented. This message is
equivalent to the POSIX.1 ENOSYS errno.

Programmer Response: The function may not be used by the application program.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC50E

EDC5135I Not a directory.

Explanation: A component in a pathname or directory specified an object that was not a
directory. This message is equivalent to the POSIX.1 ENOTDIR errno.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for the specific reason for failure.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC50F

 Chapter 12. C/C++ Run-Time Messages 437

 EDC5136I N EDC5140I

EDC5136I Directory not empty.

Explanation: A directory that was expected to be empty was not. This message is equiv-
alent to the POSIX.1 ENOTEMPTY errno.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for the specific reason for failure.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC50G

EDC5137I Inappropriate I/O control operation.

Explanation: A control function was attempted for a file or a special file for which the oper-
ation was inappropriate. For instance, the file is not a terminal. This message is equivalent to
the POSIX.1 ENOTTY errno.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for the specific reason for failure.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC50H

EDC5138I No such device or address.

Explanation: Input or output on a special file referred to a device that did not exist, or
made a request beyond the limits of the device. For instance, I/O was sent to a tape drive
that is not online. This message is equivalent to the POSIX.1 ENXIO errno.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for the specific reason for failure.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC50I

EDC5139I Operation not permitted.

Explanation: An attempt was made to perform an operation limited to processes with
appropriate privileges, or to the owner of a file or other resource. This message is equivalent
to the POSIX.1 EPERM errno.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for the specific reason for failure.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC50J

EDC5140I Broken pipe.

Explanation: A write was attempted on a pipe or FIFO for which there was no process to
read the data. This message is equivalent to the POSIX.1 EPIPE errno.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for the specific reason for failure.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC50K

438 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC5141I N EDC5145I

EDC5141I Read-only file system.

Explanation: An attempt was made to modify a file or directory on a file system that was
read-only. This message is equivalent to the POSIX.1 EROFS errno.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for the specific reason for failure.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC50L

EDC5142I Invalid seek.

Explanation: A seek function was issued on a pipe or FIFO. It is invalid to do a positioning
operation on a pipe or FIFO. This message is equivalent to the POSIX.1 ESPIPE errno.

Programmer Response: Do not attempt a seek function on a device that cannot seek.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC50M

EDC5143I No such process.

Explanation: The process ID does not correspond to an existing process. This error may
also apply to the process group ID. This message is equivalent to the POSIX.1 ESRCH
errno.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for the specific reason for failure.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC50N

EDC5144I Improper link.

Explanation: A link to a file on another file system was attempted. This message is equiv-
alent to the POSIX.1 EXDEV errno.

Programmer Response: Files may be linked only within the same file system. Refer to
OS/390 C/C++ Run-Time Library Reference for the function being attempted for the specific
reason for failure.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC50O

EDC5145I Arg list too long.

Explanation: The sum of the number of bytes for the new process image's argument list
and the environment list was greater than the system limit.

Programmer Response: The system limit is defined by the ARG_MAX run-time invariant
value, and can be determined at execution time using the sysconf() function. Refer to
OS/390 C/C++ Run-Time Library Reference for the function being attempted for the specific
reason for failure.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC50P

 Chapter 12. C/C++ Run-Time Messages 439

 EDC5146I N EDC5151I

EDC5146I Too many levels of symbolic links.

Explanation: Only POSIX_SYMLOOP symlinks are allowed during pathname resolution.
This message is equivalent to the POSIX.1 ELOOP errno. POSIX_SYMLOOP is an invariant
variable.

Programmer Response: Verify that the specified pathname can be resolved, and that no
loop exists (of a symbolic link referring to itself). Refer to OS/390 C/C++ Run-Time Library
Reference for the function being attempted for the specific reason for failure.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC50Q

EDC5147I Illegal byte sequence.

Explanation: The string contains an illegal sequence of bytes. For example, an unmatched
shift out / shift in condition exists. This message is equivalent to the OS/390 UNIX System
Services errno, EILSEQ.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for the specific reason for failure.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC50R

| EDC5149I Value Overflow Error.

| Explanation: A value is too large to be stored in the data type.

| Programmer Response: Rework the program to reissue the request using a larger data
| type. For example, if working with large files, rework the program using the _LARGE_FILES
| feature. This message is equivalent to the errno, EOVERFLOW.

| System Action: The request fails. The application continues to run.

EDC5150I OpenEdition MVS is not active.

Explanation: The function being requested cannot be performed because the OpenEdition
MVS kernel is not active. This message is equivalent to the OpenEdition MVS EMVSNOTUP
errno.

Programmer Response: Have the operator start OpenEdition MVS (START OMVS).

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC50U

EDC5151I Dynamic allocation error.

Explanation: The mount of an HFS data set or VM/ESA Byte File System (BFS) failed in
dynamic allocation. The dynamic allocation reason code returned in errno2 is documented in
OS/390 MVS Programming: Authorized Assembler Services Guide or VM/ESA Application
Development Guide: Authorized Assembler Language Programs. This message is equivalent
to the OpenEdition errno, EMVSDYNALC.

Programmer Response: Have the system programmer correct the allocation of the HFS
data set or VM/ESA BFS.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC50V

440 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC5152I N EDC5158I

EDC5152I Catalog Volume Access Facility error.

Explanation: The mount of an HFS data set failed on a catalog error. The catalog reason
code returned in errno2 is documented in MVS/DFP System Programming Reference. This
message is equivalent to the OS/390 UNIX System Services errno, EMVSCVAF.

Programmer Response: Have the system programmer correct the allocation of the HFS
data set.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC510

EDC5153I Catalog obtain error.

Explanation: The mount of an HFS data set failed on a catalog error. The catalog reason
code returned in errno2 is documented in MVS/DFP System Programming Reference. This
message is equivalent to the OS/390 UNIX System Services errno, EMVSCATLG.

Programmer Response: Have the system programmer correct the allocation of the HFS
data set.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC511

EDC5156I Process initialization error.

Explanation: A process initialization error has occurred. A further explanation can be found
in OS/390 UNIX System Services Programming: Assembler Callable Services Reference or
OpenEdition for VM/ESA: Callable Services Reference.

Programmer Response: Use the function errno2() to retrieve the value of the
OpenEdition kernel reason code to determine further information from OS/390 UNIX System
Services Programming: Assembler Callable Services Reference or OpenEdition for VM/ESA:
Callable Services Reference.

System Action: Process does not start.

Symbolic Feedback Code: EDC514

EDC5157I An internal error has occurred.

Explanation: This message is equivalent to the OS/390 UNIX System Services errno,
EMVSERR or ECMSERR.

Programmer Response: Report this problem to your system programmer.

System Action: A system dump is taken of the error and MVS or VM attempts to continue.

Symbolic Feedback Code: EDC515

EDC5158I Bad parameters were passed to the service.

Explanation: A bad parameter was passed to an OS/390 UNIX System Services service.
This message is equivalent to the OS/390 UNIX System Services errno, EMVSPARMERR.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for the specific reason for failure.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC516

 Chapter 12. C/C++ Run-Time Messages 441

 EDC5159I N EDC5165I

EDC5159I The Physical File System encountered a permanent file error.

Explanation: This message is equivalent to the OS/390 UNIX System Services errno,
EMVSPFSFILERR or ECMSPFSFILE.

Programmer Response: Report this problem to your system programmer.

System Action: A system dump is taken of the error and MVS or VM attempts to continue.

Symbolic Feedback Code: EDC517

EDC5160I Bad character in environment variable name.

Explanation: An invalid character was found in the 'name' or 'value' string specified on a
getenv() or setenv() function. This message is equivalent to the OS/390 UNIX System Ser-
vices errno, EMVSBADCHAR.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for the specific reason for failure.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC518

EDC5162I The Physical File System encountered a system error.

Explanation: This message is equivalent to the OS/390 UNIX System Services errno,
EMVSPFSPERMERR or ECMSPFSPERM.

Programmer Response: Report this problem to your system programmer.

System Action: A system dump is taken of the error and MVS or VM attempts to continue.

Symbolic Feedback Code: EDC51A

EDC5163I SAF/RACF extract error.

Explanation: An authorization failure occurred when attempting the service. This message
is equivalent to the OS/390 UNIX System Services errno, EMVSSAFEXTERR.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for the specific reason for failure.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC51B

EDC5164I SAF/RACF error.

Explanation: An internal SAF/RACF error occurred. This message is equivalent to the
OS/390 UNIX System Services errno, EMVSSAF2ERR.

Programmer Response: Report this problem to your system programmer.

System Action: A system dump is taken of the error and MVS or VM attempts to continue.

Symbolic Feedback Code: EDC51C

EDC5165I System TOD clock not set.

Explanation: The system time of day (TOD) clock is in error, stopped, or in a non-
operational state. This message is equivalent to the OS/390 UNIX System Services errno,
EMVSTODNOTSET.

Programmer Response: Report this problem to your system programmer.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC51D

442 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC5166I N EDC5170I

EDC5166I Access mode argument on function call conflicts with PATHOPTS param-
eter on JCL DD statement.

Explanation: An open or reopen was issued to a DD which specified PATHOPTS. The
PATHOPTS specified on the DD conflict with those specified in the function call. This
message is equivalent to the OS/390 UNIX System Services errno, EMVSPATHOPTS.

Programmer Response: Correct either the open/reopen call or the PATHOPTS specified
on the DD being opened.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC51E

EDC5167I Access to the OpenEdition MVS or OpenEdition VM version of the C RTL is
denied.

Explanation: An attempt was made to issue an Open C library function that has a depend-
ency on OpenEdition MVS or OpenEdition VM and the subsystem was not available or at the
incorrect release level. This message is equivalent to the OpenEdition errno, EMVSNORTL.

Programmer Response: You need to either install the correct level of the subsystem or
modify your program to not issue the function or conditionally issue the function. If you
received this message and you are not running under OpenEdition, make sure that
POSIX(ON) is set.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC51F

EDC5168I Password has expired.

Explanation: The verification request has failed because the password has expired. This
message is equivalent to the OS/390 UNIX System Services errno, EMVSEXPIRE.

Programmer Response: Change the password.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC51G

EDC5169I Password is invalid.

Explanation: The verification or change password request has failed because the supplied
password is invalid. This message is equivalent to the OS/390 UNIX System Services errno,
EMVSPASSWORD.

Programmer Response: Correct the supplied password, and retry the request.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC51H

EDC5170I An error was encountered with WLM.

Explanation: A WLM error was detected.

Programmer Response: Report the failure to your local administrator for the WLM func-
tion. Try the application again when the problem has been corrected.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC51I

 Chapter 12. C/C++ Run-Time Messages 443

 EDC5200I N EDC5204E

EDC5200I The application contains a Language Environment member language that
cannot tolerate a fork().

Explanation: An application that uses the fork() function cannot use other Language Envi-
ronment member languages that do not support fork().

Programmer Response: Restructure your application so that it contains only C source, or
remove the fork() function.

System Action: The fork() function is not performed.

Symbolic Feedback Code: EDC52G

EDC5201I The Language Environment message file was not found in the hierarchical
file system.

Explanation: For Language Environment messaging to work correctly in a child process,
the Language Environment message file must reside in the hierarchical file system.

Programmer Response: Define your message file as a hierarchical file.

System Action: The fork() function is not performed.

Symbolic Feedback Code: EDC52H

EDC5202E DLL facilities are not supported under SPC environment.

Explanation: An SPC application is attempting to use DLL callable services, or the SPC
application is compiled with DLL compiler options.

Programmer Response: Make sure that dllload(), dllqueryvar(), dllqueryfn(), and
dllfree() functions are not invoked from your application, or your application is not compiled
with the DLL compile-time option.

System Action: The request is not completed.

Symbolic Feedback Code: EDC52I

EDC5203E DLL facilities are not supported under POSIX environment.

Explanation: A POSIX application is attempting to use DLL callable services, or the POSIX
application is compiled with the DLL compiler option.

Programmer Response: Make sure that dllload(), dllqueryvar(), dllqueryfn(), and
dllfree() functions are not invoked from your application, or your application is not compiled
with the DLL compiler-time option.

System Action: The request is not completed.

Symbolic Feedback Code: EDC52J

EDC5204E Not enough storage to load DLL module.

Explanation: Not enough storage was available to load the requested DLL load module
into virtual storage. If this was an implicit load request, this message is preceded by
message EDC6063I that identifies the DLL load module name.

Programmer Response: Ensure that the REGION size is large enough to run the applica-
tion. If necessary, delete modules not currently needed by the application, or free unused
storage, and retry the load request.

System Action: The DLL module is not loaded.

Symbolic Feedback Code: EDC52K

444 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC5205S N EDC5209I

EDC5205S DLL module not found.

Explanation: The system could not find the DLL load module name specified on the
parameter list to Language Environment load service, in either the job library or link library. If
this was an implicit load request, this message is preceded by message EDC6063I that iden-
tifies the DLL load module name.

Programmer Response: Ensure that the requesting DLL name was correctly modified.
Make sure that the job step indicates the correct library. Correct the error and run the job
step again.

System Action: DLL module is not loaded.

Symbolic Feedback Code: EDC52L

EDC5206S DLL module name too long.

Explanation: The module name length is greater than the name length supported by the
underlying operating system. If this was an implicit load request, this message is preceded
by message EDC6063I that identifies the DLL load module name.

Programmer Response: Correct the module name length and run the job again.

System Action: The name length is truncated to the name length supported by the under-
lying operating system. The requested module may or may not be loaded.

Symbolic Feedback Code: EDC52M

EDC5207S Load request for DLL load module unsuccessful.

Explanation: The system cannot load the DLL load module. If this was an implicit load
request, this message is preceded by message EDC6063I that identifies the DLL load
module name.

Programmer Response: Check the original abend from the operating system, and refer to
the underlying operating system message manual for explanation and programmer's action.

System Action: The DLL module is not loaded. The application may abend.

Symbolic Feedback Code: EDC52N

EDC5208I dllHandle supplied to the dllqueryvar() function is not available for use.

Explanation: The dllHandle supplied to the dllqueryvar() call is inactive, because the DLL
is logically freed by a successful call to dllfree()

Programmer Response: Ensure that the proper dllHandle is supplied to the dllqueryvar()
service, or that the subject DLL is not freed prematurely.

System Action: The request is ignored.

Symbolic Feedback Code: EDC52O

EDC5209I No variables exported from this dllHandle.

Explanation: Attempting to query an external variable, but the DLL does not contain any
imported variables.

Programmer Response: Ensure that the DLL load module indicated in the job library or
link library is the correct version, and that it contains the external variable.

System Action: The request is ignored.

Symbolic Feedback Code: EDC52P

 Chapter 12. C/C++ Run-Time Messages 445

 EDC5210I N EDC5214I

EDC5210I Requested variable not found in this DLL.

Explanation: Attempting to query an external variable, but the variable name is not found
in the export section of the DLL.

Programmer Response: Ensure that the variable name specified on the dllqueryvar()
function call is correct, or that the DLL load module indicated in the job library or link library
is the correct version, and that it contains the external variable.

System Action: The request is ignored.

Symbolic Feedback Code: EDC52Q

EDC5211I DLL load module does not contain a writeable static area.

Explanation: DLL load module that you loaded does not contain any writeable static.

Programmer Response: Ensure that the load module name specified is correct, or that the
DLL load module indicated in the job library or link library is the correct version. Also check
that the DLL load module was built properly.

1. Specify #pragma export in your source, or compile with EXPORTALL compiler option.

2. Compile with DLL, RENT, and LONGNAME compiler options.

 3. Prelink.

System Action: The request is ignored. Load module is deleted from storage.

Symbolic Feedback Code: EDC52R

EDC5212I dllHandle supplied to dllqueryfn() function is not available for use.

Explanation: The dllHandle supplied to dllqueryfn() call is inactive because the DLL is
logically freed as a result of a successful call to the dllfree() function.

Programmer Response: Ensure that the proper dllHandle is supplied to the dllqueryfn()
function, or that the subject DLL is not freed prematurely.

System Action: The request is ignored.

Symbolic Feedback Code: EDC52S

EDC5213I No functions exported from this dllHandle.

Explanation: Attempting to query an external function, but the DLL does not contain any
imported functions.

Programmer Response: Ensure that the DLL load module indicated in the job library or
link library is the correct version, and that it contains the external function.

System Action: The request is ignored.

Symbolic Feedback Code: EDC52T

EDC5214I Requested function not found in this DLL.

Explanation: Attempting to query an external function, but the function name is not found
in the export section of the DLL.

Programmer Response: Ensure that the function name specified on dllqueryfn() is
correct, or that the DLL load module indicated in the job library or link library is the correct
version, and that it contains the external function.

System Action: The request is ignored.

Symbolic Feedback Code: EDC52U

446 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC5215I N EDC5220I

EDC5215I Not enough storage available for writeable static.

Explanation: Not enough heap storage was available for allocation of writeable static for
the DLL load module.

Programmer Response: Increase heap size or free unused heap storage.

System Action: The request is ignored. Load module is deleted from storage.

Symbolic Feedback Code: EDC52V

EDC5216I dllHandle supplied is NULL.

Explanation: The dllHandle supplied to the dllfree call is invalid.

Programmer Response: You must call the dllload service to initialize a dllHandle properly
before attempting to free a DLL.

System Action: The request is ignored.

Symbolic Feedback Code: EDC530

EDC5217I No DLLs to be freed.

Explanation: Attempting to free a DLL, but all DLLs are freed already, or the dllHandle
passed is inactive.

Programmer Response: Ensure that dllfree() is invoked after the call to dlload() is
completed successfully, or that you have no extra calls to dllfree() with this dllHandle in
your application.

System Action: The request is ignored.

Symbolic Feedback Code: EDC531

EDC5218I Logical delete performed, but the DLL is not physically deleted.

Explanation: The dllfree() function completed successfully. The DLL is not physically
deleted because either there is an implicit dllload performed against this DLL by the applica-
tion, or multiple calls were made to the dllload() service.

Programmer Response: If the DLL was loaded implicitly by referring to an external vari-
able or an external function, it will be physically deleted by the run-time library at enclave
termination. Otherwise, to free the DLL, invoke dllfree() with the proper dllHandle.

System Action: Execution continues.

Symbolic Feedback Code: EDC532

EDC5220I Invalid dllHandle.

Explanation: The dllHandle supplied to the dllfree call could not be matched to a DLL
loaded by this application.

Programmer Response: Ensure that the dllHandle supplied to dllfree() is the same as
the one returned from dllload() accidentally, and that it has not been overwritten.

System Action: The request is ignored.

Symbolic Feedback Code: EDC534

 Chapter 12. C/C++ Run-Time Messages 447

 EDC5221S N EDC5226S

EDC5221S Load request for DLL not supported while running C++ destructors.

Explanation: The application is attempting to load a DLL explicitly while running C++
destructors.

Programmer Response: Make sure that you are not invoking dllload() from your C++
destructors.

System Action: The request is ignored. Execution continues but results are unpredictable.

Symbolic Feedback Code: EDC535

EDC5222S IOStreams do not support Record Mode I/O.

Explanation: The application is attempting to initialize an IOStreams object to perform
Record Mode I/O. Record Mode I/O is not supported in IOStreams objects.

Programmer Response: Remove the "type=record" specification from the constructor or
open() function call.

System Action: The attempt to initialize the object fails. Execution continues.

Symbolic Feedback Code: EDC536

EDC5223S Too many characters.

Explanation: The application called the form() function with a format specifier string that
caused form() to write past the end of the format buffer. form() is provided in stream.h for
compatibility.

Programmer Response: Split the call to form() into two or more calls.

System Action: Execution ends.

Symbolic Feedback Code: EDC537

EDC5224S Singularity: log((0,0))

Explanation: The application is attempting to take the log of (0.0, 0.0).

Programmer Response: Correct the value passed to log() and resubmit.

System Action: Execution ends.

Symbolic Feedback Code: EDC538

EDC5225E DLL function is not allowed because destructors are running for the DLL

Explanation: A dllfree(), dllqueryvar(), or dllqueryfn() function was invoked for a DLL that is
currently running destructors. Since destructors are running the DLL is about to be freed.
Further function requests using this DLL are not allowed.

Programmer Response: Do not issue DLL function requests from one thread while the
DLL is being freed from another thread.

System Action: The request failed. Application execution continues. The dllfree() function
returns a value of 7. The dllqueryvar() and dllqueryfn() functions return a null pointer.

Symbolic Feedback Code: EDC539

EDC5226S A load of DLL from the HFS failed

Explanation: A load attempt for a DLL in the hierarchical file system (HFS) failed. If this
was an implicit load request, this message is preceded by message EDC6063I that identifies
the DLL load module name.

Programmer Response: Verify that the DLL is available in the HFS and that the applica-
tion has access to the file.

System Action: If the DLL was explicitly loaded using the dllload() function, the request

448 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC5227I N EDC5231I

fails and the DLL is not loaded. If the DLL was implicitly loaded by reference to a variable or
function contained in it, the application is ends with return code 3000.

Symbolic Feedback Code: EDC53A

EDC5227I Buffer is not long enough to contain a path definition

Explanation: The request for a path definition for the specified ddname cannot be satisfied
because the path name length of the path associated with this ddname is greater than the
specified buffer length.

Programmer Response: Specify a larger buffer.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC53B

EDC5228I The file referred to is an external link

Explanation: An I/O operation cannot be satisfied because the file referred to is an external
link.

Programmer Response: Refer to OS/390 UNIX System Services for VM/ESA: User's
Guide for information on how to perform I/O operations on external links.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC53C

EDC5229I No path definition for ddname in effect

Explanation: The request to obtain the path definition for the specified ddname cannot be
satisfied because no OPENVM PATHDEF CREATE command was issued to associate a
BFS path definition with this ddname.

Programmer Response: Issue OPENVM PATHDEF CREATE command to associate this
ddname with a path name definition.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC53D

EDC5230I ESM error.

Explanation: An internal External Security Manager (ESM) error occurred. This message is
equivalent to the OS/390 UNIX System Services errno ECMSESMERR.

Programmer Response: Report this problem to your system programmer.

System Action: Messages are displayed on the file pool server operator console indicating
the error and VM processing continues.

Symbolic Feedback Code: EDC53E

EDC5231I CP or the external security manager had an error

Explanation: An error occurred in CP or the external security manager. This message is
equivalent to the OS/390 UNIX System Services errno ECPERR.

Programmer Response: Try the command again. If the problem persists, report it to your
system programmer.

System Action: None.

Symbolic Feedback Code: EDC53F

 Chapter 12. C/C++ Run-Time Messages 449

 EDC5232I N EDC5235S

EDC5232I The function failed because it was invoked from a multithread environment.

Explanation: An application may not use the exec(), fork(), or vfork() functions from within
a multithread environment.

Programmer Response: Restructure your application so that it is not multithreaded, or
remove the function.

System Action: The function is not performed.

Symbolic Feedback Code: EDC53G

| EDC5233S The linkage of the specified locale doesn't match the current run-time envi-
| ronment.

| Explanation: The application attempted to change the current locale but the linkage attri-
| butes for the requested locale do not match the linkage attributes of the run-time environ-
| ment.

| This can happen when an application compiled with the NOXPLINK option runs with the
| XPLINK(OFF) run-time option but supplies the fully qualified locale path name for an XPLINK
| locale. XPLINK locales stored in the HFS have a ".xplink" suffix. They are usable only when
| the XPLINK(ON) run-time option is in effect. This can also happen when an application com-
| piled with the XPLINK option supplies the fully qualified locale path name for a non-XPLINK
| locale.

| Programmer Response: This can happen when an application compiled with the
| NOXPLINK option runs with the XPLINK(OFF) run-time option but supplies the fully qualified
| locale path name for an XPLINK locale. XPLINK locales stored in the HFS have a ".xplink"
| suffix. They are usable only when the XPLINK(ON) run-time option is in effect. This can also
| happen when an application compiled with the XPLINK option supplies the fully qualified
| locale path name for a non-XPLINK locale.

| System Action: This can happen when an application compiled with the NOXPLINK option
| runs with the XPLINK(OFF) run-time option but supplies the fully qualified locale path name
| for an XPLINK locale. XPLINK locales stored in the HFS have a ".xplink" suffix. They are
| usable only when the XPLINK(ON) run-time option is in effect. This can also happen when
| an application compiled with the XPLINK option supplies the fully qualified locale path name
| for a non-XPLINK locale.

| EDC5234S The DLL cannot be loaded because it does not contain a CEESTART
| CSECT.

| Explanation: The application is attempting an explicit load of a DLL that does not contain a
| CEESTART CSECT.

| Programmer Response: Make sure that when you generate the DLL for which the
| dllload() service is failing, it contains a CEESTART CSECT.

| System Action: The function is not performed.

| EDC5235S The fetched executable does not contain a fetchable entry point.

| Explanation: The application is attempting to fetch() an executable that has been com-
| piled with the XPLINK option but does not have a fetchable entry point.

| Programmer Response: XPLINK executables that are to be fetched must have a fetchable
| entry point specified using the #pragma fetchable directive.

| System Action: The function is not performed.

450 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC5236S N EDC5241S

| EDC5236S The fetched executable was compiled XPLINK but the XPLINK environment
| is not active.

| Explanation: The application is attempting to fetch() an executable that has been com-
| piled with the XPLINK option but the current run-time environment does not support XPLINK
| executables.

| Programmer Response: XPLINK executables that are to be fetched must have the
| XPLINK C run-time environment active. This can be achieved by specifying the XPLINK(ON)
| run-time option. Another alternative is to compile your main program with the XPLINK com-
| piler option. If main() is compiled XPLINK then the XPLINK C run-time environment will be
| active by default, and you may also have the added benefit of enhanced performance. For
| more information on XPLINK, refer to .OS/390 Language Environment Programming Guide

| System Action: The function is not performed.

| EDC5237S The DLL was not found in an authorized library.

| Explanation: The application is authorized and is attempting to explicitly load a DLL, but
| that DLL could not be found in an authorized library or concatenation of libraries.

| Programmer Response: Make sure the module exists in a system or user-defined author-
| ized library. Correct the error, and run the application again.

| System Action: The function is not performed.

| EDC5238E Not enough storage to fetch module.

| Explanation: Not enough storage was available to fetch the requested load module into
| virtual storage.

| Programmer Response: Ensure that the REGION size is large enough to run the applica-
| tion. If necessary, delete modules not currently needed by the application, or free unused
| storage, and retry the fetch function.

| System Action: The module is not fetched.

| EDC5239S Fetched module not found.

| Explanation: The system could not find the load module name specified to the fetch func-
| tion in either the job library or link library.

| Programmer Response: Ensure that the requested fetch name was correctly specified.
| Make sure that the job step indicates the correct library. Correct the error and run the job
| step again.

| System Action: The module is not fetched.

| EDC5240S Fetched module name too long.

| Explanation: The length of the name specified on the fetch() function is greater than the
| name length supported by the underlying operating system.

| Programmer Response: Correct the module name length and run the job again.

| System Action: The name length is truncated to the name length supported by the under-
| lying operating system. The requested module may or may not be loaded.

| EDC5241S Load request for fetch load module unsuccessful.

| Explanation: The system cannot load the load module specified on the fetch() function.

| Programmer Response: Check the original abend from the operating system, and refer to
| the underlying operating system message manual for explanation and programmer's action.

| System Action: The fetched module is not loaded. The application may abend.

 Chapter 12. C/C++ Run-Time Messages 451

 EDC5242S N EDC6003E

| EDC5242S The fetched module was not found in an authorized library.

| Explanation: The application is authorized and is attempting to fetch a module, but that
| module could not be found in an authorized library or concatenation of libraries.

| Programmer Response: Make sure the module exists in a system or user-defined author-
| ized library. Correct the error, and run the application again.

| System Action: The function is not performed.

EDC6000E The raise() function was issued for the signal SIGFPE.

Explanation: The program has invoked the raise() function with the SIGFPE signal speci-
fied and the default action specified.

Programmer Response: None.

System Action: The program is terminated and a traceback or dump is issued, depending
on the TERMTHDACT run-time option. A return code of 3000(MVS) or 3000000(VM) is
returned.

Symbolic Feedback Code: EDC5RG

EDC6001E The raise() function was issued for the signal SIGILL.

Explanation: The program has invoked the raise() function with the SIGILL signal speci-
fied and the default action specified.

Programmer Response: None.

System Action: The program is terminated and a traceback or dump is issued, depending
on the TERMTHDACT run-time option. A return code of 3000(MVS) or 3000000(VM) is
returned.

Symbolic Feedback Code: EDC5RH

EDC6002E The raise() function was issued for the signal SIGSEGV.

Explanation: The program has invoked the raise() function with the SIGSEGV signal
specified and the default action specified.

Programmer Response: None.

System Action: The program will be terminated and a traceback or dump is issued,
depending on the TERMTHDACT run-time option. A return code of 3000(MVS) or
3000000(VM) is returned.

Symbolic Feedback Code: EDC5RI

EDC6003E The raise() function was issued for the signal SIGABND.

Explanation: The program has invoked the raise() function with the SIGABND signal
specified and the default action specified.

Programmer Response: None.

System Action: The program will be terminated and a traceback or dump is issued,
depending on the TERMTHDACT run-time option. A return code of 3000(MVS) or
3000000(VM) is returned.

Symbolic Feedback Code: EDC5RJ

452 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC6004E N EDC6008E

EDC6004E The raise() function was issued for the signal SIGTERM.

Explanation: The program has invoked the raise() function with the SIGTERM signal
specified and the default action specified.

Programmer Response: None.

System Action: The program will be terminated and a traceback or dump is issued,
depending on the TERMTHDACT run-time option. A return code of 3000(MVS) or
3000000(VM) is returned.

Symbolic Feedback Code: EDC5RK

EDC6005E The raise() function was issued for the signal SIGINT.

Explanation: The program has invoked the raise() function with the SIGINT signal speci-
fied and the default action specified.

Programmer Response: None.

System Action: The program will be terminated and a traceback or dump is issued,
depending on the TERMTHDACT run-time option. A return code of 3000(MVS) or
3000000(VM) is returned.

Symbolic Feedback Code: EDC5RL

EDC6006E The raise() function was issued for the signal SIGABRT.

Explanation: The program has invoked the raise() function with the SIGABRT signal
specified and the default action specified.

Programmer Response: None.

System Action: The program will be terminated and a traceback or dump is issued,
depending on the TERMTHDACT run-time option. A return code of 2000(MVS) or
2000000(VM) is returned.

Symbolic Feedback Code: EDC5RM

EDC6007E The raise() function was issued for the signal SIGUSR1.

Explanation: The program has invoked the raise() function with the SIGUSR1 signal
specified and the default action specified.

Programmer Response: None.

System Action: The program will be terminated and a traceback or dump is issued,
depending on the TERMTHDACT run-time option. A return code of 3000(MVS) or
3000000(VM) is returned.

Symbolic Feedback Code: EDC5RN

EDC6008E The raise() function was issued for the signal SIGUSR2.

Explanation: The program has invoked the raise() function with the SIGUSR2 signal
specified and the default action specified.

Programmer Response: None.

System Action: The program will be terminated and a traceback or dump is issued,
depending on the TERMTHDACT run-time option. A return code of 3000(MVS) or
3000000(VM) is returned.

Symbolic Feedback Code: EDC5RO

 Chapter 12. C/C++ Run-Time Messages 453

 EDC6009E N EDC6054S

EDC6009E The raise() function was issued for the signal SIGIOERR.

Explanation: The program has invoked the raise() function with the SIGIOERR signal
specified and the default action specified.

Programmer Response: None.

System Action: The program will be terminated and a traceback or dump is issued,
depending on the TERMTHDACT run-time option. A return code of 3000(MVS) or
3000000(VM) is returned.

Symbolic Feedback Code: EDC5RP

EDC6010E An object was thrown which was not caught by any catch clauses.

Explanation: An object was thrown for which no catch clauses exist to catch it.

Programmer Response: None.

System Action: The program ends abnormally.

Symbolic Feedback Code: EDC5RQ

EDC6052S An AMODE 24 application is attempting to load an AMODE 31 DLL load
module.

Explanation: An application with AMODE=24 is attempting to load a DLL load module link-
edited as an AMODE=31 load module.

Programmer Response: Ensure that the AMODE of the application and the AMODE of the
DLL load module are the same. If you must run your application in AMODE=24, make sure
that the run-time library of the Language Environment is installed below the line. Otherwise,
re-link your application to have AMODE=31.

System Action: The application ends with return code 3000.

Symbolic Feedback Code: EDC5T4

EDC6053S An AMODE 31 application is attempting to load an AMODE 24 DLL load
module.

Explanation: An application with AMODE=31 is attempting to load a DLL load module link-
edited as a load module with AMODE=24.

Programmer Response: Ensure that the AMODE of the application and the AMODE of the
DLL load module are the same. Re-link your DLL load module to have AMODE=31.

System Action: Application is terminated with return code 3000.

Symbolic Feedback Code: EDC5T5

EDC6054S External variable is not found in DLL load module.

Explanation: The application is attempting to refer to an external variable that is not
defined in the DLL load module.

Programmer Response: Ensure that the DLL load module indicated in the job library or
link library is the correct version, and that it contains the external variable.

System Action: The application ends with return code 3000.

Symbolic Feedback Code: EDC5T6

454 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC6055S N EDC6059S

EDC6055S External function is not found in DLL load module.

Explanation: The application is attempting to refer to an external function that is not
defined in the DLL load module.

Programmer Response: Ensure that the DLL load module indicated in the job library or
link library is the correct version, and that it contains the external function.

System Action: The application ends with return code 3000.

Symbolic Feedback Code: EDC5T7

EDC6056S Attempting to load a DLL while running C++ destructors.

Explanation: The application is attempting to load a DLL implicitly while running C++
destructors.

Programmer Response: Make sure that you are not referring to variables or functions
implicitly from your C++ destructors.

System Action: The application ends with return code 3000.

Symbolic Feedback Code: EDC5T8

EDC6057S A DLL load module that you are attempting to load does not contain a
CEESTART csect.

Explanation: The application is attempting to load a DLL load module implicitly or explicitly,
but the CEESTART csect cannot be located within it.

Programmer Response: Make sure that when you generate the DLL load module, it con-
tains a CEESTART csect.

System Action: The application ends with return code 3000.

Symbolic Feedback Code: EDC5T9

EDC6058S There is not enough heap storage to load DLL.

Explanation: There is insufficient heap storage to satisfy DLL load request.

Programmer Response: Increase the allocation of your application heap storage by using
the heap run-time option.

System Action: The application ends with return code 3000.

Symbolic Feedback Code: EDC5TA

EDC6059S The DLL that you have loaded does not export any variables or functions.

Explanation: A DLL was loaded successfully, but the DLL does not export any variables or
functions. Either the definition side-deck supplied to your application is incorrect, or the DLL
load module is generated incorrectly.

Programmer Response: Ensure that the DLL load module was built properly.

1. Specify #pragma export in your source or compile with EXPORTALL compiler option.

2. Compile with DLL, RENT, and LONGNAME compiler options.

 3. Prelink.

System Action: The application ends with return code 3000.

Symbolic Feedback Code: EDC5TB

 Chapter 12. C/C++ Run-Time Messages 455

 EDC6060S N EDC6200E

EDC6060S The DLL that you are attempting to load does not contain any C functions.

Explanation: A DLL was loaded successfully, but the load module does not contain any C
functions.

Programmer Response: Make sure that you are loading the correct load module, and that
the DLL load module is built correctly.

System Action: The application ends with return code 3000.

Symbolic Feedback Code: EDC5TC

EDC6061S You are attempting to load DLLs that are in a circular list.

Explanation: The run-time library discovered a deadlock condition while processing a DLL
load request. The deadlock condition exists because the DLLs that are being loaded depend
on each other. The following situation illustrates a deadlock condition. DLL A has static
constructors that require objects from DLL B. DLL B has static constructors that require
objects from DLL A. When DLL A is loaded, its static constructors require objects from DLL
B. This forces DLL B to be loaded, requiring objects from DLL A. Since the loading of DLL A
has not completed, a deadlock condition exists.

Programmer Response: Remove the circular list dependency from the DLLs.

System Action: The application ends with return code 3000.

Symbolic Feedback Code: EDC5TD

EDC6062S DLL constructors or destructors did not complete, so DLL cannot be used.

Explanation: A DLL being loaded or freed was in the process of running static constructors
or destructors but the process did not complete (probably because the thread was abnor-
mally terminated). The DLL is left in an indeterminate state. Another thread that was waiting
for the constructors or destructors to complete while attempting a load or free of the same
DLL detected this error.

Programmer Response: Determine the cause of the incomplete constructor or destructor
process. Ensure that the constructors or destructors are not the cause of the thread termi-
nation that lead to this condition.

System Action: The application ends with return code 3000.

Symbolic Feedback Code: EDC5TE

EDC6063I DLL name is dll_name.

Explanation: This message accompanies other DLL load error messages (for example
EDC5205S). It identifies the name of the DLL for which the load failed.

Programmer Response: Refer to the accompanying DLL error message.

System Action: None.

Symbolic Feedback Code: EDC5TF

EDC6200E An invalid argument list was specified.

Explanation: The parameter list specified to DLLRNAME is invalid. See OS/390 C/C++
User's Guide for proper syntax.

Programmer Response: Ensure that:

1. At least 1 input module or DLL is specified.

2. The syntax of the parameters matches listed syntax for environment.

3. Valid options are specified correctly.

System Action: DLLRNAME: fails with return code 8.

456 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC6201S N EDC6251C

Symbolic Feedback Code: EDC61O

EDC6201S A failure occurred accessing @1.

Explanation: An unexpected error occurred when DLLRNAME accessed an input file.

Programmer Response: Look up subsequent error message and perform Programmer
Response if possible (for example, file not found error might mean to fix input file name).
Otherwise, report the problem to your IBM Support Center.

System Action: DLLRNAME prints out a perror() message then terminates with rc=16.

Symbolic Feedback Code: EDC61P

EDC6202S A DLL named " @1 " is already imported.

Explanation: A DLLRNAME operation has found that an old DLL name to be renamed is
being renamed to a new name that is already imported in the current module being proc-
essed.

Programmer Response: User has specified DLL to rename, but the new name chosen
matches a DLL in the import list.

System Action: DLLRNAME fails with rc=12.

Symbolic Feedback Code: EDC61Q

EDC6203E A DLL name was specified more than once for a rename.

Explanation: On a DLLRNAME, user has specified a DLL name twice in the
"oldname=newname" list. Examples are: (A=B,A=C or A=C,B=C or A=B,B=C or A=B,C=A or
A=A).

Programmer Response: Fix the argument list. A DLL cannot appear twice in the argument
list.

System Action: DLLRNAME fails with rc=8.

Symbolic Feedback Code: EDC61R

EDC6204E No argument list was provided.

Explanation: User did not provide any argument list.

Programmer Response: An argument list must be provided (for example, through SYSIN
or standard streams redirection).

System Action: DLLRNAME fails with rc=8.

Symbolic Feedback Code: EDC61S

| EDC6251C The library function setjmp(), _setjmp(), sigsetjmp(), getcontext(), or
| swapcontext() failed when it tried to use the passed in jmp_buf, sigjmp_buf
| or ucontext_t area.

| Explanation: The library function failed when it tried to initialize the passed-in buffer. A
| program check occurred, perhaps because the address of the passed-in buffer was not
| correct.

| Programmer Response: Make sure that the address of the buffer passed into setjmp(),
| _setjmp(), sigsetjmp(), getcontext(), or swapcontext() is correct.

| System Action: The application ends.

 Chapter 12. C/C++ Run-Time Messages 457

 EDC6252C N EDC7003C

| EDC6252C The library function longjmp(), _longjmp(), siglongjmp(), setcontext(), or
| swapcontext() failed when it tried to use the passed in jmp_buf, sigjmp_buf
| or ucontext_t area.

| Explanation: The library function failed when it tried to use the the passed-in buffer. Either
| the data in the buffer was incorrect, or a program check occurred because the address of
| the passed-in buffer was not correct.

| Programmer Response: Make sure that the address of the buffer passed into setjmp(),
| _setjmp(), sigsetjmp(), setcontext(), or swapcontext() is correct. Make sure that the
| buffer has been initialized by setjmp(), _setjmp(), sigsetjmp(), or getcontext() before it is
| passed to longjmp(), _longjmp(), siglongjmp(), or setcontext(), or swapcontext().

| EDC6253C An error occurred attempting to retrieve the C++ state variables table from
| the PPA1.

| Explanation: An invalid C++ PPA1 state variables locator was detected.

| Programmer Response: Contact your IBM Support Center.

EDC7000C Signal delivery has failed because the service BPX1SIA failed.

Explanation: The callable service, BPX1SIA (sigaction()), unexpectedly returned a failure
code. This service was invoked by the library during delivery of a signal to a user catcher
function.

Programmer Response: Contact your IBM Support Center.

System Action: The application ends.

Symbolic Feedback Code: EDC6QO

EDC7001C Signal delivery has failed because the service BPX1SPM failed.

Explanation: The callable service BPX1SPM (sigprocmask()) unexpectedly returned a
failure code. This service was invoked by the library during delivery of a signal to a user
catcher function.

Programmer Response: Contact your IBM Support Center.

System Action: The application ends.

Symbolic Feedback Code: EDC6QP

EDC7002C Signal delivery has failed because the MVS service CSRL16J failed.

Explanation: The MVS callable service CSRL16J unexpectedly returned a failure code.
This service was invoked by the library following the return from a user signal catcher func-
tion.

Programmer Response: Contact your IBM Support Center.

System Action: The application ends.

Symbolic Feedback Code: EDC6QQ

EDC7003C Invalid signal received from the OS/390 UNIX System Services kernel.

Explanation: The library has been interrupted by the OS/390 UNIX System Services kernel
to perform default signal processing. However, the signal was not one of the supported types
(SIGHUP, SIGINT, SIGABRT, SIGILL, SIGFPE, SIGSEGV, SIGPIPE, SIGALRM, SIGTERM,
SIGUSR1, SIGUSR2, SIGABND, SIGQUIT, or SIGTRAP).

Programmer Response: Contact your IBM Support Center.

System Action: The application ends.

Symbolic Feedback Code: EDC6QR

458 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC7004C N EDC7008E

EDC7004C The library function sigsetjmp() or siglongjmp() failed because the service
BPX1SPM failed.

Explanation: The callable service BPX1SPM (sigprocmask()) unexpectedly returned a
failure code. The library was attempting to save or restore the signal mask as part of the
sigsetjmp() or siglongjmp() functions.

Programmer Response: Contact your IBM Support Center.

System Action: The application ends.

Symbolic Feedback Code: EDC6QS

EDC7005E The getopt() function detected an invalid option character option_char when
it was invoked from program program_name.

Explanation: The getopt() function detected that an option character that was parsed was
not one of the recognized set of specified option characters.

Programmer Response: Respecify a recognized option character.

System Action: The getopt() function returns the character in error. The application con-
tinues to run.

Symbolic Feedback Code: EDC6QT

EDC7006E The getopt() function detected an option character option_char that is
missing an argument when it was invoked from program program_name.

Explanation: The getopt() function encountered an option character that required an
option-argument, but the option-argument was not found.

Programmer Response: Respecify the option character with an option-argument.

System Action: The getopt() function returns the character in error. The application con-
tinues to run.

Symbolic Feedback Code: EDC6QU

EDC7007C No memory available for the random() function family internal structure.

Explanation: The initialization routine for the random() function family was unable to allo-
cate memory for the internal structure used by the functions.

Programmer Response: Reduce memory use and try again.

System Action: The application ends.

Symbolic Feedback Code: EDC6QV

EDC7008E No previous regular expression.

Explanation: The re_comp() function was invoked with either a null pointer argument or a
null regular expression, and a compiled regular expression does not currently exist.

Programmer Response: Invoke the re_comp() with a valid regular expression.

System Action: The re_comp() function returns with a pointer to this error message. The
application continues to run.

Symbolic Feedback Code: EDC6R0

 Chapter 12. C/C++ Run-Time Messages 459

 EDC7009E N EDC7013E

EDC7009E Regular expression too long.

Explanation: The input regular expression for the re_comp() function is too long. The com-
piled regular expression cannot fit in the internal work buffer, which is of limited size.

Programmer Response: Invoke the re_comp() with a shorter regular expression.

System Action: The re_comp() function returns with a pointer to this error message. The
application continues to run.

Symbolic Feedback Code: EDC6R1

EDC7010E paren_pair imbalance.

Explanation: The re_comp() function detected an error in the input regular expression. The
character sequences \((left parenthesis) were found without a matching \) (right paren-
thesis), or vice versa.

Programmer Response: Correct the regular expression pattern and retry the re_comp().

System Action: The re_comp() function returns with a pointer to this error message. The
application continues to run.

Symbolic Feedback Code: EDC6R2

EDC7011E brace_pair imbalance.

Explanation: The re_comp() function detected an error in the input regular expression. The
character sequences \{ (left brace) were found without a matching \} (right brace), or vice
versa.

Programmer Response: Correct the regular expression pattern and retry the re_comp().

System Action: The re_comp() function returns with a pointer to this error message. The
application continues to run.

Symbolic Feedback Code: EDC6R3

EDC7012E square_bracket imbalance.

Explanation: The re_comp() function detected an error in the input regular expression. The
left square bracket [was found without a matching right square bracket].

Programmer Response: Correct the regular expression pattern and retry the re_comp().

System Action: The re_comp() function returns with a pointer to this error message. The
application continues to run.

Symbolic Feedback Code: EDC6R4

EDC7013E Too many paren_pair pairs.

Explanation: The re_comp() function detected an error in the input regular expression. Too
many \(\) sub-expression pairs were specified. Up to nine such \(\) pairs are allowed.

Programmer Response: Correct the regular expression pattern and retry the re_comp().

System Action: The re_comp() function returns with a pointer to this error message. The
application continues to run.

Symbolic Feedback Code: EDC6R5

460 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC7014E N EDC7022I

EDC7014E Incorrect range values in brace_pair.

Explanation: The re_comp() function detected an error in the input regular expression. The
repetition interval specified within the \{m,n\} is incorrect. Specifically, one or more of the
following errors may have occurred:

� One or more numbers within the \{\} are too large. They must be less than 256.

� Bad numbers (for example, non-numeric values) are used as range values.

� More than two numbers are given within the \{\}.

� First number exceeds the second number within the \{\}.

Programmer Response: Correct the regular expression pattern and retry the re_comp().

System Action: The re_comp() function returns with a pointer to this error message. The
application continues to run.

Symbolic Feedback Code: EDC6R6

EDC7015E Back-reference number in backslash digit incorrect.

Explanation: The re_comp() function detected an error in the input regular expression. The
back-reference number, digit, in \digit is incorrect. This value must be between 1 and 9
(inclusive), and must correspond to one of the earlier bracketed sub-expressions (that is,
sub-expressions enclosed in \(\)). The expression is invalid if less than digit sub-expressions
precede the \digit. For example, if five bracketed sub-expressions are defined in the regular
expression, then it is valid to refer to them by specifying from \1 to \5. However, it is incorrect
to specify \6, \7, \8, or \9.

Programmer Response: Correct the regular expression pattern and retry the re_comp().

System Action: The re_comp() function returns with a pointer to this error message. The
application continues to run.

Symbolic Feedback Code: EDC6R7

EDC7016E Incorrect endpoint in range expression.

Explanation: The re_comp() function detected an error in the input regular expression. The
ending range point in a range expression must collate equal to or higher than the starting
range point. For example, it is an error to specify [d-a].

Programmer Response: Correct the regular expression pattern and retry the re_comp().

System Action: The re_comp() function returns with a pointer to this error message. The
application continues to run.

Symbolic Feedback Code: EDC6R8

EDC7022I USERID:

Explanation: A userid was not specified, while executing the REXEC command. If a userid
was specified, it was not found to be valid at the host, when searching the $HOME/.netrc
file. A userid must be input at the invocation of this message.

System Action: System waits for user input of userid.

Symbolic Feedback Code: EDC6RE

 Chapter 12. C/C++ Run-Time Messages 461

 EDC7023I N EDC7100E

EDC7023I PASSWORD:

Explanation: A password was not specified, while executing the REXEC command. If a
password was specified, it was not found to be valid at the host, when searching the
$HOME/.netrc file. A password must be input at the invocation of this message.

System Action: System waits for user input.

Symbolic Feedback Code: EDC6RF

EDC7024I $HOME/.netrc file cannot be opened.

Explanation: The $HOME/.netrc file cannot be opened for an FOPEN error other than
ENONET.

System Action: The system continues, asking the user to enter the user ID and password.

Symbolic Feedback Code: EDC6RG

EDC7025I fstat() failed on $HOME/.netrc file.

Explanation: An fstat() was performed on the $HOME/.netrc file, and had an unsuccessful
return code.

System Action: The system stops trying to find the user ID and password through the
$HOME/.netrc file. The user must enter them instead.

Symbolic Feedback Code: EDC6RH

EDC7026I $HOME/.netrc file is not in the correct mode.

Explanation: If the $HOME/.netrc file contains a login password, the file's permissions must
be set to 600 (read and write by owner only). The system detected that the $HOME/.netrc
file was not set to 600.

System Action: The system asks the user to enter the user ID and and password.

Symbolic Feedback Code: EDC6RI

EDC7027I Remove password or correct $HOME/.netrc mode.

Explanation: This message follows EDC7026 and advises the user how to correct the
problem with the $HOME/.netrc file.

System Action: The system asks the user to enter a user ID and password.

Symbolic Feedback Code: EDC6RJ

EDC7028I Unknown $HOME/.netrc option.

Explanation: The system has successfully examined the $HOME/.netrc file for the user ID.
However, the rest of the $HOME/.netrc file is in a syntax that the system cannot understand.

System Action: The system stops trying to find the password in the $HOME/.netrc file. The
user must then enter it instead.

Symbolic Feedback Code: EDC6RK

EDC7100E errval : error unknown

Explanation: An unrecognized XTI error value was passed to t_error or t_strerror.

System Action: Pass a valid XTI error value to the function.

Symbolic Feedback Code: EDC61O

462 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC7101I N EDC7108I

EDC7101I incorrect addr format

Explanation: A transport address was passed to an XTI function which had an invalid
format.

System Action: The function fails. A correct address should be passed to the function.

Symbolic Feedback Code: EDC61P

EDC7102I incorrect option format

Explanation: An option buffer was passed to an XTI function which had inconsistent length
indication or contained an invalid option value.

System Action: The function fails. An option buffer with valid format should be passed to
the function.

Symbolic Feedback Code: EDC61Q

EDC7103I incorrect permissions

Explanation: An XTI caller tried to change a transport option for which they lacked privi-
lege.

System Action: The function fails. The caller should not attempt to change the option while
operating without adequate privilege.

Symbolic Feedback Code: EDC61R

EDC7104I illegal transport fd

Explanation: The descriptor did not refer to a valid XTI transport endpoint.

System Action: The function fails. Pass a descriptor referring to a valid transport endpoint.

Symbolic Feedback Code: EDC61S

EDC7105I couldn't allocate addr

Explanation: The XTI transport provider couldn't allocate a transport address.

System Action: The function fails. Reattempt when addresses are available.

Symbolic Feedback Code: EDC61T

EDC7106I out of state

Explanation: A transport endpoint was not in a valid state for the function to be performed.

System Action: The function fails. Manipulate the endpoint to bring it into the correct state
before reattempting.

Symbolic Feedback Code: EDC61U

EDC7107I bad call sequence number

Explanation: An invalid sequence number was specified in a t_accept call.

System Action: The function fails. Specify a valid sequence number.

Symbolic Feedback Code: EDC61V

EDC7108I system error

Explanation: A system error occurred during the execution of an XTI function.

System Action: The function fails. Correct the underlying problem.

Symbolic Feedback Code: EDC620

 Chapter 12. C/C++ Run-Time Messages 463

 EDC7109I N EDC7116I

EDC7109I event requires attention

Explanation: An event on an XTI endpoint requires attention.

System Action: The function fails. Call t_look to process the event.

Symbolic Feedback Code: EDC621

EDC7110I illegal amount of data

Explanation: An invalid amount of user data was passed to an XTI function.

System Action: The function fails. Correct the amount of data passed.

Symbolic Feedback Code: EDC622

EDC7111I buffer not large enough

Explanation: The buffer provided to return a value from an XTI function was not large
enough.

System Action: The function fails. Pass a larger return buffer.

Symbolic Feedback Code: EDC623

EDC7112I flow control

Explanation: O_NONBLOCK was set in a call to an XTI function to send data, but the
transport flow control mechanism prevented the transport provider from accepting any data
at this time.

System Action: The function fails. Call the function again when the flow control condition
no longer exists.

Symbolic Feedback Code: EDC624

EDC7113I no data

Explanation: An XTI function to accept a connection or receive data was called with
O_NONBLOCK set on the endpoint, and no connection/data was pending.

System Action: The function fails. Retry.

Symbolic Feedback Code: EDC625

EDC7114I discon_ind not found on queue

Explanation: No disconnect indication was found on the specified XTI endpoint.

System Action: The function fails. Retry.

Symbolic Feedback Code: EDC626

EDC7115I unitdata error not found

Explanation: No unitdata error was found on the specified XTI endpoint.

System Action: The function fails. Retry.

Symbolic Feedback Code: EDC627

EDC7116I bad flags

Explanation: An invalid flags value was passed to t_optmgmt.

System Action: The function fails. Retry with a valid flags value.

Symbolic Feedback Code: EDC628

464 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC7117I N EDC7124I

EDC7117I no ord rel found on queue

Explanation: No orderly release indication was found on the specified XTI endpoint.

System Action: The function fails. Retry.

Symbolic Feedback Code: EDC629

EDC7118I primitive/action not supported

Explanation: An operation unsupported by the underlying transport provider was
requested.

System Action: The function fails.

Symbolic Feedback Code: EDC62A

EDC7119I state is in process of changing

Explanation: An operation was requested on an XTI endpoint whose state was in the
process of changing.

System Action: The function fails. Retry.

Symbolic Feedback Code: EDC62B

EDC7120I unsupported struct-type requested

Explanation: Allocation of an unsupported XTI structure type was requested from t_alloc.

System Action: The function fails. Pass a correct structure type.

Symbolic Feedback Code: EDC62C

EDC7121I invalid transport provider name

Explanation: An invalid transport provider name was specified when attempting to open an
XTI endpoint.

System Action: The function fails. Specify a valid transport provider.

Symbolic Feedback Code: EDC62D

EDC7122I qlen is zero

Explanation: An attempt was made to listen on an XTI endpoint whose connection queue
length is zero.

System Action: The function fails. Specify an endpoint with a non-zero queue length.

Symbolic Feedback Code: EDC62E

EDC7123I address in use

Explanation: An attempt was made to bind to a transport address which is already in use.

System Action: The function fails. Specify an address which is available.

Symbolic Feedback Code: EDC62F

EDC7124I outstanding connection indications

Explanation: The XTI endpoint specified for both fd and resfd in a call to t_accept has
outstanding connect requests.

System Action: The function fails. Specify an endpoint with no outstanding connect
requests.

Symbolic Feedback Code: EDC62G

 Chapter 12. C/C++ Run-Time Messages 465

 EDC7125I N EDC8001I

EDC7125I transport provider mismatch

Explanation: The listening and responding endpoints in a t_accept call do not refer to the
same transport provider.

System Action: The function fails. Specify two endpoints which both refer to the same
transport provider.

Symbolic Feedback Code: EDC62H

EDC7126I resfd specified to accept w/qlen >0

Explanation: The XTI endpoint specified as resfd to t_accept is a passive endpoint.

System Action: The function fails. Specify an endpoint with zero queue length.

Symbolic Feedback Code: EDC62I

EDC7127I resfd not bound to same addr as fd

Explanation: The responding endpoint in a call to t_accept is not bound to the same
address as the listening endpoint.

System Action: The function fails. Specify two endpoints both bound to the same address.

Symbolic Feedback Code: EDC62J

EDC7128I incoming connection queue full

Explanation: The connection queue of the endpoint specified in a call to t_listen is full.

System Action: The function fails. Accept pending connections on the endpoint and retry.

Symbolic Feedback Code: EDC62K

EDC7129I XTI protocol error

Explanation: A communication problem has been detected between XTI and the transport
provider to which an endpoint refers.

System Action: The function fails. Refer to diagnostic procedures for the transport pro-
vider.

Symbolic Feedback Code: EDC62L

EDC8000I A bad socket-call constant was found in the IUCV header.

Explanation: A problem has occurred between MVS or VM and TCP/IP.

Programmer Response: Record this error and report the failure using your local procedure
to report failures to the IBM Service support contact.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7Q0

EDC8001I An error was found in the IUCV header.

Explanation: An error was found in the IUCV header, such as a bad length.

Programmer Response: Record this error and report the failure using your local procedure
to report failures to the IBM Service support contact.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7Q1

466 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC8002I N EDC8007I

EDC8002I A socket descriptor is out of range.

Explanation: A socket number assigned by client interface code (for socket() and
accept()) is out of range.

Programmer Response: Record this error and report the failure using your local procedure
to report failures to the IBM Service support contact.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7Q2

EDC8003I A socket descriptor is in use.

Explanation: A socket number assigned by client interface code is already in use.

Programmer Response: Record this error and report the failure using your local procedure
to report failures to the IBM Service support contact.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7Q3

EDC8004I Request failed because of an IUCV error.

Explanation: The request failed because of IUCV error. This error is generated by the
client stub code.

Programmer Response: Record this error and report the failure using your local procedure
to report failures to the IBM Service support contact.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7Q4

EDC8005I Offload box error.

Explanation: A problem has occurred between MVS or VM and TCP/IP.

Programmer Response: Record this error and report the failure using your local procedure
to report failures to the IBM Service support contact.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7Q5

EDC8006I Offload box restarted.

Explanation: A problem has occurred between MVS or VM and TCP/IP.

Programmer Response: Record this error and report the failure using your local procedure
to report failures to the IBM Service support contact.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7Q6

EDC8007I Offload box down.

Explanation: A problem has occurred between MVS or VM and TCP/IP.

Programmer Response: Record this error and report the failure using your local procedure
to report failures to the IBM Service support contact.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7Q7

 Chapter 12. C/C++ Run-Time Messages 467

 EDC8008I N EDC8102I

EDC8008I Already a conflicting call outstanding on socket.

Explanation: A problem has occurred between MVS or VM and TCP/IP.

Programmer Response: Record this error and report the failure using your local procedure
to report failures to the IBM Service support contact.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7Q8

EDC8009I Request cancelled using a SOCKcallCANCEL request.

Explanation: A problem has occurred between MVS or VM and TCP/IP.

Programmer Response: Record this error and report the failure using your local procedure
to report failures to the IBM Service support contact.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7Q9

EDC8011I A name of a PFS was specified that either is not configured or is not a
Sockets PFS.

Explanation: A problem has occurred between MVS or VM and TCP/IP.

Programmer Response: Record this error and report the failure using your local procedure
to report failures to the IBM Service support contact.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7QB

EDC8100I Block device required.

Explanation: A non-block file was specified when a block device is required.

Programmer Response: Proceed with cleanup of the application resources, and then close
the socket. When the socket has been freed, the application may begin the process again.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7T4

EDC8101I Text file busy.

Explanation: An attempt is made to run a pure-procedure program that is currently open
for writing or reading. It also occurs when an attempt is made to open for writing, or to
remove, a pure-procedure program or shared library while that program or library is being
run.

Programmer Response: Proceed with cleanup of the application resources; then close the
socket. When the socket has been freed, the application may begin the process again.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7T5

EDC8102I Operation would block.

Explanation: An operation on a socket marked as non-blocking has encountered a situ-
ation, such as no data available, that otherwise would have caused the function to suspend
execution.

Programmer Response: Proceed with cleanup of the application resources, and then close
the socket. When the socket has been freed, the application may begin the process again.

System Action: The request fails. The application continues to run.

468 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC8103I N EDC8107I

Symbolic Feedback Code: EDC7T6

EDC8103I Operation now in progress.

Explanation: The socket was marked O_NDELAY or O_NONBLOCK using fcntl(), and
the connection cannot be immediately established.

Programmer Response: Proceed with cleanup of the application resources, and then close
the socket. When the socket has been freed, the application may begin the process again.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7T7

EDC8104I Connection already in progress.

Explanation: A connection or disconnection request is already in progress for the specified
socket.

Programmer Response: Proceed with cleanup of the application resources, and then close
the socket. When the socket has been freed, the application may begin the process again.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7T8

EDC8105I Socket operation on non-socket.

Explanation: The file descriptor does not refer to a socket.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7T9

EDC8106I Destination address required.

Explanation: The socket operation failed because a destination address was not provided.
No bind address was established.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7TA

EDC8107I Message too long.

Explanation: The socket data transfer failed because the message exceeded the size
limits. A message sent on a transport provider was longer than an internal message buffer
or some other network limit.

Programmer Response: Proceed with cleanup of the application resources, and then close
the socket. When the socket has been freed, the application may begin the process again.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7TB

 Chapter 12. C/C++ Run-Time Messages 469

 EDC8108I N EDC8112I

EDC8108I Protocol wrong type for socket.

Explanation: Either the two sockets to be connected are not of the same type, or the pro-
tocol used does not support this type of socket.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7TC

EDC8109I Protocol not available.

Explanation: The protocol option specified to setsockopt() is not supported by this imple-
mentation.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7TD

EDC8110I Protocol not supported.

Explanation: This protocol is not supported by the address family, or the protocol is not
supported by this implementation.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7TE

EDC8111I Socket type not supported.

Explanation: The type of socket specified is not supported. Do not use this type of socket
in your program.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7TF

EDC8112I Operation not supported on socket.

Explanation: This socket, with its particular type, domain, and protocol, does not allow the
requested operation.

Programmer Response: Proceed with cleanup of the application resources, and then close
the socket. When the socket has been freed, the application may begin the process again.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7TG

470 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC8113I N EDC8117I

EDC8113I Protocol family not supported.

Explanation: The socket protocol specified is not supported. Do not use this protocol in
your program.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7TH

EDC8114I Address family not supported.

Explanation: This implementation does not support the specified address family, or the
specified address is not valid for the address family of the specified socket.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7TI

EDC8115I Address already in use.

Explanation: A bind or connect operation was attempted using a socket name that is
already in use.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7TJ

EDC8116I Address not available.

Explanation: The requested socket address is not available to this machine. Either an
incorrect socket address was used, or there is a problem at the remote node where the
socket address should be.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7TK

EDC8117I Network is down.

Explanation: A socket operation failed because the network is not available. The local
interface to use or reach the destination is not available.

Programmer Response: Proceed with cleanup of the application resources and then close
the socket. When the socket has been freed, the application may begin the process again.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7TL

 Chapter 12. C/C++ Run-Time Messages 471

 EDC8118I N EDC8123I

EDC8118I Network is unreachable.

Explanation: A socket operation failed because the destination is at a remote node that
cannot be reached over the network. No route to the network exists.

Programmer Response: Proceed with cleanup of the application resources, and then close
the socket. When the socket has been freed, the application may begin the process again.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7TM

EDC8119I Network dropped connection on reset.

Explanation: The host to which the socket was connected went down. The connection can
be reestablished after the remote node is restarted.

Programmer Response: Proceed with cleanup of the application resources, and then close
the socket. When the socket has been freed, the application may begin the process again.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7TN

EDC8120I Connection ended abnormally.

Explanation: The connection between a socket and a remote node was terminated at the
local node, the remote node, or the network level.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7TO

EDC8121I Connection reset.

Explanation: The connection was forcibly closed by the peer. This errno can be set
because of an error, or because of a connection that was closed.

Programmer Response: Proceed with cleanup of the application resources and then close
the socket. When the socket has been freed, the application may begin the process again.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7TP

EDC8122I No buffer space available.

Explanation: Not enough buffer space is available in the system to perform the requested
socket operation.

Programmer Response: Proceed with cleanup of the application resources, and then close
the socket. When the socket has been freed, the application may begin the process again.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7TQ

EDC8123I Socket already connected.

Explanation: A connect operation was attempted on a socket that is already connected.

Programmer Response: Proceed with cleanup of the application resources, and then close
the socket. When the socket has been freed, the application may begin the process again.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7TR

472 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC8124I N EDC8128I

EDC8124I Socket not connected.

Explanation: A socket operation, other than a connect, was attempted on a socket that is
not currently connected, or a send operation that does not require a connection was
attempted without a destination address.

Programmer Response: Proceed with cleanup of the application resources, and then close
the socket. When the socket has been freed, the application may begin the process again.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7TS

EDC8125I Can't send after socket shutdown.

Explanation: An attempt was made to send data after a socket was shut down.

Programmer Response: Proceed with cleanup of the application resources, and then close
the socket. When the socket has been freed, the application may begin the process again.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7TT

EDC8126I Too many references; can't splice.

Explanation: Too many references have been specified.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7TU

EDC8127I Connection timed out.

Explanation: A remote socket did not respond within the timeout period set by the protocol
of the socket on this node. If the connection timed out during execution of the function that
reported this error (as opposed to timing out before the function being called), results are
unpredictable.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7TV

EDC8128I Connection refused.

Explanation: A remote node refused to allow the attempted connect operation. The attempt
to connect to a socket was refused because there was no process listening, or because the
queue of connection requests was full and the underlying protocol does not support
retransmissions.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7U0

 Chapter 12. C/C++ Run-Time Messages 473

 EDC8129I N EDC8134I

EDC8129I Host is not available.

Explanation: A socket operation failed because the remote node specified is not available.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7U1

EDC8130I Host cannot be reached.

Explanation: A socket operation failed because no route to the remote node was available
because of an incorrect address, an incorrect routing table, or network hardware problems.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7U2

EDC8131I Too many processes.

Explanation: The system process limit has been exceeded.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7U3

EDC8132I Too many users.

Explanation: The maximum number of users has been reached.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7U4

EDC8133I Disk quota exceeded.

Explanation: A write to an ordinary file, the creation of a directory or symbolic link, or the
creation of a directory entry failed because the user's quota of disk blocks is exhausted.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7U5

EDC8134I Stale file handle.

Explanation: The current directory, the root directory, or a file descriptor to a file refers to a
file system that is no longer accessible. This error may be caused by the local or remote file
system being unmounted, or by a remote file server disabling currently open file handles for
implementation-defined reasons.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7U6

474 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC8136I N EDC8140I

EDC8136I File is not a STREAM.

Explanation: A STREAM operation was attempted on a file descriptor which was not asso-
ciated with a STREAM.

Programmer Response: Report the failure to your local administrator.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7U8

EDC8137I STREAMS ioctl() timeout.

Explanation: The timer set for a STREAMS ioctl() call has expired. The cause of this
error is device-specific and indicates either a hardware or software failure, or a timeout value
that is too short for the specific operation. The status of the ioctl() operation is unpredict-
able.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7U9

EDC8138I No STREAMS resources.

Explanation: Insufficient STREAMS memory resources are available to perform a
STREAMS-related function. This is a temporary condition; recovery is possible if other proc-
esses release resources.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7UA

EDC8139I The message identified by set_id and msg_id is not in the message catalog.

Explanation: This message is equivalent to the ENOMSG errno.

Programmer Response: Refer to OS/390 C/C++ Run-Time Library Reference for the func-
tion being attempted for the specific reason for failure.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7UB

EDC8140I Bad message.

Explanation: During a read(), getmsg(), or ioctl() I_RECVFD request to a STREAMS
device, a message arrived at the head of the STREAMS that is inappropriate for the function
receiving the message:

� read()—The message waiting to be read on a STREAMS is not a data message.

� getmsg()—A file descriptor was received instead of a control message.

� ioctl()—Control or data information was received instead of a file descriptor when
I_RECVFD was specified.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7UC

 Chapter 12. C/C++ Run-Time Messages 475

 EDC8141I N EDC8159I

EDC8141I Identifier removed.

Explanation: Returned during interprocess communication if an identifier has been
removed from the system.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7UD

EDC8144I The link has been severed.

Explanation: This error may be reported by a function that refers to a remote file, when the
communications link to the server for that resource has been lost, any file descriptor associ-
ated with this remote file should not be used for future I/O.

Programmer Response: Proceed with cleanup of the application resources, and then close
the socket. When the socket has been freed, the application may begin the process again.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7UG

EDC8148I Protocol error.

Explanation: A protocol error occurred. This error is device-specific, but is usually not
caused by a hardware failure.

Programmer Response: Proceed with cleanup of the application resources, and then close
the socket. When the socket has been freed, the application may begin the process again.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7UK

EDC8149I Multihop not allowed.

Explanation: For a function that has a pathname as one of its arguments, resolution of that
pathname requires multihop access to a remote resource, and multihop access is not sup-
ported by the underlying implementation.

Programmer Response: Report the failure to your local administrator for the TCP/IP func-
tion. Try the application again when the problem has been corrected.

System Action: The request fails. The application continues to run.

Symbolic Feedback Code: EDC7UL

EDC8159I Function call was interrupted before any data was received.

Explanation: An asynchronous signal was caught by the (POSIX) process during the exe-
cution of an interruptible function, and the signal handler (or default action) resulted in a
normal return. This caused the interrupted function to return this errno. The signal arrived
after the socket connection was established but before any data was received over the con-
nection.

Programmer Response: See OS/390 C/C++ Run-Time Library Reference for information
about possible side effects of interrupting the function.

System Action: The request fails and no data is returned. The socket connection is estab-
lished. The application continues to run.

Symbolic Feedback Code: EDC7UV

476 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDC8160I N EDC8160I

EDC8160I Socket reuse is not supported.

Explanation: An attempt was made to reuse the specified socket for this function. Reuse of
this socket by this function is not allowed.

Programmer Response: See OS/390 C/C++ Run-Time Library Reference for the function
being attempted for the specific reason for failure, and for any side effects from the function.

System Action: The socket is not reused. Refer to the OS/390 C/C++ Run-Time Library
Reference for more information on how each function reacts to this error. The application
continues to run.

Symbolic Feedback Code: EDC7V0

 Chapter 12. C/C++ Run-Time Messages 477

478 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Chapter 13. Fortran Run-Time Messages

This chapter shows the ranges of Fortran message numbers by message type, and
explains qualifying data, permissible resume actions, and locator-text in the Fortran
messages. Finally, the list of the Fortran messages is given.

Fortran Run-Time Message Number Ranges
Component or Language Element Range of Message Numbers

(Reserved) 0000–0099
Service Subroutines 0100–0299
Common Blocks 0300–0339
Operator Messages 0340–0344
(Reserved) 0345–0400
Run-time Environment 0401–0499
Implicit Routines 0500–0599
Intrinsic Functions 0600–0699
(Reserved) 0700–0999
I/O 1000–1999
 Input Conversion 1000–1019
 Sequential I/O 1020–1069
 Direct I/O 1070–1099
 Keyed I/O 1100–1179
 Formatted I/O 1180–1199
 Unformatted I/O 1200–1209

List Directed I/O 1210–1219
 Namelist I/O 1220–1249
 Striped I/O 1250–1269
 Asynchronous I/O 1270–1329
 VSAM I/O 1330–1339
 INQUIRE 1340–1359
 CLOSE semantics 1360–1379

OPEN / DEFINE FILE semantics 1380–1449
 (Reserved) 1450–1499
 System-detected errors 1500–1549

Command / Macro / Service failure 1550–1599
 File Disconnection 1900–1909

End of Data 1910–1914
 Invalid unit 1915–1919
 Miscellaneous 1920–1999
Multitasking Facility (MTF) 2000–2099
 AUTOTASK 2000–2029

AUTOTASK DD Statement 2030–2039
 Function invalid 2040–2049
 Miscellaneous 2050–2099
Vector 2100–2119
Run-Time Options 2120–2129
Miscellaneous 2130–2199
Separation Tool 2200–2249
Static Debug 2250–2279
Miscellaneous 2280–2999
(Reserved) 3000–9999

 Copyright IBM Corp. 1991, 2000 479

 Qualifying Data
Many of the messages listed have a section called Qualifying Data describing quali-
fying data (q_data) associated with the condition. (Qualifying data (or q_data) con-
sists of variables that contain information about the occurrence of a particular
condition, such as the input values to the service that detected the condition. This
information is useful for a condition handler to determine what corrective actions to
take.)

Many of the conditions have q_data descriptors (indicated by data type
Q_DATA_DESC) as part of their qualifying data. A q_data descriptor indicates the
data type and length of the immediately following element of qualifying data.

The first qualifying data for any condition is parm-count, the total number of ele-
ments of qualifying data including parm-count itself, associated with that condition
token.

For I/O errors, the first four qualifying data are defined as shown in Table 9:

Table 9. Basic Set of Qualifying Data for I/O Conditions

No. Name Input/Output Type Value

1 parm-count Input INTEGER*4 The total number of elements of qualifying data
including this one. If there is no additional quali-
fying data beyond the basic set shown here, then
this value is 4. Otherwise, it includes the first four
shown here plus whatever additional qualifying
data is applicable to the condition.

2 statement Input CHARACTER*12 The name of the I/O statement being processed.

3 unit Input INTEGER*4 −1 if the I/O statement is directed to an internal
file; otherwise, the unit number specified on the
I/O statement.

4 file Input CHARACTER*62 Blank if if the I/O statement refers to an internal
file or if the name of the file is not provided as
part of the message text for this condition.

Otherwise, a structure, whose contents are
shown below, which gives the name of the
external file to which the I/O statement refers.

When the file qualifying data is not blank, it gives the file name of the file involved
in the I/O statement, and has the following format:

For OS/390 (when position 9 is other than blank):

Position Length Contents

1 8 The ddname for the file.

9 1 A code that indicates whether the file is identified
in the Fortran program either by its ddname or by
its data set name. A value of blank indicates that
the file is referred to through its ddname. Any
non-blank character indicates that it is referred to
by its data set name.

480 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

For more information on qualifying data, see OS/390 Language Environment Pro-
gramming Guide.

9 44 Data set name

53 8 PDS member name (or blank if not a PDS)

61 2 Not used

Permissible Resume Actions
Many of the messages listed have a section called Permissible Resume Actions
describing which resume actions a user condition handler can request when the
resume cursor has not been moved.

The following table shows the names (that is, the two-character codes) of the
resume actions. It also contains a description of the values that the user condition
handler must set for the indicated parameters to request that resume action.
(result_code and new_condition are defined in OS/390 Language Environment Pro-
gramming Guide.)

If a user condition handler requests a resume action that is not listed as one of the
permissible resume actions for the condition being processed, either the condition
CEE088 (invalid request for the resume action) or the condition CEE087 (invalid
request for the fix-up and resume action) is signaled. If a user condition handler
attempts to resume without moving the resume cursor for the condition CEE088 or
CEE087, the condition is percolated to the next condition handler to avoid a
program loop.

Regardless of what is listed for a message under Permissible Resume Actions, you
can always move the resume cursor by invoking the callable service CEEMRCE
and then requesting the resume action. In this case, the only actions that are taken
are those described under System Action; none of those listed under Permissible
Resume Actions is taken.

Name Corresponding Resume Action
result_code
Parameter

new_condition
Parameter

RN Resume without moving the resume cursor 10 —
RI Resume with new input value 60 CEE0CE
RO Resume with new output value 60 CEE0CF

Name Resume Action
result_code
Parameter

new_condition
Parameter

— Resume after moving the resume cursor 10 —

locator-text in the Run-Time Message Texts
In many message texts for conditions involving I/O statements, locator-text is
shown as part of the message text. This locator-text identifies the Fortran statement
for which the error was detected and can be one of the following:

� The statement statement for unit unit-number, which was connected to file-
name, failed.

� The statement statement for an internal file failed.

 Chapter 13. Fortran Run-Time Messages 481

 FOR0096W N FOR0096W

� An error occurred during enclave termination.

� The statement statement for unit unit-number failed.

� The INQUIRE statement failed.

List of Run-Time Messages
The following messages pertain to Fortran. Messages are followed by an explana-
tion describing the condition that caused the message (except for those messages
for which the message text is self-explanatory), a programmer response suggesting
how you might prevent the message from occurring again, and a system action
indicating how the system responds to the condition that caused the message.

The messages also contain a symbolic feedback code, which represents the first 8
bytes of a 12-byte condition token. You can think of the symbolic feedback code as
the nickname for a condition. As such, the symbolic feedback code can be used in
user-written condition handlers to screen for a given condition, even if it occurs at
different locations in an application.

Some messages also contain qualifying data and permissible resume actions, as
discussed in “Qualifying Data” on page 480, and “Permissible Resume Actions” on
page 481, respectively. The VS FORTRAN Version 2 error number is shown for
those messages that existed in VS FORTRAN Version 2.

The messages in this section contain alphabetic suffixes that have the following
meaning:

I Informational message
W Warning message
E Error message
S Severe error message
C Critical error message

FOR0096W The symbol table in storage was corrupted and couldn't be used to
produce a dump.

Explanation: During the printing of a dump, a Language Environment routine detected an
inconsistency in a symbol table, which contains information about the type and location of
the variables in a Fortran program unit. Most likely the symbol table in virtual storage was
overlaid by some routine (but not necessarily by the routine with the overlaid symbol table).

Programmer Response: Determine and correct the cause of the overlaid symbol table. In
Fortran program units, this is often caused by:

� Using subscripts that reference virtual storage outside the declared bounds of an array.

� Referring to variables that are in EQUIVALENCE statements when the variables are
declared to overlay too much storage.

� Referring to storage that's addressed through a pointer whose value isn't properly estab-
lished.

� In a CALL statement or function reference, providing actual arguments that are not con-
sistent with the dummy arguments declared in the subprogram. The actual arguments
could be of the wrong type, rank, or have the wrong array bounds. There could be an
incorrect number of actual arguments.

System Action: The dump or the remainder of the dump for this program unit is not
created.

482 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR0100S N FOR0102S

Symbolic Feedback Code: FOR0096

FOR0100S The DIV callable service service-name for the dynamic common block
common-name failed. A macro-name macro instruction had a system com-
pletion (abend) code of abend-code, and a reason code of reason-code. Seek
assistance from your Language Environment support personnel. VS
FORTRAN Version Error 2 Number: AFB143I-1

Explanation: The DIV callable service service-name failed because the macro instruction
macro-name, which was used internally by Language Environment, failed. The system com-
pletion (abend) codes and reason codes are described in OS/390 MVS Programming:
Assembler Services Reference.

Programmer Response: Refer to the one of the publications listed under “Explanation” for
the cause of the error. You might require the assistance of your Language Environment
support personnel to resolve many of these errors.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions:

Symbolic Feedback Code: FOR0100

FOR0101S The DIV callable service service-name failed for the dynamic common block
common-name. A macro-name macro instruction had a return code of return-
code, and a reason code of reason-code. Seek assistance from your Lan-
guage Environment support personnel. VS FORTRAN Version Error 2
Number: AFB143I-2

Explanation: The DIV callable service service-name failed because the macro instruction
macro-name, which was used internally by Language Environment, failed. The return codes
and reason codes are described in OS/390 MVS Programming: Assembler Services Refer-
ence.

Programmer Response: Refer to the one of the publications listed under “Explanation” for
the cause of the error. You might require the assistance of your Language Environment
support personnel to resolve many of these errors.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions:

Symbolic Feedback Code: FOR0101

FOR0102S The DIV callable service service-name failed. The return code was return-
code. VS FORTRAN Version Error 2 Number: AFB144I-1, AFB144I-2

Explanation: The DIV callable service service-name failed because of one of the following
errors, which is identified by the return code return-code. The arguments mentioned in the
explanations are those described for the DIV callable services in VS FORTRAN Version 2
Language and Library Reference.

Name Action Taken after Resumption

RN The service is not completed, a return code of 128 is set, and execution resumes.

Name Action Taken after Resumption

RN The service is not completed, a return code of 128 is set, and execution resumes.

 Chapter 13. Fortran Run-Time Messages 483

 FOR0102S N FOR0102S

Programmer Response: Based on the return code identified by return-code, take the
action indicated. The arguments mentioned are those described for the DIV callable services
in VS FORTRAN Version 2 Language and Library Reference.

Return
Code Explanation

8 The value of the dyncom argument wasn't the name of a dynamic common block.

12 The value of the type argument was neither DDNAME, DSNAME, nor DSN.

16 If the value of the type argument was DSNAME or DSN, the value of the access argument
was neither READ nor READWRITE. If the value of the type argument was DDNAME, the
value of the access argument was neither READ, READWRITE, nor blank.

20 The value of the access argument was READ, but the data object was empty.

24 The object specified by the divobj argument was already associated with a dynamic common
block or an object ID through a different ddname.

28 The ddname or data set name given as the divobj argument did not refer to a VSAM linear
data set.

32 The value supplied for divobj argument was not a valid ddname or data set name (as deter-
mined by the value of the type argument).

36 The value of the divobj argument conflicted with the value of the type argument. For example,
this return code could indicate that the type argument had a value of DDNAME, and the divobj
had a value that could only be a data set name rather than a ddname.

40 The data set that had the name given as the value of the divobj argument and that should
have been a VSAM linear data set could not be dynamically allocated, possibly because it
didn't exist.

44 The dynamic common block whose name was given as the value of the dyncom argument was
already associated with another data object through a the use of the DIVINF or DIVVWV call-
able service.

48 The argument list passed to the DIV callable service was invalid for one or more of these
reasons:

� The call was made from a program compiled by the VS FORTRAN Version 1 or the VS
FORTRAN Version 2 compiler with the the LANGLVL(66) compiler option.

� The call was made from a program compiled by the VS FORTRAN Version 1 compiler at a
level prior to Release 3.

� The call was made from a program compiled by the FORTRAN IV H Extended or the
FORTRAN IV G1 compiler.

� An incorrect number of arguments was provided.

� One or more of the arguments wasn't of the type required by the callable service.

� The call was made from an assembler language program, and the arguments were not
provided in the form required when there are character arguments.

52 The value of the mapnum argument implied a range in the data object that overlaps a range
that was already mapped.

56 The value of the obj-id argument did not have an association with any data object.

60 The value of the offset argument was negative.

64 The dynamic common block whose name was given as the value of the dyncom argument was
not associated with any data object.

68 The DIVSAV callable service was invoked, but the data object associated with the dynamic
common whose name was given as the value of the dyncom argument was not accessed
using a value of READWRITE for the access argument.

72 The value of the mapnum argument was zero or negative.

76 The DIV callable service was called from within an MTF parallel subroutine.

Return
Code Explanation

8 Specify the name of the common block as one of the suboptions of the DC compiler option.

484 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR0102S N FOR0102S

Return
Code Explanation

12 Change the value of the type argument to DDNAME, DSNAME, or DSN depending on whether
a ddname or a data set name is given as the value of the divobj argument. (Lowercase char-
acters are allowed.)

16 Change the value of the access argument to READ or READWRITE. (Lowercase characters
are allowed.)

20 Ensure that name given as the divobj argument refers to the data object (VSAM linear data
set) that was intended, or change the value of the access argument to READWRITE.

24 Remove this call to the DIVINF or DIVINV callable service if an existing association can be
used. Alternatively, terminate the existing association using the DIVTRF or DIVTRV callable
service before calling DIVINF or DIVINV.

28 Ensure that the ddname or the data set name given as the divobj argument refers to a VSAM
linear data set.

32 Ensure that the value of the divobj argument is a valid ddname or a data set name that refers
to a VSAM linear data set. Also ensure that it is correctly specified as either a ddname or a
data set name in the type argument.

36 If the type argument has a value of DDNAME, then ensure that a ddname referring to a VSAM
linear data set is given as the value of the divobj argument. If the type has a value of
DSNAME or DSN, then ensure that a data set name of a VSAM linear data set is given as the
value of the divobj argument. Change either or both of these arguments to make them con-
sistent.

40 Ensure that the data set name refers to a VSAM linear data set, which can be created using
Access Method Services.

44 Make one or more of these changes:

� Remove the call to the DIVINF or DIVVWV if an existing association can be used.

� Use a different dynamic common block name.

� First terminate the existing association using the DIVTRF or DIVTRV callable service.

48 If the calling program is written in Fortran, compile it with the VS FORTRAN Version 2 com-
piler, and do not specify the LANGLVL(66) compiler option. If it is written in assembler lan-
guage, use the Fortran conventions for argument lists with character arguments. These
conventions are described in the section “Passing Character Arguments Using the Standard
Linkage Convention” in Appendix B of VS FORTRAN Version 2 Programming Guide for CMS
and MVS.

52 Use a different value for the mapnum argument to avoid overlapping an existing mapping of
the data object. Use the DIVCML callable service if necessary to determine the length of the
dynamic common blocks so that overlapping mappings can be avoided.

56 Ensure that the value of the obj-id argument is the same as what was returned by a previous
call to the DIVINV callable service.

Also ensure that the previous call to the DIVINV callable service completely successfully. If it's
possible that a user-written condition handler requested that execution resume in the event of
an error, then provide logic to handle the nonzero return code.

60 Provide a value for the offset argument that is not less than 0.

64 Ensure that the name given as the value of the dyncom argument has been associated with a
data object using the DIVINF callable service. Also ensure that the previous call to the DIVINF
callable service completely successfully by checking the return code if it's possible that a user-
written condition handler requested that resumption of execution occur.

68 If the changes made in the dynamic common block are to be saved in the data object, then
ensure that the value of the access argument in the call to the DIVINF or DIVINV callable
service is READWRITE. If the changes are not to be saved, then remove the call to the
DIVSAV callable service.

72 Provide a positive value for the mapnum argument. Also see the actions for return code 52.

76 Restructure the application so that there are no calls to the data-in-virtual callable service in
MTF parallel subroutines. However, these services can be used in the main task program, and
the SHRCOM callable service can be used to allow sharing of the dynamic common blocks
among the main task program and the parallel subroutines.

 Chapter 13. Fortran Run-Time Messages 485

 FOR0103W N FOR0104S

System Action: The service is not completed, and the condition is signaled. If the condition
is unhandled, the application is terminated.

Qualifying Data:

Permissible Resume Actions:

Symbolic Feedback Code: FOR0102

FOR0103W The DIV callable service service-name completed successfully, but the
dynamic common block common-name had a length of length, which was
not a multiple of 4096.

Programmer Response: If dynamic common block common-name will be modified and the
changes saved in the data object or if you want to avoid the signaling of this condition,
change the declarations of the variables in common-name such that the length of this
common block becomes an exact multiple of 4096 (4096, 8192, 12288, and so on). Other-
wise, you can ignore this condition.

System Action: The service is completed and execution resumes.

Qualifying Data: None

Permissable Resume Actions:

Symbolic Feedback Code: FOR0103

FOR0104S The DIV callable service service-name failed. It was called with no argument
list. VS FORTRAN Version Error 2 Number: AFB154I

Programmer Response: Provide the arguments that are required for the service-name
callable service. The data-in-virtual callable services are described in detail in VS FORTRAN
Version 2 Language and Library Reference.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissable Resume Actions:

Symbolic Feedback Code: FOR0104

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 3

2 subroutine-
name

Input CHARACTER*8 The name of the DIV subroutine

3 return-code Input INTEGER*4 The return code from the Fortran
DIV subroutine.

Name Action Taken after Resumption

RN The service is not completed, a return code of return code is set, and execution resumes.

Name Action Taken after Resumption

RN The service is not completed, a return code of 4 is set, and execution resumes.

Name Action Taken after Resumption

RN The service is not completed, a return code of 48 is set, and execution resumes.

486 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR0105S N FOR0106S

FOR0105S The DIV callable service service-name failed. It was called with an incorrect
number of arguments. VS FORTRAN Version Error 2 Number: AFB154I

Programmer Response: Provide the arguments that are required for the service-name
callable service. The data-in-virtual callable services are described in detail in VS FORTRAN
Version 2 Language and Library Reference.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions:

Symbolic Feedback Code: FOR0105

FOR0106S The DIV callable service service-name failed. It was called with an argument
list in an incorrect format. This probably occurred because a required char-
acter argument was not provided. VS FORTRAN Version Error 2 Number:
AFB154I

Explanation: The argument list provided to the service-name callable service wasn't in the
internally-generated form produced by the Fortran compiler when there are character argu-
ments. This could have occurred for one or more of these reasons:

� The call was made from a program compiled by the VS FORTRAN Version 1 or the VS
FORTRAN Version 2 compiler with the the LANGLVL(66) compiler option.

� The call was made from a program compiled by the VS FORTRAN Version 1 compiler at
a level prior to Release 3.

� The call was made from a program compiled by the FORTRAN IV H Extended or the
FORTRAN IV G1 compiler.

� An incorrect number of arguments was provided.

� One or more of the arguments wasn't of the type required by the callable service.

� The call was made from an assembler language program, and the arguments were not
provided in the form required when there are character arguments.

Programmer Response: Provide the arguments that are required for the service-name
callable service. The data-in-virtual callable services are described in detail in VS FORTRAN
Version 2 Language and Library Reference.

If the program is written in Fortran, compile it with the VS FORTRAN Version 2 compiler,
and do not specify the LANGLVL(66) compiler option. If it is written in assembler language,
use the Fortran conventions for argument lists with character arguments. These conventions
are described in the section “Passing Character Arguments Using the Standard Linkage
Convention” in Appendix B of VS FORTRAN Version 2 Programming Guide for CMS and
MVS.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions:

Symbolic Feedback Code: FOR0106

Name Action Taken after Resumption

RN The service is ignored, a return code of 48 is set, and execution resumes.

Name Action Taken after Resumption

RN The service is ignored, a return code of 48 is set, and execution resumes.

 Chapter 13. Fortran Run-Time Messages 487

 FOR0120S N FOR0120S

FOR0120S The FILEINF callable service failed. It was called with an argument list in an
incorrect format. VS FORTRAN Version Error 2 Number: AFB096I-1

Explanation: The argument list provided in the call to the FILEINF callable service was
incorrect in one of these ways:

� There was no argument list.

� The argument list had an even number of arguments.

� The argument list wasn't in the internally-generated form produced by the Fortran com-
piler when there are character arguments. This could have occurred for one or more of
these reasons:

– One or more of the keyword arguments (CYL, RECFM, and so on) weren't provided
as character expressions.

– The call was made from a program compiled by the VS FORTRAN Version 1 or the
VS FORTRAN Version 2 compiler with the the LANGLVL(66) compiler option.

– The call was made from a program compiled by the VS FORTRAN Version 1 com-
piler at a level prior to Release 3.

– The call was made from a program compiled by the FORTRAN IV H Extended or the
FORTRAN IV G1 compiler.

– The call was made from an assembler language program, and the arguments were
not provided in the form required when there are character arguments.

Programmer Response: Be sure that the argument list contains an odd number of argu-
ments and that the even-numbered arguments are character expressions whose values are
the permissible keyword arguments.

If the program is written in Fortran, compile it with the VS FORTRAN Version 2 compiler,
and do not specify the LANGLVL(66) compiler option. If it is written in assembler language,
use the Fortran conventions for argument lists with character arguments. These conventions
are described in the section “Passing Character Arguments Using the Standard Linkage
Convention” in Appendix B of VS FORTRAN Version 2 Programming Guide for CMS and
MVS.

Refer to “System Action” regarding the detection of error FOR1926 on a subsequent OPEN
or CLOSE statement.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated. However, if the RN action listed under “Permissible Resume Actions” is taken to
resume execution following the call, then the file information provided is ignored, and error
FOR1926 is detected during execution of a subsequent OPEN or INQUIRE statement.
Detection of error FOR1926 can be suppressed if, following the failing call to the FILEINF
callable service, another call is made either with no arguments or with arguments that don't
cause another error to be detected.

Qualifying Data: None

Permissible Resume Actions:

Symbolic Feedback Code: FOR0120

Name Action Taken after Resumption

RN The service is ignored, and execution resumes. Refer to “System Action” regarding the
detection of error FOR1926 following this resumption.

488 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR0121S N FOR0122S

FOR0121S The FILEINF callable service failed. The argument in position position of the
argument list was not one of the character values that the FILEINF callable
service understands as an argument. VS FORTRAN Version Error 2
Number: AFB096I-2

Explanation: Position position of the argument list for the FILEINF callable service was not
a character expression whose value was one of the permissible keyword arguments. These
permissible keyword arguments are values such as RECFM, CYL, and so on.

Programmer Response: Correct the argument list by coding the first argument as an
integer variable and the remaining pairs of arguments as one of the permissible keyword
arguments followed by its value. The keyword arguments are listed in the description of the
FILEINF callable service in VS FORTRAN Version 2 Language and Library Reference.

Be sure that each keyword argument is coded as a character expression. Remember that if
a character constant is used, the keyword argument, such as RECFM, must be enclosed in
quotes or apostrophes.

Refer to “System Action” regarding the detection of error FOR1926 on a subsequent OPEN
or CLOSE statement.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated. However, if the RN action listed under “Permissible Resume Actions” is taken to
resume execution following the call, then the file information provided is ignored, and error
FOR1926 is detected during execution of a subsequent OPEN or INQUIRE statement.
Detection of error FOR1926 can be suppressed if, following the failing call to the FILEINF
callable service, another call is made either with no arguments or with arguments that don't
cause another error to be detected.

Qualifying Data: None

Permissible Resume Actions:

Symbolic Feedback Code: FOR0121

FOR0122S The FILEINF callable service failed. An incorrect value was provided for the
actual argument immediately following the actual argument with the value
of keyword. VS FORTRAN Version Error 2 Number: AFB096I-3

Programmer Response: Change the argument list by providing a value that's allowed to
follow and correspond to the keyword argument keyword. The permissible values are shown
in the description of the FILEINF callable service in VS FORTRAN Version 2 Language and
Library Reference.

If the value is of character type, such as FB, and it is coded as a character constant, be sure
to enclose the value in quotes or apostrophes.

Refer to “System Action” regarding the detection of error FOR1926 on a subsequent OPEN
or CLOSE statement.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated. However, if the RN action listed under “Permissible Resume Actions” is taken to
resume execution following the call, then the file information provided is ignored, and error
FOR1926 is detected during execution of a subsequent OPEN or INQUIRE statement.
Detection of error FOR1926 can be suppressed if, following the failing call to the FILEINF
callable service, another call is made either with no arguments or with arguments that don't
cause another error to be detected.

Qualifying Data: None

Permissible Resume Actions:

Name Action Taken after Resumption

RN The service is ignored, and execution resumes. Refer to “System Action” regarding the
detection of error FOR1926 following this resumption.

 Chapter 13. Fortran Run-Time Messages 489

 FOR0123S N FOR0130S

Symbolic Feedback Code: FOR0122

FOR0123S The FILEINF callable service failed. VSAM record level sharing (RLS) was
specified, but execution was on a system without both MVS/ESA SP
Version 5 Release 2 or later and DFSMS/MVS Version 1 Release 3 or later.

Programmer Response: Ensure that the Fortran application that connects a VSAM file
using RLS mode is run on MVS/SP Version 5 Release 2 or later and DFSMS/MVS Version 1
Release 3 or later. If these levels aren't available, then you can't use RLS mode. In this
case, remove the RLS keyword argument and its corresponding value from the argument list
for the FILEINF callable service.

Refer to “System Action” regarding the detection of error FOR1926 on a subsequent OPEN
or CLOSE statement.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated. However, if the RN action listed under “Permissible Resume Actions” is taken to
resume execution following the call, then the file information provided is ignored, and error
FOR1926 is detected during execution of a subsequent OPEN or INQUIRE statement.
Detection of error FOR1926 can be suppressed if, following the failing call to the FILEINF
callable service, another call is made either with no arguments or with arguments that don't
cause another error to be detected.

Qualifying Data: None

Permissible Resume Actions:

Symbolic Feedback Code: FOR0123

FOR0130S The ARGSTR callable service failed. It was called with an argument list in
an incorrect format.

Explanation: The argument list provided in the call to the ARGSTR callable service was
incorrect in one of these ways:

� There was no argument list.

� The argument list had other than two arguments.

� The argument list wasn't in the internally-generated form produced by the Fortran com-
piler when there are character arguments. This could have occurred because:

– The first argument wasn't of character type.

– The call was made from a program compiled by the VS FORTRAN Version 1 or the
VS FORTRAN Version 2 compiler with the the LANGLVL(66) compiler option.

– The call was made from a program compiled by the VS FORTRAN Version 1 com-
piler at a level prior to Release 3.

– The call was made from a program compiled by the FORTRAN IV H Extended or the
FORTRAN IV G1 compiler.

– The call was made from an assembler language program, and the arguments were
not provided in the form required when there are character arguments.

Programmer Response: Be sure that the argument list contains two arguments, the first of
which is a character variable and the second of which is an integer variable of length 4.

Name Action Taken after Resumption

RN The service is ignored, and execution resumes. Refer to “System Action” regarding the
detection of error FOR1926 following this resumption.

Name Action Taken after Resumption

RN The service is ignored, and execution resumes. Refer to “System Action” regarding the
detection of error FOR1926 following this resumption.

490 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR0300S N FOR0301S

If the program is written in Fortran, compile it with the VS FORTRAN Version 2 compiler,
and do not specify the LANGLVL(66) compiler option. If it is written in assembler language,
use the Fortran conventions for argument lists with character arguments. These conventions
are described in the section “Passing Character Arguments Using the Standard Linkage
Convention” in Appendix B of VS FORTRAN Version 2 Programming Guide for CMS and
MVS.

System Action: The service is ignored, and the condition is signaled. If the condition is
unhandled, the application is terminated.

Qualifying Data: None

Permissible Resume Actions:

Symbolic Feedback Code: FOR0130

FOR0300S One program unit specified common block common-name in a DC compiler
option, but another program unit did not specify it in a DC compiler option.
VS FORTRAN Version Error 2 Number: AFB158I-2

Programmer Response: If you want common-name to be a dynamic common block,
compile all program units that refer to it using a DC compiler option that has as a suboption
either common-name or an asterisk. If you want common-name to be a static common block,
do not compile any program units that refer to it using a DC compiler option that has as a
suboption either common-name or an asterisk unless common-name is used as a suboption
of the SC compiler option.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data:

Permissible Resume Actions:

Symbolic Feedback Code: FOR0300

FOR0301S The common block common-name of length length could not be created
because there was insufficient virtual storage. VS FORTRAN Version Error
2 Number: AFB156I

Programmer Response: Run your application in a larger region. You can change the
region size with the REGION parameter on the EXEC statement in your JCL.

If the application allows it, you could also recompile all program units that refer to common
block common-name with declarations that result in a smaller length for this or for other
common blocks.

If there are allocatable arrays that are allocated but not currently in use, then deallocate
them to make more storage available.

Name Action Taken after Resumption

RN The service is ignored, and execution resumes.

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 2

2 common
name

Input CHARACTER*31 The name of the common block

Name Action Taken after Resumption

RN common-name is not made available to one or more program units and execution contintues.
The results of execution are unpredictable if data in the dynamic common block is subse-
quently referenced.

 Chapter 13. Fortran Run-Time Messages 491

 FOR0302S N FOR0302S

If one of your routines is running in 24-bit addressing mode, remember that dynamic
common blocks acquired for it are created in virtual storage below 16 Mb, where storage is
limited. However, when the routine is running in 31-bit addressing mode, dynamic common
blocks acquired for it are created in virtual storage above 16 Mb, where there is normally
much more storage available. Therefore, if your application is running in 24-bit addressing
mode and if it could run in 31-bit addressing mode instead, then making this change could
alleviate this storage constraint. But before link editing the application with the AMODE=31
option, you should be sure that there aren't any program units, such as those compiled with
the FORTRAN IV H Extended compiler, that aren't capable of running in 31-bit addressing
mode.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data:

Permissable Resume Actions:

Symbolic Feedback Code: FOR0301

FOR0302S Common block common-name was defined with a length of length1, but it
was defined with a length of length2 in a program unit that was invoked
earlier. VS FORTRAN Version Error 2 Number: AFB158I-1

Programmer Response: In all program units that refer to the common block common-
name ensure that the declarations of the common block are such that the length of the
common block is the same.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data:

Permissable Resume Actions:

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 3

2 common-
name

Input CHARACTER*31 The name of the common block.

3 length Input/Output INTEGER*4 The length of the common block.

Name Action Taken after Resumption

RN The service is not completed, a return code of return code is set, and execution resumes.

RI An attempt is made to acquire virtual storage for the common block. common-name using the
length provided in length. If this is successful, execution continues but the results of execution
are unpredictable if data in the dynamic common block beyond the length provided as length is
referenced.

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 4

2 common-
name

Input CHARACTER*31 The name of the common block

3 length-1 Input INTEGER*4 The length of the common block
as defined in program unit 1.

4 length-2 Input INTEGER*4 The length of the common block
as defined in program unit 2.

492 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR0303S N FOR0303S

Symbolic Feedback Code: FOR0302

FOR0303S The common block callable service service-name failed. It was called with
an argument list in an incorrect format. VS FORTRAN Version Error 2
Number: AFB920I-2, AFB157I-3

Explanation: The argument list provided in the call to the service-name callable service
was incorrect in one of these ways:

� There was no argument list.

� The argument list had the wrong number of arguments.

� The argument list wasn't in the internally-generated form produced by the Fortran com-
piler when there are character arguments. This could have occurred for one or more of
these reasons:

– The common block name wasn't provided as a character expression.

– The call was made from a program compiled by the VS FORTRAN Version 1 or the
VS FORTRAN Version 2 compiler with the the LANGLVL(66) compiler option.

– The call was made from a program compiled by the VS FORTRAN Version 1 com-
piler at a level prior to Release 3.

– The call was made from a program compiled by the FORTRAN IV H Extended or the
FORTRAN IV G1 compiler.

– The call was made from an assembler language program, and the arguments were
not provided in the form required when there are character arguments.

Programmer Response: Be sure that the argument list contains the number of arguments
required by service-name and that they are of the correct type. In particular, if the common
block name is coded as a character constant, be sure to enclose the value in quotes or
apostrophes.

If the program is written in Fortran, compile it with the VS FORTRAN Version 2 compiler,
and do not specify the LANGLVL(66) compiler option. If it is written in assembler language,
use the Fortran conventions for argument lists with character arguments. These conventions
are described in the section “Passing Character Arguments Using the Standard Linkage
Convention” in Appendix B of VS FORTRAN Version 2 Programming Guide for CMS and
MVS.

System Action: The service is ignored, and the condition is signaled. If the condition is
unhandled, the application is terminated.

Qualifying Data:

Permissible Resume Actions:

Symbolic Feedback Code: FOR0303

Name Action Taken after Resumption

RN common-name is not made available to one or more program units and execution continues.
The results of execution are unpredictable if data in the dynamic common block is subse-
quently referenced.

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 2

2 service-name Input CHARACTER*8 The name of the common block
callable service that was called.

Name Action Taken after Resumption

RN The service is ignored, and execution resumes.

 Chapter 13. Fortran Run-Time Messages 493

 FOR0304S N FOR0310S

FOR0304S The common block callable service service-name failed. The common block
name had an incorrect format. The invalid name was 'common-name'. VS
FORTRAN Version Error 2 Number: AFB157I-2

Explanation: The name of the dynamic common block provided to the service-name was
not a valid name because it either:

� Began with a blank or was all blank,
� Was longer than 31 characters, or
� Contained an imbedded blank

Programmer Response: Be sure the character expression for the dynamic common block
name passed to service-name is a valid Fortran name. In particular, it must:

� Be left-adjusted with trailing blanks,
� Begin with a letter, underscore (_), or dollar sign ($),
� Contain only alphameric characters, that is, letters, digits, underscores (_), or dollar

signs ($),
� Contain at least 1 but no more than 31 nonblank characters, and
� Have no imbedded blanks.

If the common block name is coded as a character constant, be sure to enclose the value in
quotes or apostrophes.

If the program is written in Fortran, compile it with the VS FORTRAN Version 2 compiler,
and do not specify the LANGLVL(66) compiler option. If it is written in assembler language,
use the Fortran conventions for argument lists with character arguments. These conventions
are described in the section “Passing Character Arguments Using the Standard Linkage
Convention” in Appendix B of VS FORTRAN Version 2 Programming Guide for CMS and
MVS.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data:

Permissible Resume Actions:

Symbolic Feedback Code: FOR0304

FOR0310S The ALLOCATE statement could not be completed. The object object_name
of length object_length could not be created because there was insufficient
virtual storage.

Programmer Response: Run your application in a larger region. You can change the
region size with the REGION parameter on the EXEC statement in your JCL.

If the application allows it, you could also reduce the size of the allocatable array so that it
doesn't require as much storage.

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 3

2 service-name Input CHARACTER*8 The name of the common block
callable service that was called.

3 common-
name

Input CHARACTER*31 The common block name (or the
first 31 characters of the name)
that was provided for service-
name.

Name Action Taken after Resumption

RN The service is ignored, and execution resumes.

494 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR0311S N FOR0311S

If there are other allocatable arrays that are allocated but not currently in use, then deallo-
cate them to make more storage available.

If there are common blocks or other large storage areas that could be reduced in size, then
doing so could make more storage available.

If a routine is running in 24-bit addressing mode, remember that allocatable arrays acquired
for it are created in virtual storage below 16 Mb, where storage is limited. However, when
the routine is running in 31-bit addressing mode, allocatable arrays acquired for it are
created in virtual storage above 16 Mb, where there is normally much more storage avail-
able. Therefore, if your application is running in 24-bit addressing mode and if it could run in
31-bit addressing mode instead, then making this change could alleviate this storage con-
straint. But before link editing the application with the AMODE=31 option, you should be sure
that there aren't any program units, such as those compiled with the FORTRAN IV H
Extended compiler, that aren't capable of running in 31-bit addressing mode.

System Action: If the STAT specifier is not present on the ALLOCATE statement, the con-
dition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data:

Permissible Resume Actions:

Symbolic Feedback Code: FOR0310

FOR0311S The ALLOCATE statement could not be completed. The object object_name
was already allocated.

Programmer Response: Correct the logic of your program so that the same allocatable
array isn't allocated again until its first occurrence is deallocated.

System Action: If the STAT specifier is not present on the ALLOCATE statement, the con-
dition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data:

Permissible Resume Actions:

Symbolic Feedback Code: FOR0311

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 3

2 object-name Input CHARACTER*250 The name of the object specified
in the ALLOCATE statement.

3 object-length Input INTEGER*4 The length of the object specified
in the ALLOCATE statement.

Name Action Taken after Resumption

RN The current operation is ignored. The remainder of the allocation is processed and exection
continues.

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 2

2 object-name Input CHARACTER*250 The name of the object specified
in the ALLOCATE subroutine.

Name Action Taken after Resumption

RN The curent operation is ignored. The remainder of the allocation list is processed and exe-
cution continues.

 Chapter 13. Fortran Run-Time Messages 495

 FOR0312S N FOR0341I

FOR0312S The DEALLOCATE statement could not be completed. The object
object_name was not allocated.

Programmer Response: Correct the logic of your program so that you don't deallocate an
array isn't allocated.

System Action: If the STAT specifier is not present on the DEALLOCATE statement, the
condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data:

Permissible Resume Actions:

Symbolic Feedback Code: FOR0312

FOR0340A PAUSE message VS FORTRAN Version Error 2 Number: AFB001I

Explanation: A PAUSE statement has been executed from a Fortran routine. The message
text message is whatever information was provided by the programmer with the PAUSE
statement.

Programmer Response: Follow the instructions given by message or by the person who
submitted the job for execution. These instructions should indicate the action to be taken.

To resume execution, provide any single character as a response to the outstanding console
message after taking the actions requested.

System Action: Execution of the program waits for a response, which can be any char-
acter. After the response is entered, execution of the program continues with the statement
following the PAUSE statement.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR0340

FOR0341I STOP message VS FORTRAN Version Error 2 Number: AFB002I

Explanation: A STOP statement has been executed from a Fortran routine. The message
text message is whatever information was provided by the programmer with the STOP state-
ment.

System Action: The termination imminent condition is signaled. If the condition is unhan-
dled, the application is terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR0341

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 2

2 object-name Input CHARACTER*250 The name of the object specified
in the DEALLOCATE statement.

Name Action Taken after Resumption

RN The current operation is ignored. The remainder of the deallocation list is processed and exe-
cution continues.

496 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR0400S N FOR0402S

FOR0400S A Fortran main program was executed from within an enclave that had
already started executing. VS FORTRAN Version Error 2 Number: AFB905I

Programmer Response: If you intended to call a Fortran subroutine rather than a main
program, then code a SUBROUTINE statement as the first statement of that called routine.

If you want to call a main program, which will be in a new enclave, do this in one of these
two ways:

� Invoke an assembler language program that uses a LINK macro instruction to pass
control to the main program and implicitly create a new enclave.

� Invoke the callable service CEE3CRE, which creates a new enclave and passes control
to the main program.

In both cases, the main program that is specified must be in a separate load module.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR0400

FOR0401S The execution of program unit program-unit failed at ISN statement-number
because an error was detected by the compiler at that statement. VS
FORTRAN Version Error 2 Number: AFB230I

Programmer Response: Refer to the printed output of the compilation of program unit
program-unit to determine the error that occurred at ISN statement-number. Correct the
error, then compile, link edit, and execute the job again.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR0401

FOR0402S program-name2, which has one or more dummy arguments of character
type with an assumed length, was called by program-name1 with an argu-
ment list that didn't provide the lengths of the character arguments. VS
FORTRAN Version Error 2 Number: AFB153I

Explanation: The subprogram program-name2 had a dummy argument of character type
with an assumed length, that is, for which the current length needs to be provided by the
calling routine. However, the argument list provided by program unit program-name1 wasn't
in the internally-generated form produced by the Fortran compiler when there are character
arguments. This could have occurred because:

� A dummy argument in program-name2 was inadvertently coded as a character dummy
argument with an assumed length as in this example:

CHARACTERC(C) INPUT_ARG

� program-name1 didn't provide one or more of the character arguments that were
required by program-name2.

� program-name1 was compiled by the VS FORTRAN Version 1 or the VS FORTRAN
Version 2 compiler with the the LANGLVL(66) compiler option.

� program-name1 was compiled by the VS FORTRAN Version 1 compiler at a level prior
to Release 3.

� program-name1 was compiled by the FORTRAN IV H Extended or the FORTRAN IV G1
compiler.

 Chapter 13. Fortran Run-Time Messages 497

 FOR0404C N FOR0405C

� program-name1 was an assembler language program, and the arguments were not pro-
vided in the form required when there are character arguments.

Programmer Response: Be sure that the argument list provided by program-name1 con-
tains the number of arguments required by program-name2 and that they are of the correct
type.

If a character argument is coded as a character constant, be sure to enclose the value in
quotes or apostrophes.

If program-name1 is written in Fortran, compile it with the VS FORTRAN Version 2 compiler,
and do not specify the LANGLVL(66) compiler option.

If program-name1 is written in assembler language, use the Fortran conventions for argu-
ment lists with character arguments. These conventions are described in the section
“Passing Character Arguments Using the Standard Linkage Convention” in Appendix B of VS
FORTRAN Version 2 Programming Guide for CMS and MVS.

If program-name1 is neither a Fortran nor an assembler language program, the required
argument list cannot be generated. In this case, change program-name2 so the character
data in the dummy argument list is of fixed, rather than of assumed, length.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR0402

FOR0404C The LIBPACK (composite module) module-name1 was at release level
module-level1, but the LIBPACK module-name2 was at release level
module-level2. VS FORTRAN Version Error 2 Number: AFB142I

Programmer Response: If your JCL specifies the correct Language Environment library for
execution, then this is likely to be a problem either with the installation of Language Environ-
ment or with the availability of the library. Refer the problem to your Language Environment
support personnel.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR0404

FOR0405C module-name was not a valid LIBPACK (composite module). VS FORTRAN
Version Error 2 Number: AFB145I

Programmer Response: If your JCL specifies the correct Language Environment library for
execution, then this is likely to be a problem either with the installation of Language Environ-
ment or with the availability of the library. Refer the problem to your Language Environment
support personnel.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR0405

498 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR0406C N FOR0409C

FOR0406C The shareable load module module-name was loaded at an address above
16 Mb by the nonshareable part of program unit program-unit, which was
running in 24-bit addressing mode. VS FORTRAN Version Error 2 Number:
AFB146I

Explanation: Program unit program-unit was compiled with the RENT compiler option and
was separated into its nonshareable and shareable parts. The nonshareable part was
entered in 24-bit addressing mode but was unable to pass control to its shareable part
because the shareable part was loaded above 16 Mb.

Programmer Response: Either:

� Run the program in 31-bit addressing mode by link editing the nonshareable parts with
AMODE=31 as a linkage editor parameter. This can be done only if the load module has
no routines, such as those compiled with the FORTRAN IV H Extended compiler, that
are not capable of executing in 31-bit addressing mode.

� Link edit the shareable load module using AMODE=24 as a linkage editor parameter.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR0406

FOR0407C The shareable load module module-name that was loaded by the
nonshareable part of program unit program-unit had an incorrect format. VS
FORTRAN Version Error 2 Number: AFB147I

Explanation: Program unit program-unit was compiled with the RENT compiler option and
was separated into its nonshareable and shareable parts. During execution, the program's
nonshareable part loaded a load module that was supposed to contain the program's
shareable part. However, the load module was not in the expected format.

Programmer Response: Use the Fortran reentrant program separation tool to separate the
shareable and nonshareable parts of the program that was compiled with the RENT compiler
option. (This tool is invoked by the use of the cataloged procedures AFHWRL and
AFHWRLG.) Then ensure that during the execution of the program, the load module con-
taining the shareable part is available either in a library referenced by a STEPLIB DD state-
ment or in a link pack area.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR0407

FOR0409C The shareable load module module-name that was loaded by the
nonshareable part of program unit nonshareable-part-name had a timestamp
of timestamp1 in the shareable part of program unit shareable-part-name.
This timestamp differed from the timestamp of timestamp2 in the
nonshareable part of program unit nonshareable-part-name. VS FORTRAN
Version Error 2 Number:AFB149I

Explanation: Program unit program-unit was compiled with the RENT compiler option and
was separated into its nonshareable and shareable parts. During execution, the program's
nonshareable part loaded a load module that was supposed to contain the program's
shareable part. However, the load module contained a copy of the code that was compiled at
a different time than the nonshareable part. The parts are assumed to be incompatible.

 Chapter 13. Fortran Run-Time Messages 499

 FOR0410C N FOR0411C

Programmer Response: Use the Fortran reentrant program separation tool to separate the
shareable and nonshareable parts of the program that was compiled with the RENT compiler
option. (This tool is invoked by the use of the cataloged procedures AFHWRL and
AFHWRLG.) Then ensure that during the execution of the program, the load module con-
taining the shareable part is available either in a library referenced by a STEPLIB DD state-
ment or in a link pack area. Also ensure that some previous copy isn't accessible so that
only the corresponding copy of the shareable part load module is available to the executing
program.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR0409

FOR0410C A Fortran subprogram was called before the Fortran run-time environment
was initialized. VS FORTRAN Version Error 2 Number: AFB932I

Explanation: Language Environment did not become aware of the existence of a Fortran
subprogram in the application prior to the invocation of that subprogram. Usually the pres-
ence of a Fortran routine in the application is detected either at the time a main program is
started or at the time a subsequent load module is dynamically loaded using various lan-
guages' dynamic call facilities. However, because Fortran compiled code doesn't conform to
the current Language Environment linkage conventions, sometimes a Fortran subprogram
isn't detected, especially if it doesn't require the use of an run-time library services such as
input/output.

Programmer Response: Ensure that there is a main program (not necessarily written in
Fortran) in the application and that it is executed before any Fortran subprograms. If this was
already the case, then provide the following linkage editor control statement in the input that
link edits the main program:

 INCLUDE SYSLIB(CEESG##7)

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR0410

FOR0411C VS FORTRAN Version 2 error error-number was detected by Language Envi-
ronment.

Explanation: The obsolete VS FORTRAN Version 2 error condition with error number
error-number was detected. This in an internal error in the Fortran portion of Language Envi-
ronment.

Programmer Response: Contact the people who provide system support at your installa-
tion for Language Environment.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR0411

500 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR0414C N FOR0416S

FOR0414C The shareable load module module-name, which was loaded by the
nonshareable part of program unit program-unit, did not contain the
shareable part shareable-part-name. VS FORTRAN Version Error 2 Number:
AFB148I

Explanation: Program unit program-unit was compiled with the RENT compiler option and
was separated into its nonshareable and shareable parts. During execution, the program's
nonshareable part loaded a load module that was supposed to contain the program's
shareable part. However, the load module did not contain the expected shareable part.

Programmer Response: Use the Fortran reentrant program separation tool to separate the
shareable and nonshareable parts of the program that was compiled with the RENT compiler
option. (This tool is invoked by the use of the cataloged procedures AFHWRL and
AFHWRLG.) Then ensure that during the execution of the program, the load module con-
taining the shareable part is available either in a library referenced by a STEPLIB DD state-
ment or in a link pack area. Also ensure that some previous copy isn't accessible.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR0414

FOR0415C The shareable load module module-name that was loaded by the
nonshareable part of program unit program-unit did not contain the
shareable part shareable-part-name at a storage location accessible to the
program. VS FORTRAN Version Error 2 Number: AFB148I

Explanation: Program unit program-unit was compiled with the RENT compiler option and
was separated into its nonshareable and shareable parts. During execution, the program's
nonshareable part loaded a load module that was supposed to contain the program's
shareable part. However, not all of that load module was loaded so that it could be used.

Programmer Response: Use the Fortran reentrant program separation tool to separate the
shareable and nonshareable parts of the program that was compiled with the RENT compiler
option. (This tool is invoked by the use of the cataloged procedures AFHWRL and
AFHWRLG.) Then ensure that during the execution of the program, the load module con-
taining the shareable part is available either in a library referenced by a STEPLIB DD state-
ment or in a link pack area.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR0415

FOR0416S The program unit program-unit called the subprogram routine-name with the
array array-name (array-bounds) having a dimension with the lower bound
greater than the upper bound. VS FORTRAN Version Error 2 Number:
AFB257I

Programmer Response: Ensure that the declarations of the array and of the dimension
arguments are consistent in program-unit and in routine-name. Also ensure that the values of
the bounds that are provided as actual arguments for the call do not make the lower bound
greater than the upper bound for any dimension of the array.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

 Chapter 13. Fortran Run-Time Messages 501

 FOR0417S N FOR0500S

Permissible Resume Actions:

Symbolic Feedback Code: FOR0416

FOR0417S The program unit program-unit called the subprogram routine-name with the
array located at address array-address, offset array-offset, and array bounds
array-bounds. The array bounds had a dimension with the lower bound
greater than the upper bound. VS FORTRAN Version Error 2 Number:
AFB257I

Programmer Response: Ensure that the declarations of the array and of the dimension
arguments are consistent in program-unit and in routine-name. Also ensure that the values of
the bounds that are provided as actual arguments for the call do not make the lower bound
greater than the upper bound for any dimension of the array.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions:

Symbolic Feedback Code: FOR0417

FOR0500S A relational expression using character values with the relational operator
relational-operator could not be evaluated. Character value operand-number
had a length of operand-length, which was not between 1 and 32767, inclu-
sive. VS FORTRAN Version Error 2 Number: AFB193I

Programmer Response: Ensure that the length of the character value is neither less than
1 nor greater than 32767. Examine any variables that define a character substring to be sure
that they don't have values that result in an invalid length.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data:

Permissible Resume Actions:

Symbolic Feedback Code: FOR0500

Name Action Taken after Resumption

RN Execution continues, but invalid results are probable if a reference is made to the array whose
dimensions are wrong.

Name Action Taken after Resumption

RN Execution continues, but invalid results are probable if a reference is made to the array whose
dimensions are wrong.

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 2

2 operator-
name

Input CHARACTER*2 The name of the relational oper-
ator

Name Action Taken after Resumption

RN The comparison is not performed, and execution continues.

502 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR0501S N FOR0503S

FOR0501S The assignment of the character value could not be performed. The
storage area that was being copied overlapped with the storage area to
which that data was to be copied. VS FORTRAN Version Error 2 Number:
AFB195I

Programmer Response: Examine any variables that define a character substring to be
sure that they don't have values that result in an excessive character length or overlapping
substrings. Also look at EQUIVALENCE statements to ensure that the character variables in
question don't overlap.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions:

Symbolic Feedback Code: FOR0501

FOR0502S The assignment of the character value could not be performed. The length
of the storage area to which the data was to be copied was not between 1
and 32767, inclusive. VS FORTRAN Version Error 2 Number: AFB196I

Programmer Response: Ensure that the length of the character value is neither less than
1 nor greater than 32767. Examine any variables that define a character substring to be sure
that they don't have values that result in an invalid length.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions:

Symbolic Feedback Code: FOR0502

FOR0503S The assignment of the character value could not be performed. The length
of the storage area from which the data was to be copied was not between
1 and 32767, inclusive. VS FORTRAN Version Error 2 Number: AFB197I

Programmer Response: Ensure that the length of the character value is neither less than
1 nor greater than 32767. Examine any variables that define a character substring to be sure
that they don't have values that result in an invalid length.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions:

Symbolic Feedback Code: FOR0503

Name Action Taken after Resumption

RN The character assignment is not performed, and execution continues.

Name Action Taken after Resumption

RN The character assignment is not performed, and execution continues.

Name Action Taken after Resumption

RN The character assignment is not performed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 503

 FOR0504S N FOR0602S

FOR0504S The concatenation of character values could not be performed. The length
of one of the values was not between 1 and 32767, inclusive. VS FORTRAN
Version Error 2 Number: AFB199I

Programmer Response: Ensure that the lengths of the character values are not less than
1 and not greater than 32767. Examine any variables that define a character substring to be
sure that they don't have values that result in an invalid length.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions:

Symbolic Feedback Code: FOR0504

FOR0601S The funcname function could not be evaluated. The value of the argument
was not between 0 and limit, inclusive. VS FORTRAN Version Error 2
Number: AFB258I

Programmer Response: Ensure that the argument to the ACHAR function in not less than
0 nor greater than 127 or that the argument to the CHAR function in not less than 0 nor
greater than 255. The values of 127 and 255 are the greatest values in the ASCII and
EBCDIC collating sequences, respectively.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Permissible Resume Actions:

Symbolic Feedback Code: FOR0601

FOR0602S The INDEX function could not be evaluated. Argument number argument-
number had a length of argument-length, which was not between 1 and
32767, inclusive. VS FORTRAN Version Error 2 Number: AFB259I

Programmer Response: Ensure that the length of the character value in argument
argument-number is neither less than 1 nor greater than 32767. Examine any variables that
define a character substring to be sure that they don't have values that result in an invalid
length.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data:

Name Action Taken after Resumption

RN The character concatenation is not performed, and execution continues.

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 2

2 function Input CHARACTER*8 funcname

Name Action Taken after Resumption

RN The CHAR or ACHAR function is ignored, and execution continues.

504 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR0603S N FOR0611S

Permissible Resume Actions:

Symbolic Feedback Code: FOR0602

FOR0603S The lexical relational function could not be evaluated. Argument number
argument-number had a length of argument-length, which was not between 1
and 32767, inclusive. VS FORTRAN Version Error 2 Number: AFB191I

Programmer Response: Ensure that the length of the character value in argument
argument-number for the the LGE, LGT, LLE, or LLT function is neither less than 1 nor
greater than 32767. Examine any variables that define a character substring to be sure that
they don't have values that result in an invalid length.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None.

Permissible Resume Actions:

Symbolic Feedback Code: FOR0603

FOR0610S The value of argument number argno for the the MVBITS subroutine was
not between 0 and limit, inclusive. VS FORTRAN Version Error 2 Number:
AFB159I

Programmer Response: For argument argno provide a value that is between 0 and limit.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None.

Permissible Resume Actions:

Symbolic Feedback Code: FOR0610

FOR0611S The sum of the values of argument numbers argno1 and argno2 for the
MVBITS subroutine was greater than the number of bits in the first argu-
ment. VS FORTRAN Version Error 2 Number: AFB176I

Programmer Response: Adjust the values of arguments argno1 and argno2 so that the
specified string of bits doesn't extend beyond the end of the integer.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data:

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 2

2 function Input CHARACTER*8 INDEX

Name Action Taken after Resumption

RN The INDEX function is ignored, and execution continues.

Name Action Taken after Resumption

RN The lexical compare is ignored, and execution continues.

Name Action Taken after Resumption

RN The lexical compare is ignored, and execution continues.

 Chapter 13. Fortran Run-Time Messages 505

 FOR0612S N FOR0613S

Permissible Resume Actions:

Symbolic Feedback Code: FOR0611

FOR0612S The funcname function could not be evaluated. The value of argument
number argno was not between lowlimit and hilimit, inclusive. VS FORTRAN
Version Error 2 Number: AFB159I

Programmer Response: For the function funcname, ensure that the value provided for
argument argno is in the range of lowlimit through hilimit.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data:

Permissible Resume Actions:

Symbolic Feedback Code: FOR0612

FOR0613S The IBITS function could not be evaluated. The sum of the second and the
third arguments was greater than the number of bits in the first argument.
VS FORTRAN Version Error 2 Number: AFB159I

Programmer Response: For the IBITS function, adjust the values of arguments 2 and 3 so
that the specified string of bits doesn't extend beyond the end of the integer.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data:

Permissible Resume Actions:

Symbolic Feedback Code: FOR0613

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 2

2 function Input CHARACTER*8 MVBITS

Name Action Taken after Resumption

RN The MVBITS subroutine is ignored, and execution continues.

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 2

2 function Input CHARACTER*8 funcname

Name Action Taken after Resumption

RN The bit manipulation function is ignored, and execution continues.

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 2

2 function Input CHARACTER*8 IBITS

Name Action Taken after Resumption

RN The IBITS function is ignored, and execution continues.

506 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR0614S N FOR0651S

FOR0614S The IBITS function could not be evaluated. The value of the second or third
argument was less than 0. VS FORTRAN Version Error 2 Number: AFB159I

Programmer Response: For the IBITS function, adjust the values of arguments 2 and 3 so
that they are nonnegative integer values that indicate the starting bit number (relative to 0)
and the number of bits to be extracted.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data:

Permissible Resume Actions:

Symbolic Feedback Code: FOR0614

FOR0650S The callable service service-name failed. Qualifying datum number index
was specified as the second argument, but that qualifying datum was not
available for the condition.

Explanation: Either QDFETCH or QDSTORE was called to obtain or update an element of
qualifying data, but index, which specifies the ordinal number of the qualifying datum to be
referenced, was either less than 1 or greater than the total number of elements of qualifying
data associated with this instance of the condition.

Programmer Response:

Ensure that the second argument is a positive integer whose value is the ordinal number of
an element of qualifying data.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions:

Symbolic Feedback Code: FOR0650

FOR0651S The callable service service-name failed. The first argument, the condition
token, was not a character variable or array element of length 12.

Explanation: Either the first argument was not a character variable or character array
element of length 12 or the argument list wasn't in the internally-generated form produced by
the Fortran compiler when there are character arguments. The latter could have occurred
because:

� The call was made from a program compiled by the VS FORTRAN Version 1 or the VS
FORTRAN Version 2 compiler with the the LANGLVL(66) compiler option.

� The call was made from a program compiled by the VS FORTRAN Version 1 compiler at
a level prior to Release 3.

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 2

2 function Input CHARACTER*8 IBITS

Name Action Taken after Resumption

RN The IBITS function is ignored, and execution resumes.

Name Action Taken after Resumption

RN The service is ignored, and execution resumes.

 Chapter 13. Fortran Run-Time Messages 507

 FOR1000S N FOR1000S

� The call was made from a program compiled by the FORTRAN IV H Extended or the
FORTRAN IV G1 compiler.

� The call was made from an assembler language program, and the arguments were not
provided in the form required when there are character arguments.

Programmer Response: Be sure that the argument list contains the number of arguments
required by service-name and that they are of the correct type. In particular, ensure that the
first argument is a condition token whose declaration is a character variable or character
array element of length 12.

If the program is written in Fortran, compile it with the VS FORTRAN Version 2 compiler,
and do not specify the LANGLVL(66) compiler option. If it is written in assembler language,
use the Fortran conventions for argument lists with character arguments. These conventions
are described in the section “Passing Character Arguments Using the Standard Linkage
Convention” in Appendix B of VS FORTRAN Version 2 Programming Guide for CMS and
MVS.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions:

Symbolic Feedback Code: FOR0651

FOR1000S locator-text The formatted input data input-field had a value that was outside
the range of values that could be contained within the integer item in the
input item list. VS FORTRAN Version 2 Error Number: AFB206I

Explanation: input-field is a character string that was interpreted as an integer value; an
integer variable or array element that was given in the input item list of a READ statement
was supposed to become defined with this value. However, the value of input-field was
outside the acceptable range. These are the ranges of integer values corresponding to
integer data items of different lengths:

locator-text gives more information about the location of the error, and can be one of the
following:

The READ statement for an internal file failed.
The READ statement for unit unit-number which was connected to file-name failed.

Programmer Response: Ensure that the following are true:

� The edit descriptor specifies the correct field width.

� The value specified by input-field is within the required range for the integer variable
size.

� input-field doesn't have any imbedded or trailing blanks that are incorrectly treated as
zeros, thus changing the intended magnitude of the number. Blanks are treated as zeros
in these cases:

– The BLANK specifier is given on the OPEN statement with value of ZERO.

Name Action Taken after Resumption

RN The service is ignored, and execution continues.

Data Type Maximum Positive Value Maximum Negative Value

INTEGER*1 127 (27 −1) −128 (−27)

INTEGER*2 32767 (215−1) −32768 (−215)

INTEGER*4 2147483647 (231−1) −2147483648 (−231)

INTEGER*8 9223372036854775807 (263−1) −9223372036854775808 (−263)

508 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1001E N FOR1001E

– The BZ edit descriptor is included in the format specification.

– There is no OPEN statement, and there is no BN edit descriptor in the format spec-
ification.

System Action: The input item being processed and the remainder of the items in the input
item list become undefined. If neither the ERR nor the IOSTAT specifier is present on the I/O
statement, the condition is signaled. If the condition is unhandled, the application is termi-
nated.

Symbolic Feedback Code: FOR1000

FOR1001E locator-text The length of the record to be written exceeded the maximum
data length, data-length, allowed for records in the file. VS FORTRAN
Version 2 Error Number: AFB164I, AFB201I (format 1), AFB201I (format 2),
AFB204I, AFB212I, AFB213I

Explanation: Based on the type of formatting described by the FMT specifier (or by its
absence) on the WRITE or REWRITE statement, one of the following exceeded data-length,
which is the smaller of either the maximum length of the data that can fit in a record in the
file or the value given in the RECL specifier, if any, on the OPEN statement:

For output using a format specification:

� The length of the record described by the output item list and the format specifica-
tion.

For list-directed output or namelist output:

No. Name Input/Output
Data Type and
Length Value

5 input-field-
desc

Input Q_DATA_DESC The q_data descriptor for input-
field. It contains the data type and
the length of input-field.

6 subroutine-
name

Input CHARACTER*n The formatted input data; that is,
the character string that is being
interpreted as an integer value.
The length n is part of input_field-
desc and has a maximum possible
value of 255.

7 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

7 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

8 record Input CHARACTER*n The formatted input record that
contained the character string
being interpreted as an integer
value. The length n which includes
only the data portion of the record,
is part of record-desc.

9 result-desc Input Q_DATA_DESC The q_data descriptor for result. It
contains the data type and the
length of result.

10 result output INTEGER*n The new output value, where n,
the length, is part of result-desc
and could be 1, 2, 4, or 8.

Name Action Taken after Resumption

R0 The input item receives the value placed in result, execution continues, and the remainder of
the input item list is processed.

 Chapter 13. Fortran Run-Time Messages 509

 FOR1001E N FOR1001E

� For an output item of neither character type nor complex type, the formatted length
of the item.

� For an output item of complex type, the formatted length of the real or the imaginary
part.

The formatted lengths of the output from list-directed formatting for the various data
types is listed in “WRITE Statement — List-Directed I/O to External Devices” in VS
FORTRAN Version 2 Language and Library Reference. For namelist formatting, the
lengths of the data are the same.
For unformatted output:

� The total length of all the items in the output item list.

The maximum length of a record that can be written on a particular file depends on the
values of certain specifiers given on the OPEN statement and on various file characteristics
managed by the underlying operating system's access methods. Length is taken from one or
more of the following:

� Files connected for sequential access:

 – Non-VSAM files

- From the LRECL value given in the DD statement or ALLOCATE command
(when dynamic file allocation is not involved).

- From the LRECL value given in the invocation of the FILEINF callable service
(when dynamic file allocation is involved).

- For a DASD or labeled tape file for which the data set existed previously, from
the LRECL value given when the file was either allocated or created.

- From the default LRECL value specified for the unit in the Unit Attribute Table
either as shipped by IBM or as customized for the installation.

- From the LRECL value derived from the RECFM and BLKSIZE values when
there is a conflict among these three parameters. Refer to “Considerations for
Specifying RECFM, LRECL, and BLKSIZE” in Chapter 12, or in VS Fortran
Version 2 Programming Guide for CMS and MVS.

Note: When the record format is one of the variable-length formats, that is, variable
(V), variable blocked (VB), variable spanned (VS), or variable blocked
spanned (VBS), the maximum length of the data that can be written is four
bytes less than the LRECL value.

 – VSAM files

- From the maximum record length given as the second sub-parameter of the
RECORDSIZE parameter of the Access Method Services DEFINE command that
was used to define the cluster.

� Files connected for direct access:

– From the value given by the RECL specifier on the OPEN statement.

In certain cases, this value must be consistent with the record length specified
previously:

- VSAM files (RRDSs):

With the maximum record length given as the second sub-parameter of the
RECORDSIZE parameter of the Access Method Services DEFINE command that
was used to define the cluster.

- Non-VSAM files that existed previously and are not being reformatted:

With the record length given in the RECL specifier on the OPEN statement that
was used to create the file.

Note: An existing file connected for direct access is not reformatted unless one or
more of the following is true:

510 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1001E N FOR1001E

- WRITE is given as the value of the ACTION specifier on the OPEN statement.

- NEW is given as the value of the STATUS specifier on the OPEN statement.

- No records have been written into the file previously.

� Files connected for keyed access:

From the maximum record length given as the second sub-parameter of the
RECORDSIZE parameter of the Access Method Services DEFINE command that was
used to define the cluster.

 � Internal files:

From the length of the record or records that comprise the internal file. This is the length
of the character variable, of the character substring, or of the character array element
that comprises the internal file. For an internal file that is a character array, this is the
length of the corresponding character array element.

locator-text gives more information about the location of the error, and can be one of the
following:

The WRITE statement for an internal file failed.
The statement statement for unit unit-number which was connected to file-name, failed.

Programmer Response:

Ensure that the length of the record described or implied by the output item list and the
format identifier, if any, is no longer than the maximum length record that can be written to
the file. Either the length of the record to be written or the maximum record length allowed
for the file must be changed to correct the condition or conditions described in “Explanation.”
If the length of the record being written isn't what you intended, then you might have to
change:

� The type of formatting indicated by FMT specifier (or its absence) in the I/O statement.
For example, perhaps you intended to write the file using a format specification rather
than using list-directed formatting.

� The format specification. This can include errors in the edit descriptors, field widths,
repetition factors, nesting levels, Hollerith constants (H edit descriptor), and character
constants.

� The output item list. There could be errors in the number of items in the list, in the data
types and lengths of individual items, and in the specification of implied DOs in the
output item list.

If the length of the record is what you intended, then the maximum record length allowed for
the file must be increased. If you are creating a new file, you might have to change:

� The record length given in the RECL specifier of the OPEN statement

� The LRECL parameter on a DD statement or a TSO ALLOCATE command (when
dynamic file allocation is not involved) or the LRECL parameter for the FILEINF callable
service (when dynamic allocation is involved)

For record formats of variable spanned or variable blocked spanned, you can make the
record length larger than the block size. You can also define the record to be of unlim-
ited length in one of these ways:

– When dynamic file allocation is not involved, provide a value of X for the LRECL
parameter of a DD statement or a TSO ALLOCATE command.

– When dynamic file allocation is involved, provide a value of −1 for LRECL in the
arguments for the FILEINF callable service.

For any of the variable-length record formats, that is, for variable (V), variable blocked
(VB), variable spanned (VS), or variable blocked spanned (VBS), the length given as
LRECL includes a 4-byte record descriptor word. Therefore, the LRECL value must be
four bytes larger than the largest amount of data that you want to write in a single
record.

 Chapter 13. Fortran Run-Time Messages 511

 FOR1001E N FOR1001E

� The RECFM and BKLSIZE parameters on a DD statement or a TSO ALLOCATE
command when dynamic file allocation is not involved or as parameters for the FILEINF
callable service when dynamic file allocation is involved. Note that when not all of the
RECFM, LRECL, and BLKSIZE parameters have been specified for a particular program,
the defaults in the Unit Attribute Table are applied for the omitted ones. Sometimes this
causes inconsistencies among the parameters; this is resolved as described in “Consid-
erations for Specifying RECFM, LRECL, and BLKSIZE” in Chapter 12, or in VS Fortran
Version 2 Programming Guide for CMS and MVS.

� The use of a particular device or file itself if the device or file isn't capable of accepting a
large enough record

� The maximum record length given as the second sub-parameter of the RECORDSIZE
parameter on the DEFINE command that defined a VSAM cluster

If you are writing on an existing file whose previous contents you want to retain, then you
generally cannot increase the record length without recreating the file.

The person at your installation who gives system support for Language Environment can
change your installation's default values for record format, record length, and block size for
various units. This is done by customizing the the Unit Attribute Table. As part of this
process, the SFLRECL or SULRECL parameters on the AFHODCBM macro instructions can
specify larger default values for formatted or unformatted I/O. Each unit (other than the error
message unit) can be given different default values.

System Action: If either the ERR or the IOSTAT specifier is present on the I/O statement,
then before control returns to the program, the record described for the action RN is written.

If neither the ERR nor the IOSTAT specifier is present on the I/O statement, the condition is
signaled. If the condition either is unhandled or is handled by moving the resume cursor and
resuming, then the record described for the action RN is written. If the condition is unhan-
dled, the enclave stops executing after the record has been written.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 10. In addition, there are these qualifying data:

No. Name Input/Output
Data Type and
Length Value

5 access Input CHARACTER*10 For an external file, the value
SEQUENTIAL, DIRECT, or
KEYED, depending on whether the
file is connected for sequential,
direct, or keyed access, respec-
tively. For an internal file, this
qualifying datum contains the
value SEQUENTIAL.

6 fmt-type Input CHARACTER*8 One of the following values to indi-
cate the type of formatting indi-
cated by the FMT specifier (or its
absence) on the WRITE or
REWRITE statement:

Value Type of Formatting
blanks Unformatted
FORMAT Format specification
* List-directed format-

ting
NAMELIST Namelist formatting

512 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1001E N FOR1001E

No. Name Input/Output
Data Type and
Length Value

7 data_len Input INTEGER*4 The maximum length of the data
that can be written into the records
in the file during this connection. If
this length is controlled by a RECL
specifier on the OPEN statement,
then this qualifying datum has that
value given by that RECL
specifier; otherwise, this is the
maximum amount of data that can
be written in the records in the file.
When the record format is one of
the variable-length formats, that is,
variable (V), variable blocked (VB),
variable spanned (VS), or variable
blocked spanned (VBS), the length
given here is the LRECL value
less 4 (unless the RECL specifier
had a smaller value).

Name Action Taken after Resumption

RN A record is written, but its length does not exceed the maximum length allowed for the file, and
no additional record is written. Formatted and unformatted output are handled slightly
differently:

Formatted output:

For a data item of other than character type that doesn't fit in the record, that data item is
ignored, that is, none of it is placed in the record. (If the records are of fixed-length format,
blanks fill the rest of the record. Otherwise, no additional characters are added to the
record.) The rest of the output item list and the rest of the format specification, if any, are
ignored.
For a data item of character type, including a character constant in the format specification,
that doesn't fit in the record, as much of the item as can fit is placed in the record. The
rest of this item, the rest of the output item list, and the rest of the format specification, if
any, are ignored.

Unformatted output:

As much of the data from the output item list as can fit is placed in the record. This
includes the data item that would overflow the record; as much of it as can fit is placed in
the record. The rest of this item and the rest of the output item list are ignored.

In either case, execution then continues.

 Chapter 13. Fortran Run-Time Messages 513

 FOR1002E N FOR1002E

Symbolic Feedback Code: FOR1001

FOR1002E locator-text An input item required data from beyond the end of the data
that was available in a record. The length of the available data was data-
length. VS FORTRAN Version 2 Error Number: AFB164I, AFB201I (format 1),
AFB201I (format 2), AFB204I, AFB212I, AFB213I

Explanation: In a READ statement, one or more of the input items in the input item list
required that data be transferred from beyond position data-length of the record. data-length
is the smaller of either the value given in the RECL specifier, if any, on the OPEN statement
or the length of the record available from the underlying system access methods. This latter

Name Action Taken after Resumption

RF This action depends on several factors:

� The type of formatting, if any, specified in the WRITE or REWRITE statement,
� Whether the file is connected for sequential, direct, or keyed access, and
� The record format.

For output using a format specification:

� Files connected for sequential access: For a formatted data item of other than character
type that doesn't fit in the record, none of it is placed in the record from which it would
overflow. (If the records are of fixed-length format, blanks fill the rest of the record. Other-
wise, no additional characters are added to the record.) The entire formatted data item is
placed into the next record beginning at character position 1. Should the maximum length
record be too short to hold this data item, as much of the data as can fit is placed in this
next record, and the rest of the data is lost. No error is detected for this loss of data.

For a data item of character type (including a character constant in the format specifica-
tion) that doesn't fit in the record, as much of the item as can fit is placed in this record,
and the remainder continues into the next record or records for as many records as it
takes to hold the entire item.

After the formatted data item is placed in the next record, normal processing of the rest of
the format specification and the output item list continues. This same condition could be
detected again for the same WRITE or REWRITE statement.

� Files connected for direct access: The action is the same as for sequential access.
When applied to direct access, the term next record refers to the record with the next
higher record number.

� Files connected for keyed access: This action is the same as RN on page 513.

For list-directed and namelist output:

For the formatted data item (or the real or imaginary part of an item of complex type) that's
longer than the record, none of the data is placed in the record. (If the records are of
fixed-length format, blanks fill the rest of the record. Otherwise, no additional characters
are added to the record.) The rest of the output item list is ignored.

For data of character type, this error is not detected. Such data is automatically spanned
across records without this being considered an error.

For unformatted output:

� Files connected for sequential access: For non-VSAM files that have a record format of
variable spanned (VS) or variable blocked spanned (VBS), a record of the size required by
the output item list is written. This is just as though the LRECL value specified an unlimited
record length. Such records generally cannot be read using languages other than Fortran
because the lengths of records in the file exceed the LRECL value associated with the file.

For other files connected for sequential access, this action is the same as RN on page
513.

� Files connected for direct access: As much of the data from the output item list as can
fit is placed in the record. This includes the data item that would overflow the record; as
much of it as can fit is placed in the record. The rest of this item plus the remaining data
items in the output item list are written into as many records as necessary to hold the data.
Each successive record is written as the record with the next higher record number.

� Files connected for keyed access: This action is the same as RN on page 513.

514 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1002E N FOR1002E

length is limited by the value of the LRECL parameter, if any, in the file definition if this
LRECL value is less than the actual length of the previously written record. The specific error
that is detected differs based on these factors:

� The type of formatting described by the FMT specifier (or by its absence) on the READ
statement

� The record format (the RECFM value) for the file

� The value given in the PAD specifier, if any, on the OPEN statement

� The value of the RECPAD run-time option

These are the specific errors that this condition represents:

� For input using a format specification:

Both of the following (1 and 2) were true:

1. Either of these two conditions occurred:

– An input item referred to a field that started beyond position data-length in
the record.

– An input item with a corresponding edit descriptor of A referred to a field that
extended beyond position data-length in the record.

(Note that because the T edit descriptor could have been used to specify the
position at which data transfer was to begin, this condition doesn't necessarily
imply that just the input items along with their corresponding repeatable edit
descriptors represented more data than the record contained.)

2. Either of these two conditions applied:

– The OPEN statement had a PAD specifier whose value was NO.

– There was no PAD specifier on the OPEN statement (or there was no OPEN
statement because the file is a preconnected file or an internal file). In addi-
tion, one of these cases applied:

- The RECPAD(NONE) run-time option was in effect.

- The RECPAD(VAR) run-time option was in effect and the file was an
external file that was a non-VSAM file with a record format (that is, the
RECFM value that was applied to the file) of either fixed (F) or fixed
blocked (FB).

- The RECPAD(VAR) run-time option was in effect and the file was an
external file that was a VSAM relative record data set (RRDS).

� For unformatted input:

All three of the following were true:

1. The total length of the items in the input item list exceeded the number of bytes
of data (data-length) available from the record.

2. The NUM specifier was not given in the READ statement.

3. If the unit was connected for direct access, the OPEN statement rather than the
DEFINE FILE statement from the FORTRAN 66 language standard was used to
connect the file.

� For list-directed input:

– Both of the following were true:

1. There were no characters other than blanks in the record that corresponded to
one or more input items.

2. The record format (that is, the RECFM value that was applied to the file) was
either variable spanned (VS) or variable blocked spanned (VBS).

 Chapter 13. Fortran Run-Time Messages 515

 FOR1002E N FOR1002E

locator-text gives more information about the location of the error, and can be one of the
following:

The READ statement for an internal file failed.
The READ statement for unit unit-number which was connected to file-name failed.

Programmer Response:

If you want to read an existing record, change one or more of the following:

� The type of formatting indicated by FMT specifier (or its absence) in the I/O statement.
For example, you might have to read the record with list-directed formatting rather than
with a format specification in order to be consistent with the structure of the existing
record.

� The format specification. This could include errors in the edit descriptors field widths,
repetition factors, and nesting levels.

� The input item list. There could be errors in the number of items in the list, in the data
types and lengths of individual items, and in the specification of implied DOs in the input
item list.

� The value given for the RECL specifier on the the OPEN statement. If this value is lim-
iting the available amount of data to less than what the record actually contains, you
should increase it to allow additional data to be read.

� The NUM specifier for an unformatted READ statement. When there is a NUM specifier
on an unformatted READ statement, encountering a record that is shorter than the total
length of all of the input items does not cause this error to be detected. In this case:

1. All of the data from the record is transferred to the input items. This includes the
data item for which there was not enough data in the record; as much of it as is
available is transferred to the item.

2. The rest of this input item and the remaining input items, if any, are not modified.

3. The variable or array element num given in the NUM=num specifier becomes
defined with the number of bytes of data that were transferred to the input items.

� The position of the file. Perhaps previous I/O statements (READ, WRITE, BACKSPACE,
REWIND, and so on) caused the file to be positioned to a record other than the one you
intended to read.

� Blank padding, which can be used when your READ statement has a format specifica-
tion. When it is used, records are treated as though they were extended with a sufficient
number of blanks to supply data for all of the input items. Blank padding is in effect
either when the OPEN statement has a PAD specifier that has a value of YES or when
there is no PAD specifier when certain sub-options of the RECPAD run-time option are
in effect.

Here are the RECPAD run-time option values that cause blank padding to be in effect:

This run-time option Applies blank padding to these types of files

RECPAD(VAR) Any of the following:

– An external file that is a non-VSAM file with a record
format (the RECFM value) of other than fixed (F) or
fixed blocked (FB)

– An external file that is a VSAM entry-sequenced data
set (ESDS) or key-sequenced data set (KSDS)

– An internal file

(Note that for an external file connected for direct access, a
non-VSAM file must have a record format of fixed, and a
VSAM file must be an RRDS; therefore, the run-time option
RECPAD(VAR) won't alleviate the problem for a file con-
nected for direct access.)

516 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1002E N FOR1002E

RECPAD(ALL) Any file (internal or external; VSAM of any type; non-VSAM
with any record format)

When blank padding is used to treat a record as though it were extended with blanks,
the values that would be provided for the input items that would otherwise have caused
this error to be detected are as follows:

– For a field that corresponded to an edit descriptor of A and that would have
extended beyond the number of characters available from the record, the portion of
the field in the record would be extended with blanks and transferred to the input
item.

– For a field that corresponded to an edit descriptor of A and that would have started
beyond the number of characters available from the record, the input item becomes
defined with a value of blanks.

– For a field that corresponded to an edit descriptor of L and that would have started
beyond the number of characters available from the record, the input item becomes
defined with a value of false.

– For a field that corresponded to one of the numeric edit descriptors and that would
have started beyond the number of characters available from the record, the input
item becomes defined with a value of zero.

Note that because a run-time option controls this extension of records with blanks, the
appropriate action is taken for all records and files to which it applies.

If the existing record of the file doesn't have the length or structure that you intended, you
might have to recreate the file after correcting either the program that originally wrote the file
or the file definitions that were in effect when the file was created. There is more detailed
information on this subject in the “Programmer Response” section for condition FOR1001 on
page 511.

System Action: If either the ERR or the IOSTAT specifier is present on the READ state-
ment, then before control returns to the program, the RN action described on page 518 is
taken.

If neither the ERR nor the IOSTAT specifier is present on the READ statement, the condition
is signaled. If the condition either is unhandled or is handled by moving the resume cursor
and resuming, then the RN action described on page 518 is taken. If the condition is unhan-
dled, execution of the enclave terminates.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within the basic set, statement has a value of READ, and parm_count has a
value of 7. In addition, there are these qualifying sets:

No. Name Input/Output
Data Type and
Length Value

5 access Input CHARACTER*10 For an external file, the value
SEQUENTIAL, DIRECT, or
KEYED depending on whether the
file is connected for sequential,
direct, or keyed access, respec-
tively. For an internal file, this
qualifying datum contains the
value SEQUENTIAL.

6 fmt-type Input CHARACTER*8 One of the following values to indi-
cate the type of formatting indi-
cated by the FMT specifier (or its
absence) on the READ statement:

Value Type of Formatting
blanks Unformatted
FORMAT Format specification
* List-directed formatting

 Chapter 13. Fortran Run-Time Messages 517

 FOR1003S N FOR1003S

Formatted input:

The input item that required data from beyond the end of the record as well as any
remaining input items, if any, are not modified. The remainder of the format specification,
if any, is ignored.

Unformatted input:

All of the data from the record is transferred to the items in the input item list. This
includes the item for which there was not enough data in the record; as much of it as is
available is transferred to the item. The rest of this item and the remaining input items, if
any, are not modified.

In both cases, the file is positioned to the end of the record that was read (that is, to the end
of the record that was too short).

Symbolic Feedback Code: FOR1002

FOR1003S locator-text A character that wasn't numeric was found in the formatted
input data where a numeric character was expected. The input field was
'input-field'. VS FORTRAN Version 2 Error Number: AFB215I

Explanation: For a READ statement, input-field is a character string that was interpreted as
an integer, real or complex value either because the input item in the input item list was an
integer, real or complex data type, or because the format specification had an I, E, F, Q or D
edit descriptor. input-field contained characters other than 0 through 9 where only these
characters were allowed.

No. Name Input/Output
Data Type and
Length Value

7 data-length Input INTEGER*4 The maximum length of data avail-
able to be read. If the OPEN state-
ment had a RECL specifier, then
data-length could be less than
what is reflected in record-desc.

8 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

9 record Input CHARACTER*n For a formatted READ statement
or for an unformatted READ state-
ment directed to a file with other
than spanned records (VS or
VBS), the whole input record.

For an unformatted READ state-
ment that read from a record that
spans more than one block, only
the single record segment that
includes position data-length of the
record.

The length n, which includes only
the data portion of the record, is
part of record-desc.

Name Action Taken after Resumption

RN Formatted and unformatted input are handled slightly differently:

RF If the READ statement is for unformatted I/O and it refers to a unit that is connected for direct
access, then data from as many of the succeeding records as necessary is transferred to the
input items, and the file is positioned to the end of the last record from which data was trans-
ferred. (This action is similar to the semantics of the FORTRAN 66 standard except that there
is no associated variable.)

For other READ statements, this action is the same as RN.

518 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1003S N FOR1003S

When the input is interpreted as a complex value, the expected format of input-field depends
on whether a format specification is used. If a format specification is used, two Fortran real
numbers are used to describe a complex number: one describing the real part of the
complex number, the other describing the imaginary part of the complex number. For list-
directed or namelist, input-field should have the form of a complex constant. Note, however,
that for list-directed or namelist input, condition FOR1006 could be detected in some cases
for complex input.

locator-text gives more information about the location of the error, and can be one of the
following:

The READ statement for an internal file failed.
The READ statement for unit unit-number which was connected to file-name failed.

Programmer Response: Ensure that:

� input-field contains formatted data that can be converted to the expected data type (refer
to VS FORTRAN Version 2 Language and Library Reference for the form that integer,
real and complex constants can have),

� The edit descriptor does not indicate numeric input where other input should be indi-
cated,

� The edit descriptor specifies the correct field width.

System Action: The input item being processed, and the remainder of the items in the
input item list are undefined. If neither the ERR nor the IOSTAT specifier is present on the
I/O statement, the condition is signaled. If the condition is unhandled, the application is termi-
nated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm-count has a
value of 8. In addition, there are these qualifying data:

No. Name Input/Output
Data Type and
Length Value

5 input-field-
desc

Input Q_DATA_DESC The q_data descriptor for input-
field. It contains the data type and
the length of input-field.

6 input-field input/output CHARACTER*n The formatted input data; that is,
the character string that is being
interpreted as either an integer,
real, or complex value. The length
n is part of input-field-desc and
has a maximum possible value of
255.

7 index Input INTEGER*4 The index in input_ field of the
character in error.

8 record_desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

9 record Input CHARACTER*n The formatted input record that
contained the character string
being interpreted as a numeric
value. The length n, which
includes only the data portion of
the record, is part of record-desc.

10 result-desc Input Q_DATA_DESC The q_data descriptor for result. It
contains the data type and the
length of result.

 Chapter 13. Fortran Run-Time Messages 519

 FOR1004S N FOR1004S

Symbolic Feedback Code: FOR1003

FOR1004S locator-text A character that wasn't a hexadecimal character was found in
the formatted input data where a hexadecimal character was expected. The
input field was 'input-field'. VS FORTRAN Version 2 Error Number: AFB225I

Explanation: For a READ statement, input-field is a character string that was interpreted as
hexadecimal data because there was a Z edit descriptor in the format specification.
Hexadecimal data consists of the characters 0 through 9 and A through F, but input-field
contained other characters.

locator-text gives more information about the location of the error, and can be one of the
following:

The READ statement for an internal file failed.
The READ statement for unit unit-number which was connected to file-name failed.

Programmer Response: Ensure that:

� input-field contains formatted data that can be converted to hexadecimal data,

� The edit descriptor does not indicate hexadecimal input where other input should be indi-
cated.

� The edit descriptor specifies the correct field width.

System Action: The input item being processed, and the remainder of the items in the
input item list are undefined. If neither the ERR nor the IOSTAT specifier is present on the
I/O statement, the condition is signaled. If the condition is unhandled, the application is termi-
nated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 11. In addition, there are these qualifying data:

No. Name Input/Output
Data Type and
Length Value

11 result output See result_desc. The result value that is used when
the release_option action is
requested by the user condition
handler. The data type can be an
integer with a length of 1, 2, 4, or
8, or it can be real with a length of
4, 8, or 16. When a format specifi-
cation is used, th real or imaginary
part of a number is supplied as
qualifying data as a real number of
half the length.

Name Action Taken after Resumption

RI The character string that is in input-field (whose length is part of input-field-
desc) is converted to a value that has the data type specified by result-desc
and the data type specified by result-desc, and the input item becomes defined
with this value. Execution continues, and the remainder of the input item list is
processed.

release-option The input item, or the real or imaginary part of a complex input item, becomes
defined with the value result.

No. Name Input/Output
Data Type and
Length Value

5 input-field-
desc

Input Q_DATA_DESC The q_data descriptor for input-
field. It contains the data type and
the length of input-field.

520 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1005S N FOR1005S

Symbolic Feedback Code: FOR1004

FOR1005S locator-text The formatted input data input-field was outside the range of
values that could be contained within the real or complex input item. VS
FORTRAN Version 2 Error Number: AFB226I

Explanation: For a READ statement, input-field is a character string that was interpreted
either as the value of a real number or as the value of the real or the imaginary part of a
complex number. This value exceeded the permissible range for a floating-point number. The
largest magnitude is approximately 7.2E+75, and the smallest magnitude is approximately
5.4E−79.

locator-text gives more information about the location of the error, and can be one of the
following:

The READ statement for an internal file failed.
The READ statement for unit unit-number, which was connected to file-name, failed.

Programmer Response: Ensure that:

� The formatted data in input-field is within the required range for a real number,

� input-field does not contain trailing blanks if either the BLANK specifier is given on the
OPEN statement with value of ZERO or the BZ edit descriptor is included on the format
specification.

System Action: The input item being processed, and the remainder of the items in the
input item list are undefined. If neither the ERR nor the IOSTAT specifier is present on the

No. Name Input/Output
Data Type and
Length Value

6 input-field input/output CHARACTER*n The formatted input data, that is,
the character string that is being
interpreted as a hexadecimal
value. The length n is part of
input-field-desc and has a
maximum possible value of 255.

7 index Input INTEGER*4 The index in input_ field of the
character in error.

8 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

9 record Input CHARACTER*n The formatted input record that
contained the character string
being interpreted as a numeric
value. The length n, which
includes only the data portion of
the record, is part of record-desc.

10 result-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

11 result output Q_DATA_DESC The result value that is used when
the release_option action is
requested by the user condition
handler.

Name Action Taken after Resumption

RI The character string that is in input-field whose length is part of
input-field-desc) is converted to a hexadecimal value, and the input item
becomes defined with this value. Execution continues, and th remainder of the
input list is processed.

release_option The input item becomes defined with the value result.

 Chapter 13. Fortran Run-Time Messages 521

 FOR1006S N FOR1006S

I/O statement, the condition is signaled. If the condition is unhandled, the application is termi-
nated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 10. In addition, there are these qualifying data:

Symbolic Feedback Code: FOR1005

FOR1006S locator-text For list-directed input, the variable was of complex type, but the
formatted input data was not in the correct format for a complex constant.
The formatted input data was input-field. VS FORTRAN Version 2 Error
Number: AFB238I

Explanation: For a READ statement, input-field is a portion of the character string that was
interpreted as a complex constant for list-directed input, and can be either the real part, the
imaginary part, or both. input-field either contained embedded blanks in the real part or the
imaginary part of the complex number, did not contain a comma as a separator between the
real part and the imaginary part, or was not enclosed in parentheses. Or, the end of the
record occurred other than between the real part and the comma or between the comma and
the imaginary part.

locator-text gives more information about the location of the error, and can be one of the
following:

The READ statement for an internal file failed.
The READ statement for unit unit-number which was connected to file-name, failed.

Programmer Response: Ensure that input-field contains no embedded blanks in the real
part or the imaginary part of the complex number, contains a comma as a separator, is
enclosed by a left and a right parenthesis, and, if the the complex number does not fit into
one record, that the end of the record occurs between the real part and the comma or
between the comma and the imaginary part.

System Action: The input item being processed, and the remainder of the items in the
input item list are undefined. If neither the ERR nor the IOSTAT specifier is present on the

No. Name Input/Output
Data Type and
Length Value

5 input-field-
desc

Input Q_DATA_DESC The q_data descriptor for input-
field. It contains the data type and
the length of input-field.

6 input-field Input CHARACTER*n The formatted input data, that is,
the character string that is being
interpreted as a a real value or as
the real or imaginary part of a
complex value. The length n is
part of input-field-desc and has a
maximum possible value of 255.

7 return-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

9 record_desc Input Q_DATA_DESC The q_data descriptor for result. It
contains the data type and the
length of result.

9 result output REAL*n The new output value, where n,
the length is part of result-desc an
dcould be 4, 8, or 16.

Name Action Taken after Resumption

release_option The input item becomes defined with the value in result. Execution continues,
and the remainder of the input item list is processed.

522 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1007S N FOR1007S

I/O statement, the condition is signaled. If the condition is unhandled, the application is termi-
nated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 8. In addition, there are these qualifying data:

Permissable Resume Actions:

Symbolic Feedback Code: FOR1006

FOR1007S locator-text The input item was of type character, but the formatted input
data did not begin with an apostrophe or with a quote. The input field was
input-field. VS FORTRAN Version 2 Error Number: AFB238I

Explanation: For a READ statement, input-field is a character string that was interpreted as
a character constant for list-directed input. input-field did not begin with an apostrophe or
with a quote.

locator-text gives more information about the location of the error, and can be one of the
following:

The READ statement for an internal file failed.
The READ statement for unit unit-number, which was connected to file-name, failed.

Programmer Response: Ensure that input-field is delimited by apostrophes or quotes, and
that the beginning and ending delimiters are the same.

System Action: The input item being processed and the remainder of the input items in the
input item list are undefined. If neither the ERR nor the IOSTAT specifier is present on the
I/O statement, the condition is signaled. If the condition is unhandled, the application is termi-
nated.

No. Name Input/Output
Data Type and
Length Value

5 input-field-
desc

Input Q_DATA_DESC The q_data descriptor for input-
field. It contains the data type and
the length of input-field.

5 input-field Input CHARACTER*n The formatted input data, that is, a
part of the character string that is
being interpreted as a complex
number. It can be either the real
part, the imaginary part, or both.
The length n is part of input-field-
desc and has a maximum possible
value of 255.

7 return-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

8 record Input CHARACTER*n The formatted input record that
contained the character string
being interpreted as a complex
number. The length n, which
includes only the data portion of
the record, is part of record-desc.

Name Action Taken after Resumption

RN The current operation is ignored. The remainder of the deallocation list is proc-
essed and execution continues.

Name Action Taken after Resumption

RN Execution continues, and the remainder of the input item list is ignored.

 Chapter 13. Fortran Run-Time Messages 523

 FOR1009S N FOR1009S

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 8. In addition, there are these qualifying data:

Symbolic Feedback Code: FOR1008

FOR1009S locator-text The list-directed input data did not have a value separator fol-
lowing the ending delimiter. The input data ended with input-field. VS
FORTRAN Version 2 Error Number: AFB238I

Explanation: For a READ statement, input-field is a character string that was interpreted as
a character constant (delimited by apostrophes or quotes) or a complex constant (delimited
by parentheses) for list-directed input. input-field was not followed by a value separator,
where a value separator can be either a comma (,), a blank, or a slash (/).

locator-text gives more information about the location of the error, and can be one of the
following:

The READ statement for an internal file failed.
The READ statement for unit unit-number, which was connected to file-name, failed.

Programmer Response: Ensure that input-field is followed by a value separator.

System Action: The input item being processed and the remainder of the items in the input
item list are undefined. If neither the ERR nor the IOSTAT specifier is present on the I/O
statement, the condition is signaled. If the condition is unhandled, the application is termi-
nated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 8. In addition, there are these qualifying data:

No. Name Input/Output
Data Type and
Length Value

5 input-field-
desc

Input Q_DATA_DESC The q_data descriptor for input-
field. It contains the data type and
the length of input-field.

6 input-field Input CHARACTER*n The formatted input data, that is,
the character string that is being
interpreted as a character value.
The length n is part of input-field-
desc and has a maximum possible
value of 255.

7 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

8 record Input CHARACTER*n The formatted input record that
contained the character string
being interpreted as a character
value. The length n, which
includes only the data portion of
the record, is part of record-desc.

Name Action Taken after Resumption

RN The remainder of the input items in the input item list are ignored, and exe-
cution continues.

No. Name Input/Output
Data Type and
Length Value

5 input-field-
desc

Input Q_DATA_DESC The q_data descriptor for input-
field. It contains the data type and
the length of input-field.

524 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1010S N FOR1010S

Symbolic Feedback Code: FOR1009

FOR1010S locator-text A character that wasn't a binary character was found in the for-
matted input data where a binary character was expected. The input field
was 'input-field'.

Explanation: For a READ statement, input-field is a character string that was interpreted as
binary data because there was a B edit descriptor in the format specification. Binary data
consists of the characters 0 and 1, but input-field contained other characters.

locator-text gives more information about the location of the error, and can be one of the
following:

The READ statement for an internal file failed.
The READ statement for unit unit-number, which was connected to file-name, failed.

Programmer Response: Ensure that:

� input-field contains formatted data that can be converted to binary data,

� The edit descriptor does not indicate binary input where other input should be indicated,

� The edit descriptor specifies the correct field width.

System Action: The input item being processed and the remainder of the items in the input
item list are undefined. If neither the ERR nor the IOSTAT specifier is present on the I/O
statement, the condition is signaled. If the condition is unhandled, the application is termi-
nated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 11. In addition, there are these qualifying data:

No. Name Input/Output
Data Type and
Length Value

6 input-field Input CHARACTER*n The formatted input data; that is,
the character string that is being
interpreted either as a character
value or as a complex number.
The length n is part of input-field-
desc and has a maximum possible
value of 255.

7 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

8 record Input CHARACTER*n The formatted input record that
contained the character constant
with no delimiter. The length n,
which includes only the data
portion of the record, is part of
record-desc.

Name Action Taken after Resumption

RN The remainder of the input item list is ignored, and execution continues.

No. Name Input/Output
Data Type and
Length Value

5 input-field-
desc

Input Q_DATA_DESC The q_data descriptor for input-
field. It contains the data type and
the length of input-field.

 Chapter 13. Fortran Run-Time Messages 525

 FOR1011S N FOR1011S

Permissable Resume Actions:

Symbolic Feedback Code: FOR1010

FOR1011S locator-text A character that wasn't an octal character was found in the for-
matted input data where an octal character was expected. The input field
was 'input-field'.

Explanation: For a READ statement, input-field is a character string that was interpreted as
octal data because there was an O edit descriptor in the format specification. Octal data
consists of the characters 0 through 7, but input-field contained other characters.

locator-text gives more information about the location of the error, and can be one of the
following:

The READ statement for an internal file failed.
The READ statement for unit unit-number, which was connected to file-name, failed.

Programmer Response: Ensure that:

� input-field contains formatted data that can be converted to octal data,

� The edit descriptor does not indicate octal input where other input should be indicated.

� The edit descriptor specifies the correct field width.

System Action: The input item being processed and the remainder of the items in the input
item list are undefined. If neither the ERR nor the IOSTAT specifier is present on the I/O

No. Name Input/Output
Data Type and
Length Value

6 input-field Input / output CHARACTER*n The formatted input data; that is,
the character string that is being
interpreted as a binary value. The
length n is part of input-field-desc
and has a maximum possible
value of 255.

7 index Input INTEGER*4 The index in input_ field of the
character in error.

8 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

9 record Input CHARACTER*n The formatted input record that
contained the character string
being interpreted as a binary
value. The length n, which
includes only the data portion of
the record, is part of record-desc.

10 result-desc Input Q_DATA_DESC The q_data descriptor for result. It
contains the data type and the
length of result.

11 result output See result-desc The result value that is used when
the release_option action is
requested by the user condition
handler.

Name Action Taken after Resumption

RI The character string that is in input-field (whose length is part of input-field-
desc) is converted to a binary value, and the input item becomes defined with
this value. Execution continues, and the remainder of the input item list is proc-
essed.

release_option The input item becomes defined with the value result.

526 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1020S N FOR1020S

statement, the condition is signaled. If the condition is unhandled, the application is termi-
nated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 11. In addition, there are these qualifying data:

Symbolic Feedback Code: FOR1011

FOR1020S The statement statement for sequential access for unit unit-number, which
was connected to file-name, failed. The file had been connected for access
access. VS FORTRAN Version 2 Error Number: AFB163I, AFB231I (format
1)

Programmer Response: Ensure that you use only the I/O statements that are consistent
with the access mode in use for the file connection. For example, if you intend to use direct
access, then don't use the file positioning statements (BACKSPACE, ENDFILE, REWIND).
Instead, use only READ or WRITE statements with a REC specifier; the value given for the
REC specifier is the number of the record that you want to read or write.

If you want to read the file sequentially, then you must connect the file for sequential access
by executing an OPEN statement in which the access specifier has a value of SEQUENTIAL
(or in which the access specifier is omitted). If the file was already connected for direct

No. Name Input/Output
Data Type and
Length Value

5 input-field-
desc

Input Q_DATA_DESC The q_data descriptor for input-
field. It contains the data type and
the length of input-field.

6 input-field Input/Output CHARACTER*n The formatted input data, that is,
the character string that is being
interpreted as an octal value. The
length n is part of input-field-desc
and has a maximum possible
value of 255.

7 index Input INTEGER*4 The index in input_ field of the
character in error.

8 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

9 record Input CHARACTER*n The formatted input record that
contained the character string
being interpreted as an octal
value. The length n, which
includes only the data portion of
the record, is part of record-desc.

10 result-desc Input Q_DATA_DESC The q_data descriptor for result. It
contains the data type and the
length of result.

11 result output See result-desc The result value that is used when
the release_option action is
requested by the user condition
handler.

Name Action Taken after Resumption

RI The character string that is in input-field (whose length is part of input-field-
desc) is converted to a binary value, and the input item becomes defined with
this value. Execution continues, and the remainder of the input item list is proc-
essed.

release_option The input item becomes defined with the value result.

 Chapter 13. Fortran Run-Time Messages 527

 FOR1022S N FOR1023S

access and you want to process it with sequential access, then you must execute a CLOSE
statement before the OPEN statement.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Symbolic Feedback Code: FOR1020

FOR1022S The statement statement for unit unit-number, which was connected to file-
name, failed. The file was already positioned after the endfile record. VS
FORTRAN Version 2 Error Number: AFB101I, AFB218I (format 8)

Explanation: The file was positioned after the endfile record either because the end-of-file
condition was just detected for a READ statement or because you just executed an
ENDFILE statement. Your statement statement implied the use of a subsequent subfile, but
your file did not have multiple subfiles because it was a dynamically allocated scratch file, a
named file, or a striped file.

Programmer Response: Do not try to read or write records beyond the endfile record for
the files that don't support multiple subfiles. The only files that can have multiple subfiles are
unnamed files that are neither striped files nor dynamically allocated.

Check the logic of your program to ensure that you haven't inadvertently executed a READ
or WRITE statement either after reaching the end of the file or after executing an ENDFILE
statement. Use the END specifier, if necessary, to detect the end of the file.

If you want to extend an existing file after reading through the data records and detecting the
end of the file, you can do so by executing a BACKSPACE statement (which positions the
file just beyond the last data record and just before the endfile record) followed by WRITE
statements.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Symbolic Feedback Code: FOR1022

FOR1023S The statement statement for unit unit, which was connected to file-name,
failed. The file definition statement referred to a file on a device or with a
file organization for which the statement statement is not supported. VS
FORTRAN Version 2 Error Number: AFB095I (format 1), AFB166

Explanation: Your program executed a statement statement, but the file to which the unit is
connected doesn't support this statement. For example, the following statements are incon-
sistent with the types of files indicated:

Statement Inconsistent file type
BACKSPACE Printer
BACKSPACE Striped file
ENDFILE PDS member
REWIND Language Environment message file

Name Action Taken after Resumption

RN The remainder of the input item list is ignored, and execution continues.

Name Action Taken after Resumption

RN The I/O operation is ignored, and execution continues.

528 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1024S N FOR1025S

Programmer Response: Either

� Change the logic of your program to avoid the use of the prohibited I/O statements for
the file that you're using, or

� Change the file definition (DD statement, ALLOCATE command) to refer to a different
type of file, and maintain the data in that other type of file.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Symbolic Feedback Code: FOR1023

FOR1024S The BACKSPACE statement for unit unit-number, which was connected to
file-name, failed. The file definition statement refers to a PDS member and
the previous statement was a WRITE statement. VS FORTRAN Version 2
Error Number: AFB095I (format 2)

Programmer Response: Because the sequence of a WRITE statement followed by a
BACKSPACE statement isn't allowed for a file that is a PDS member, make or both of these
changes:

� Modify the program so it doesn't use this sequence of statements.

� Change the file definition (DD statement, ALLOCATE command) to refer to a different
type of file, and maintain the data in that other type of file.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of BACKSPACE, and
parm_count has a value of 4.

Symbolic Feedback Code: FOR1024

FOR1025S The BACKSPACE statement for unit unit-number, which was connected to
file-name, failed. The file definition statement referred to a PDS member,
and BUFNO had a value greater than 1. VS FORTRAN Version 2 Error
Number: AFB095I (format 2)

Programmer Response: Because the BACKSPACE statement isn't allowed with a file that
is a PDS member and that is processed with more than one buffer, make one or more of
these changes:

� Modify the program so it does not use a BACKSPACE statement.

� Change the file definition (DD statement, ALLOCATE command) to refer to a different
type of file, and maintain the data in that other type of file.

� Change the file definition statement either by removing the BUFNO parameter that has a
value greater than 1 or by providing a BUFNO=1 parameter.

� For a dynamically allocated file that has an associated call to the FILEINF callable
service, either remove the BUFNO parameter that has a value greater than 1 or provide
a a BUFNO parameter with an associated value of 1.

Name Action Taken after Resumption

RN The I/O operation is ignored, and execution continues.

Name Action Taken after Resumption

RN The I/O operation is ignored, and execution continues.

 Chapter 13. Fortran Run-Time Messages 529

 FOR1026S N FOR1027S

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of BACKSPACE, and
parm_count has a value of 4.

Symbolic Feedback Code: FOR1025

FOR1026S The statement statement for unit unit-number, which was connected to file-
name, failed. The file definition statement referred to a PDS member, and
statement statement nor a REWIND statement. VS FORTRAN Version 2
Error Number: AFB123I (format 6), AFB123I (format 7)

Explanation: The sequence of I/O statements that was executed for a file that was a PDS
member caused a change either from input to output processing or from output to input proc-
essing without an intervening REWIND statement.

Programmer Response: Change the logic of the program to avoid switching between input
and output processing.

If you must do both input and output processing on the file, either

� Insert an intervening REWIND statement (or a CLOSE followed by an OPEN statement)
between the two types of processing if the logic of the program and the desired file posi-
tioning allows it, or

� Change the file definition (DD statement, ALLOCATE command) to refer to a different
type of file, and maintain the data in that other type of file.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Symbolic Feedback Code: FOR1026

FOR1027S The READ statement for unit unit-number, which was connected to file-name,
failed. The file definition statement referred to a system output (sysout)
data set. VS FORTRAN Version 2 Error Number: AFB218I (format 3)

Programmer Response: If the file is supposed to be a system output data set (SYSOUT
parameter on the DD statement), then change the logic of your program so that you don't
execute a READ statement for a unit that's connected to this file.

If the file should be another type, then change the file definition (DD statement, ALLOCATE
command) to refer to the file that you intend to use.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Name Action Taken after Resumption

RN The I/O operation is ignored, and execution continues.

Name Action Taken after Resumption

RN The remainder of the input item list is ignored, and execution continues.

Name Action Taken after Resumption

RN The remainder of the input item list is ignored, and execution continues.

530 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1028S N FOR1070S

Symbolic Feedback Code: FOR1027

FOR1028S The statement statement for unit unit-number, failed. The file was already
positioned after the endfile record of the 999th subfile, which is the last
subfile allowed.

Explanation: Your program has already processed 999 subfiles and is trying to position
itself into the next one; however, 999 is the maximum number of subfiles that can be
handled. Note that each subsequent subfile is referenced when you execute a READ,
WRITE, or ENDFILE statement either after the end-of-file condition was just detected for a
READ statement or after you just executed an ENDFILE statement.

Programmer Response: Ensure that your program doesn't inadvertently execute a READ,
WRITE, or ENDFILE statement for the same unit either after reaching the end of the file or
after executing an ENDFILE statement. Use the END specifier, if necessary, on the READ
statement to detect the end of the file.

If you want to extend an existing file after reading through the data records and detecting the
end of the file, you can do so by executing a BACKSPACE statement (which positions the
file just beyond the last data record and just before the endfile record) followed by WRITE
statements

System Action: The file is closed. If neither the ERR nor the IOSTAT specifier is present
on the I/O statement, the condition is signaled. If the condition is unhandled, the application
is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, and parm_count has a value of 4.

Symbolic Feedback Code: FOR1028

FOR1070S The direct access statement statement for unit unit-number, which was con-
nected to file-name, failed. The REC specifier had a value of record-number,
which either was not positive or exceeded num-records, the number of
records in the file. VS FORTRAN Version 2 Error Number: AFB232I

Programmer Response: Ensure that the REC specifier on the direct access READ or
WRITE statement has a value that is neither less than 1 or greater than the number of
records in the file.

If you're sure that the file contains the correct number of records, then just correct the logic
of your program to provide the correct value for the REC specifier.

If you expect the file to contain more records than it does, then you'll have to delete the
existing file and create it again to give it additional space. In this case, the term delete
means that the data set's disk space must be released and the data set allocated again.
Note that unless the file is dynamically allocated, neither of the following release the data
set's existing space on the disk volume:

� A CLOSE statement with a STATUS specifier value of DELETE or

� An OPEN statement with a STATUS specifier value of REPLACE.

However, if the file is dynamically allocated, you can use these forms of the OPEN and
CLOSE statements to release the space from within your Fortran program.

For a non-VSAM file, you should indicate the amount of space in the file by one of the
following:

� In MVS JCL: the SPACE parameter on the DD statement

� In the TSO ALLOCATE command: the SPACE operand along with the BLOCK,
TRACKS, or CYLINDERS operand

Name Action Taken after Resumption

RN The remainder of the input item list is ignored, and execution continues.

 Chapter 13. Fortran Run-Time Messages 531

 FOR1071S N FOR1071S

� In the FILEINF argument list for a dynamically allocated file: the CYL, TRK, or MAXREC
keyword argument

For a VSAM relative record data set (RRDS), you should indicate the amount of space on
the Access Method Services DEFINE CLUSTER command with the CYLINDERS,
RECORDS, or TRACKS parameter.

When the new file is first connected with a Fortran OPEN statement whose ACCESS
specifier has a value of DIRECT, it is automatically formatted with as many records as will fit
in the space allocated to the data set. (However, when the DEFINE FILE statement from the
FORTRAN 66 language standard is used, only the number of records specified in that state-
ment is formatted.)

Alternatively, you can format a newly created file by using sequential access rather than
direct access. In this case, simply write as many records as the file is supposed to to hold,
then close the file, and reconnect it for direct access. Remember that a file connected for
direct access must have a record format that indicates fixed-length unblocked records and a
record length that is the same as the value of the RECL specifier on the OPEN statement
that's used to connect the file for direct access. Therefore, if you're using sequential access
to format the file, ensure that the record format and record length are correctly specified in
the DD statement, in the TSO ALLOCATE command, or in the the arguments for the
FILEINF callable service.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 6. In addition, there are these
qualifying data:

Permissable Resume Actions:

Symbolic Feedback Code: FOR1070

FOR1071S The direct access statement statement for unit unit-number, which was con-
nected to file-name, failed. The file had been connected for access access.
VS FORTRAN Version 2 Error Number: AFB235I

Explanation: Your program executed a statement statement with a REC specifier, which
indicates direct access, but the file was connected for access rather than direct access.

Programmer Response: Ensure that you use only the I/O statements that are consistent
with the access mode in use for the file connection. For example, if you intend to use
sequential access, then don't use READ or WRITE statements with a REC specifier because
these apply only to direct access.

If you want to read the file using direct access, then connect the file by executing an OPEN
statement in which the access specifier has a value of DIRECT. (In a program that uses the
FORTRAN 66 language standard, the DEFINE FILE statement has a function similar to the
OPEN statement.)

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

No. Name Input/Output
Data Type and
Length Value

5 record-
number

Input INTEGER*4 The invalid record number that
was given in the REC specifier.

6 num-records Input INTEGER*4 The number of records for which
there is space within the file.

Name Action Taken after Resumption

RN The remainder of the input item is ignored, and execution continues.

532 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1072S N FOR1100S

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 4.

Symbolic Feedback Code: FOR1071

FOR1072S The direct access READ statement for unit unit-number, which was con-
nected to file-name, failed. The file was empty. VS FORTRAN Version 2
Error Number: AFB236I (format 1)

Programmer Response: Ensure that whatever program created the file actually wrote
records into the file. The three most common ways of writing these records are:

� Using the OPEN statement with a value of DIRECT for the ACCESS specifier when the
file doesn't yet exist. If the OPEN statement does not have either:

– A STATUS specifier with a value of OLD, or

– An ACTION specifier with a value of READ.

then during execution of the OPEN statement the file should be formatted automatically
with as many records as it can hold.

� Using sequential access to write the records. In this case, simply write as many records
as the file is supposed to to hold, then close the file, and reconnect it for direct access.
Remember that a file connected for direct access must have a record format that indi-
cates fixed-length unblocked records and a record length that is the same as the value
of the RECL specifier on the OPEN statement that's used to connect the file for direct
access. Therefore, if you're using sequential access to format the file, ensure that the
record format and record length are correctly specified in the DD statement, in the TSO
ALLOCATE command, or in the the arguments for the FILEINF callable service.

� Using a utility program or a program written in some other language. If the file is to be
used with direct access by a Fortran, it must have a record format that indicates fixed-
length unblocked records and a record length that is the same as the value of the RECL
specifier on the Fortran OPEN statement that will be used to connect the file for direct
access.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 4.

Symbolic Feedback Code: FOR1072

FOR1100S The REWRITE statement for unit unit-number, which was connected to file-
name, failed. The key of reference had a value of new-rec-key (X'new-rec-
key-hex'), which was different from orig-rec-key (X'orig-rec-key-hex'), the
value of that key in the record that was read. The key of reference had a
KEYID value of keyid. VS FORTRAN Version 2 Error Number: AFB139I

Explanation: You read a record and, in trying to rewrite it, provided a record in your output
item with a key of reference whose value differed from that in the original record. You cannot
use the REWRITE statement to replace a record if you change the value of the key of refer-
ence.

Name Action Taken after Resumption

RN The remainder of the input item list is ignored, and execution continues.

Name Action Taken after Resumption

RN The remainder of the input item list is ignored, and execution continues.

 Chapter 13. Fortran Run-Time Messages 533

 FOR1102S N FOR1102S

The term key of reference means the key (that is, certain positions within the record) that
was used for the sequential or direct retrieval of the record that was read. The term KEYID
value means the relative position of the start-end pair for this key within the start-end pairs
listed in the KEYS specifier on the OPEN statement.

Programmer Response: If you intended to replace an existing record rather than to write
one with a modified key value, ensure that:

� The value of the key in the output item list is the same as what was just read and that it
is in the correct position in the record,

� The output item list contains all the fields of the record to be rewritten, and

� Any changes in the order or length of various fields in the record have not caused the
value of the key of reference within the record to be shifted from its original position.

If you want to replace the record with one having a different key value, use the DELETE
statement to delete the record that was read, and then

� If there isn't already a record in the file with the different key value, then use the WRITE
statement, rather than the REWRITE statement, to add the record with a new key value.

� If there is already a record in the file with the different key value, then use the READ
statement to read that record, and then use the REWRITE statement to replace that
record.

If you want to add a new record with a key value that doesn't already exist in the file, then
use the WRITE statement to add it.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of REWRITE, and parm_count
has a value of 6. In addition, there are these qualifying data:

Symbolic Feedback Code: FOR1100

FOR1102S The WRITE statement for unit unit-number, which was connected to file-
name, failed. Records were being loaded into the file, and the primary key
had a value of new-key (X'new-key-hex'), which was not greater than
prev-key (X'prev-key-hex'), the value of the primary key in the previous
record. VS FORTRAN Version 2 Error Number: AFB140I

Explanation: Because the OPEN statement for this file connection had a value of WRITE
for the ACTION specifier, the file was connected for use in loading records in order of
ascending primary key value. You attempted to load a record in which the value of the
primary key was not greater than the value of the primary key in the previous record. The
term primary key refers to the main key for the VSAM key-sequenced data set as it was
declared in the Access Method Services DEFINE CLUSTER command.

Programmer Response: Ensure that your output item list has the primary key at its proper
position within the record being written. If you're not sure where this key is located in the
record, use the Access Method Services LISTCAT command to find out. Then change your

No. Name Input/Output
Data Type and
Length Value

5 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

6 record Input CHARACTER*n The record. The length n is part of
record-desc.

Name Action Taken after Resumption

RN The remainder of the input item list is ignored, and execution continues.

534 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1103S N FOR1103S

output item list (and the KEYS specifier, if present, on the OPEN statement) so that it is
consistent with the primary key position known to VSAM. On the other hand, if the output of
the LISTCAT command shows the key in a different position than you intended, then delete
and redefine the file with the Access Method Services DELETE and DEFINE CLUSTER
commands.

Change the logic of your program or the order of the records being loaded so that the
records are presented in increasing sequence of their primary key values.

If you cannot present the records in increasing key sequence, then on the OPEN statement
change the value of the ACTION specifier to READWRITE. This allows records to be added
to the file without regard for the order of their keys.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of WRITE, and parm_count has a
value of 6. In addition, there are these qualifying data:

Symbolic Feedback Code: FOR1102

FOR1103S The statement statement for unit unit-number, which was connected to file-
name, failed. The previous I/O statement for this unit resulted in a condition
that caused the loss of position in the file. VS FORTRAN Version 2 Error
Number: AFB123I (format 1), AFB123I (format 2), AFB123I (format 3),
AFB123I (format 4), AFB123I (format 5)

Explanation: The statement statement was not allowed for either or both of these reasons:

� It depended on a previous statement to establish or retain a position (or record pointer)
within the file.

� The execution of a previous statement caused the loss of position in the file. This file
position could have been lost because of any of a number of conditions:

 – Record-not-found condition
 – Duplicate-key condition
 – End-of-file condition
– Any error condition

You can neither read records sequentially nor use a BACKSPACE statement until you have
reestablished file position. In addition, you cannot use a DELETE, or REWRITE statement
except immediately after successfully reading a record.

Programmer Response: Ensure that a BACKSPACE statement or a sequential retrieval
READ statement isn't executed until a position has been established within the file. This
position can be established by a successfully executed OPEN, REWIND, or direct retrieval
READ statement.

Ensure that a DELETE or REWRITE statement isn't executed unless a record has just been
read.

No. Name Input/Output
Data Type and
Length Value

5 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

6 record Input CHARACTER*n The record. The length n is part of
record-desc.

Name Action Taken after Resumption

RN The remainder of the input item list is ignored, and execution continues.

 Chapter 13. Fortran Run-Time Messages 535

 FOR1104S N FOR1106S

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 4.

Symbolic Feedback Code: FOR1103

FOR1104S The READ statement for unit unit-number, which was connected to file-name,
failed. The KEYID specifier had a value of keyid, which conflicted with num-
keys, the number of keys specified in the KEYS specifier on the OPEN
statement. VS FORTRAN Version 2 Error Number: AFB124I

Explanation: The value of the KEYID specifier on the OPEN statement is either less than 1
or greater than the number of start-end pairs in the KEYS specifier. Therefore, no pair (and
hence no key) can be associated with the value of the KEYID specifier.

This conflict can arise even if no KEYS specifier is coded: a default of one key is assumed,
so if KEYID has a value greater than 1, an error is detected.

Programmer Response: If the KEYS specifier on the OPEN statement accurately indicates
the keys that you want to use, then change the value of the KEYID specifier so that it is a
positive integer that is no larger than the number of start-end pairs in the KEYS specifier. Its
value should be the ordinal number of the start-end pair for the key that you want to use.

If you intended to have additional keys available for use, then specify their starting and
ending record positions as start-end pairs in the KEYS specifier on the OPEN statement. In
addition, provide the file definitions (DD statements or TSO ALLOCATE commands) to refer
VSAM paths for the additional keys.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 4.

Symbolic Feedback Code: FOR1104

FOR1106S The READ statement for unit unit-number, which was connected to file-name,
failed. The argument to be used in searching for a key had a length of arg-
length, which was greater than key-length, the length of the key on which
the search is being made. The KEYID value was keyid. VS FORTRAN
Version 2 Error Number: AFB125I

Explanation: The argument to be used in searching for a key was given in the KEY,
KEYGE, or KEYGT specifier of a READ statement. However, the length of this argument is
greater than the length of the key of reference.

The term key of reference means the key (that is, certain positions within the record) that
was used for the direct retrieval of the record that was to be read. The key of reference is
indicated by the KEYID value, which is the relative position of the start-end pair for this key
within the start-end pairs listed in the KEYS specifier on the OPEN statement. The key of
reference can be established through the KEYID specifier on a direct retrieval READ state-
ment and remains in effect until it is changed in another direct retrieval READ statement.
The KEYID value is 1 if it has not been specified since the file was connected.

Name Action Taken after Resumption

RN The remainder of the input item list is ignored, and execution continues.

Name Action Taken after Resumption

RN The remainder of the input item list is ignored, and execution continues.

536 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1107S N FOR1107S

Programmer Response: Provide a search argument in the KEY, KEYGE, or KEYGT
specifier whose length does not exceed that of the key of reference. If you want to search
with a different key of reference, then for the KEYID specifier specify the ordinal number of
the desired key's start-end pair in the KEYS specifier on the OPEN statement.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 7. In addition, there are these qualifying data:

Symbolic Feedback Code: FOR1106

FOR1107S No record with the specified key could be found for the keyed access
READ statement for unit unit-number, which was connected to file-name. The
key specifier had a value of value (X'hex-value'). The KEYID value was keyid
(start:end). VS FORTRAN Version 2 Error Number: AFB126I

Explanation: For the key of reference there was no record in the file meeting the search
criterion indicated by the search argument in the KEY, KEYGE, or KEYGT specifier on the
READ statement. This is the record not found condition and might not be an error.

The term key of reference means the key (that is, certain positions within the record) that
was used for the direct retrieval of the record that was to be read. The key of reference is
indicated by the KEYID value, which is the relative position of the start-end pair for this key
within the start-end pairs listed in the KEYS specifier on the OPEN statement. The key of
reference can be established through the KEYID specifier on a direct retrieval READ state-
ment and remains in effect until it is changed in another direct retrieval READ statement.
The KEYID value is 1 if it has not been specified since the file was connected.

Programmer Response: Ensure that the KEYID value on this or an a previously executed
READ statement represents the desired key of reference.

Check the value of the KEY, KEYGE, or KEYGT specifier to ensure that it provides the
desired search argument.

Check the program and the data that was used to create the file to ensure that the expected
records are actually in the file.

If you want your program to get control in the event of a record not found condition, then on
the READ statement add a NOTFOUND specifier with the label of the statement to be given
control should the record not found condition occur.

System Action: If the IOSTAT=ios specifier is present on the READ statement, ios
becomes defined either with the value 1107 if ios is an integer variable or with the condition
token for FOR1107 if ios is a character variable of length 12.

No. Name Input/Output
Data Type and
Length Value

5 key-desc Input Q_DATA_DESC The q_data descriptor for key. It
contains the data type and the
length of key.

6 key Input See key-desc The value of the key argument.
The data type can be integer of
length 1, 2, 4, or 8, or it can be
character with any positive length
not exceeding 255.

7 keyid Input INTEGER*4 The value of the KEYID specifier.

Name Action Taken after Resumption

RN The current operation is ignored. The remainder of the deallocation list is processed and exe-
cution continues.

 Chapter 13. Fortran Run-Time Messages 537

 FOR1112S N FOR1112S

If the NOTFOUND=nfd specifier is present on the READ statement, control passes to the
label nfd. If the NOTFOUND specifier is not present on the READ statement but the
ERR=err specifier is present, control passes to the label err.

If neither the ERR, the NOTFOUND, nor the IOSTAT specifier is present on the READ state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 7. In addition, there are these qualifying data:

Symbolic Feedback Code: FOR1107

FOR1112S The statement statement for unit unit-number, which was connected to file-
name, failed. The record being written had a length of length, which was too
short to contain all the keys. VS FORTRAN Version 2 Error Number:
AFB129I (format 1), AFB129I (format 2)

Explanation: The record described by the output item list on the statement statement
wasn't long enough to contain all of the keys that were defined for the file through Access
Method Services. The record being written must be long enough to contain all of these keys
even if one or more of the keys wasn't listed as a start-end pair in the KEYS specifier of the
OPEN statement.

Programmer Response: Ensure that the output item list defines a record long enough to
contain all of the keys made known to VSAM through the DEFINE CLUSTER, DEFINE
ALTERNATE INDEX, and DEFINE PATH commands for Access Method Services. Use the
LISTCAT command if necessary to determine the position of these keys.

Remember that with a REWRITE statement the output item list must provide output items
that describe the whole record rather than just the portions that are to be rewritten.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 6. In addition, there are these
qualifying data:

No. Name Input/Output
Data Type and
Length Value

5 key-desc Input Q_DATA_DESC The q_data descriptor for key. It
contains the data type and the
length of key.

6 key Input See key-desc The value of the key argument.
The data type can be integer of
length 1, 2, 4, or 8, or it can be
character with any positive length
not exceeding 255.

7 keyid Input INTEGER*4 The value of the KEYID specifier.

Name Action Taken after Resumption

RN The remainder of the input item list is ignored, and execution continues.

No. Name Input/Output
Data Type and
Length Value

5 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

6 record Input CHARACTER*n The record. The length n is part of
record_desc.

538 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1113S N FOR1114S

Symbolic Feedback Code: FOR1112

FOR1113S The statement statement for unit unit-number, which was connected to file-
name, failed. The file had been connected for access access, and the state-
ment statement was of a form that applies to keyed access. VS FORTRAN
Version 2 Error Number: AFB127I, AFB128I

Explanation: One of the following specifiers was given on the statement statement:

 KEY
 KEYGE
 KEYGT
 NOTFOUND
 DUPKEY
 KEYID

These specifiers are applicable only to files connected for keyed access, but the file con-
nection was for access access.

Programmer Response: If your file is a VSAM key-sequenced data set (KSDS), then
provide a value of KEYED for the ACCESS specifier on the OPEN statement. This will allow
you to use I/O statements that apply to keyed access.

If your file is not a VSAM KSDS, then you cannot use keyed access nor can you use I/O
statements that apply only to keyed access. In this case, you have two choices:

� Change the logic of your program to use only the statements that apply to sequential or
direct access.

� Define or redefine the file using Access Method Services to make it a VSAM KSDS.
Then you can connect the file for keyed access and use any of the I/O statements that
apply to keyed access.

Do not confuse sequential or direct access with sequential or direct retrieval statements.
Sequential and direct access are indicated by the ACCESS specifier on the OPEN state-
ment. Sequential and direct retrieval statements are forms of the READ statement that can
be used when the file is connected for keyed access, that is, when the ACCESS specifier on
the OPEN statement has a value of KEYED.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 4.

Symbolic Feedback Code: FOR1113

FOR1114S The WRITE statement for unit unit-number, which was connected to file-
name, failed. A key value within the record to be written was a duplicate of
a key in a record already in the file. The key of reference had a position of
start : end in the record, a hexadecimal value of value, and a KEYID of keyid.
VS FORTRAN Version 2 Error Number: AFB135I

Explanation: A WRITE statement that was used with a file that was connected for keyed
access provided in its output item list a record with a key whose value was the same as one
that was already in the file. The duplicate key value was either for the primary key, which
never allows duplicate key values, or for an alternate-index key that does not allow duplicate
values because it was defined to be unique through the Access Method Services DEFINE

Name Action Taken after Resumption

RN The remainder of the input item list is ignored, and execution continues.

Name Action Taken after Resumption

RN The remainder of the input item list is ignored, and execution continues.

 Chapter 13. Fortran Run-Time Messages 539

 FOR1114S N FOR1114S

ALTERNATEINDEX command. The key whose value is duplicated is not necessarily the key
of reference, which is indicated in the message text, and it isn't even necessarily among the
keys listed in the KEYS specifier of the OPEN statement for the file. However, the key is one
that was defined using the Access Method Services DEFINE CLUSTER or DEFINE ALTER-
NATE INDEX command.

This is the duplicate key condition and might not be an error.

(The term key of reference means the key (that is, certain positions within the record) that is
currently in use for reading and writing records. The key of reference is indicated by the
KEYID value, which is the relative position of the start-end pair for this key within the
start-end pairs listed in the KEYS specifier on the OPEN statement. The key of reference
can be established through the KEYID specifier on a direct retrieval READ statement and
remains in effect until it is changed in another direct retrieval READ statement. The KEYID
value is 1 if it has not been specified since the file was connected.)

Programmer Response: Ensure that the output item list defines a record such that no key
positions have values that are the same as values that are already in the file. This applies
both to the primary key and to all alternate index keys whose values are supposed to be
unique. Carefully check the record to be sure that it is in the intended format.

Remember that the key whose value has been duplicated in your record might not be one
that your program uses. You'll have to check all of the keys made known to VSAM through
the DEFINE CLUSTER, DEFINE ALTERNATE INDEX, and DEFINE PATH commands for
Access Method Services. Use the LISTCAT command if necessary to determine the position
of these keys.

If you want your program to get control in the event of a duplicate key condition, then on the
WRITE or REWRITE statement add a DUPKEY specifier with the label of the statement to
be given control should the duplicate key condition occur.

System Action: If the IOSTAT=ios specifier is present on the I/O statement, ios becomes
defined either with the value 1114 if ios is an integer variable or with the condition token for
FOR1114 if ios is a character variable of length 12.

If the DUPKEY=dky specifier is present on the I/O statement, control passes to the label dky.
If the DUPKEY specifier is not present on the I/O statement but the ERR=err specifier is
present, control passes to the label err.

If neither ERR, the DUPKEY, nor the IOSTAT specifier is present on the I/O statement, the
condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of WRITE, and parm_count has a
value of 6. In addition, there are these qualifying data:

Symbolic Feedback Code: FOR1114

No. Name Input/Output
Data Type and
Length Value

5 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

6 record CHAR-
ACTER*n

The record. The
length n is part of
record-desc.

Name Action Taken after Resumption

RN The remainder of the input item list is ignored, and execution continues.

540 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1180S N FOR1181S

FOR1180S The formatted statement statement for unit unit-number, which was con-
nected to file-name, failed. The file was connected for unformatted I/O. VS
FORTRAN Version 2 Error Number: AFB174I

Explanation: A formatted statement statement was executed for a unit that was connected
for unformatted input/output operations.

A formatted I/O statement is a PRINT statement, or it is identified by the presence of an
FMT specifier in the I/O statement's control list as follows:

� The presence of a FMT specifier with the FMT keyword. For example:

READ (FMT=C, UNIT=8) A

READ (8, FMT=1#) A

� The absence of the UNIT keyword in the unit specifier and the presence of an imme-
diately following specifier that has no keyword. For example:

READ (8, NL1) A

READ (8, C) A

The file was connected for unformatted input/output operations because either:

� A value of UNFORMATTED was given for the FORM specifier on the OPEN statement,

� The FORM specifier was omitted from the OPEN statement for a file that was connected
for direct or keyed access, or

� The first I/O statement that was executed for a preconnected file was an unformatted I/O
statement, that is, an I/O statement with no FMT specifier.

Programmer Response: Determine whether you want to perform formatted or unformatted
input/output operations on the file. If you want to use unformatted I/O statements, remove or
change the formatted I/O statements.

If you want to use formatted I/O statements, then:

� For an OPEN statement that connects a file for sequential access, either omit the FORM
specifier or provide one with a value of FORMATTED.

� For an OPEN statement that connects a file for direct or keyed access, provide a FORM
specifier with a value of FORMATTED.

� Do not execute an unformatted I/O statement for the unit.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 7.

Permissable Resume Actions:

Symbolic Feedback Code: FOR1180

FOR1181S locator-text A format specification contained an invalid edit descriptor of
code. VS FORTRAN Version 2 Error Number: AFB211I

Explanation: A format specification referenced by the I/O statement contained an edit
descriptor (sometimes called a format code) that was

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for an internal file failed.
The statement statement for unit unit-number, which was connected to file-name, failed.

Name Action Taken after Resumption

RN The remainder of the input item list is ignored, and execution continues.

 Chapter 13. Fortran Run-Time Messages 541

 FOR1182S N FOR1183S

Programmer Response: If the FMT specifier on the I/O statement referred to the format
specification in a variable (rather than as a constant or as a label of a FORMAT statement),
ensure that the format specification was constructed according to the same rules that apply
for a FORMAT statement. In particular, it must start with a left parenthesis, end with a right
parenthesis, have no imbedded blanks except within a pair of quotes or apostrophes, and
use only the edit descriptors that are allowed by the Fortran language.

Ensure that the logic of your program didn't inadvertently overlay storage such as by refer-
ring to array elements outside the declared bounds of the array.

System Action: The input or output item being processed and the remainder of the items
in the input/output item list are undefined. If neither the ERR nor the IOSTAT specifier is
present on the I/O statement, the condition is signaled. If the condition is unhandled, the
application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 4.

Symbolic Feedback Code: FOR1181

FOR1182S locator-text A format specification contained more than 51 nested paren-
thesis groups. VS FORTRAN Version 2 Error Number: AFB160I

Programmer Response: In your format specification, do not use more than 51 levels of
nesting for parenthesis groups.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 4.

Symbolic Feedback Code: FOR1182

FOR1183S locator-text The format specifier on the I/O statement did not refer to a
FORMAT statement. VS FORTRAN Version 2 Error Number: AFB211I

Programmer Response: Ensure that the format specifier refers to a correctly structured
format specification. Either provide the label of a FORMAT statement or character
expression whose value is a format specification.

Ensure that the logic of your program didn't inadvertently overlay storage such as by refer-
ring to array elements outside the declared bounds of the array.

System Action: The input or output item being processed and the remainder of the items
in the input/output item list are undefined. If neither the ERR nor the IOSTAT specifier is
present on the I/O statement, the condition is signaled. If the condition is unhandled, the
application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 4.

Symbolic Feedback Code: FOR1184

Name Action Taken after Resumption

RN The invalid edit descriptor is treated as the end of the format specification, and execution con-
tinues.

Name Action Taken after Resumption

RN The parenthesis group is ignored, and execution continues. The results are unpredictable.

Name Action Taken after Resumption

RN The format field is treated as an end of format, and execution continues.

542 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1200S N FOR1200S

FOR1200S The unformatted statement statement for unit unit-number, which was con-
nected to file-name, failed. The file was connected for formatted I/O. VS
FORTRAN Version 2 Error Number: AFB173I

Explanation: An unformatted statement statement was executed for a unit that was con-
nected for formatted input/output operations.

An unformatted I/O statement is recognized by the absence of an FMT specifier. For
example, these are unformatted I/O statements:

WRITE (1#) A, B

READ (7, END=88) A, B

and these are formatted I/O statements:

WRITE (FMT=C, UNIT=8) A

WRITE (8, FMT=C) A

READ (8, NL1) A

READ (8, C, END=77) A

PRINT 1#, A, B, C

The file was connected for formatted input/output operations because either:

� A value of FORMATTED was given for the FORM specifier on the OPEN statement,

� The FORM specifier was omitted from the OPEN statement for a file that was connected
for sequential access, or

� The first I/O statement that was executed for a preconnected file was a formatted I/O
statement, that is, an I/O statement with an FMT specifier.

Programmer Response: Determine whether you want to perform formatted or unformatted
input/output operations on the file. If you want to use formatted I/O statements, remove or
change the unformatted I/O statements.

If you want to use unformatted I/O statements, then:

� For an OPEN statement that connects a file for sequential access, provide a FORM
specifier with a value of UNFORMATTED.

� For an OPEN statement that connects a file for direct or keyed access, either omit the
FORM specifier or provide one with a value of UNFORMATTED.

� Do not execute a formatted I/O statement for the unit.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 4.

Symbolic Feedback Code: FOR1200

Name Action Taken sfter Resumption

RN The I/O operation is ignored, and execution continues.

 Chapter 13. Fortran Run-Time Messages 543

 FOR1201S N FOR1210S

FOR1201S The unformatted READ statement for unit unit-number, which was con-
nected to file-name, failed. The file definition statement referred to an ASCII
tape. VS FORTRAN Version 2 Error Number: AFB214I

Explanation: An unformatted READ statement referred to a unit that was connected to a
file whose DCB information indicated variable-length ASCII tape records. These ASCII tape
records are indicated by a RECFM value of D.

Programmer Response: If you have an ASCII tape to be read, then change your program
to use formatted rather than unformatted READ statements.

If your input file is not an ASCII tape, then ensure that you provide DCB information that
does not include a value of D for the RECFM parameter.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 4.

Symbolic Feedback Code: FOR1201

FOR1210S locator-text There was an invalid repeat specification in a record being read
with list-directed formatting. VS FORTRAN Version 2 Error Number:
AFB227I

Explanation: An input field in a record that was read with a list-directed READ statement
had the form n*value, where n, which is the repeat specification, should be an integer con-
stant and value should be the value to be assigned to n successive variables or array ele-
ments in the input item list. However, there was an error in the format of n*value. Possible
errors might include an incorrect integer value for the repeat specification, a second asterisk,
or an invalid value following the asterisk.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for an internal file failed.
The statement statement for unit unit-number, which was connected to file-name, failed.

Programmer Response: In the record to be read, ensure that the repeat specification and
the constant following the asterisk are coded in the correct format.

System Action: The input item being processed and the remainder of the items in the input
item list are undefined. If neither the ERR nor the IOSTAT specifier is present on the I/O
statement, the condition is signaled. If the condition is unhandled, the application is termi-
nated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 6. In addition, there are these qualifying data:

Name Action Taken after Resumption

RN The I/O operation is ignored, and execution continues.

No. Name Input/Output
Data Type and
Length Value

5 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

544 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1220S N FOR1220S

Symbolic Feedback Code: FOR1210

FOR1220S locator-text In the namelist group group-name in a namelist input file, a vari-
able name or array name exceeded 31 characters in length. The first 31
characters were object-name. VS FORTRAN Version 2 Error Number:
AFB221I

Programmer Response: Ensure that the variable names in the namelist group in the
namelist input file are all listed in the corresponding NAMELIST statement in the program
and that the delimiters, such commas, equal signs, and quotes, are used as required.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 9. In addition, there are these qualifying data:

No. Name Input/Output
Data Type and
Length Value

6 record Input CHARACTER*n The formatted input record that
contained the invalid repeat spec-
ification. The length n, which
includes only the data portion of
the record, is part of record-desc.

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 3

2 subroutine-
name

Input CHARACTER*8 The name of the DIV subroutine

3 return-code Input INTEGER*4 The return code from the Fortran
DIV subroutine

Name Action Taken after Resumption

RN The current operation is ignored. The remainder of the deallocation list is processed and exe-
cution continues.

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

No. Name Input/Output
Data Type and
Length Value

5 group-name Input CHARACTER*31 The namelist group name in the
namelist input file.

6 object-name-
desc

Input Q_DATA_DESC The q_data_descriptor for object-
name. It contains the data type
and the length of object-name.

7 object-name Input CHARACTER*n The variable name or array name
that was too long in group-name in
the namelist input file. The length
n is part of object-name-desc and
has a maximum possible value of
255.

8 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

 Chapter 13. Fortran Run-Time Messages 545

 FOR1221S N FOR1222S

Symbolic Feedback Code: FOR1220

FOR1221S locator-text In the namelist group group-name in a namelist input file, the
variable name or array name object-name was not in the namelist group in
the NAMELIST statement. VS FORTRAN Version 2 Error Number: AFB222I

Programmer Response: Ensure that the variable names in the namelist group in the
namelist input file are all listed in the corresponding NAMELIST statement in the program
and that the delimiters, such commas, equal signs, and quotes, are used as required.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 8. In addition, there are these qualifying data:

Symbolic Feedback Code: FOR1221

FOR1222S locator-text In the namelist group group-name in a namelist input file, there
was a syntax error involving the name object-name or its value. VS
FORTRAN Version 2 Error Number: AFB223I

Programmer Response: Ensure that the variable names in the namelist group in the
namelist input file are all listed in the corresponding NAMELIST statement in the program
and that the delimiters, such commas, equal signs, and quotes, are used as required.

System Action: The variable being processed and the remainder of the variables given in
the namelist input file become undefined. If neither the ERR nor the IOSTAT specifier is

No. Name Input/Output
Data Type and
Length Value

9 record Input CHARACTER*n The formatted input record that
contained the name that was too
long. The length n, which includes
only the data portion of the record,
is part of record-desc.

Name Action Taken after Resumption

RN The current operation is ignored. The remainder of the deallocation list is processed and exe-
cution continues.

No. Name Input/Output
Data Type and
Length Value

5 group-name Input CHARACTER*31 The namelist group name in the
namelist input file.

6 object-name Input CHARACTER*31 The variable name or array name
that was not in group-name in the
NAMELIST statement.

7 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

8 record Input CHARACTER*n The formatted input record that
contained the name that was not
in the namelist group. The length
n, which includes only the data
portion of the record, is part of
record-desc.

Name Action Taken After Resumption

RN The I/O operation is not completed, and execution continues.

546 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1223S N FOR1223S

present on the I/O statement, the condition is signaled. If the condition is unhandled, the
application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 10. In addition, there are these qualifying data:

Symbolic Feedback Code: FOR1222

FOR1223S locator-text In the namelist group group-name in a namelist input file, a sub-
script for array object-name had the value subsc-val, which was not within
the bounds for that array. VS FORTRAN Version 2 Error Number: AFB224I

Programmer Response: Ensure that the subscript has a value that lies within the bounds
of the array object-name. Either correct the subscript or change the declaration of the array
in the program.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 8. In addition, there are these qualifying data:

No. Name Input/Output
Data Type and
Length Value

5 group-name-
desc

Input Q_DATA_DESC The q_data descriptor for group-
name. It contains the data type
and the length of group-name.

6 group-name Input CHARACTER*n The namelist group name in the
namelist input file. The length n is
part of group-name-desc and has
a maximum possible value of 250.

7 object-name-
desc

Input Q_DATA_DESC The q_data descriptor for object-
name. It contains the data type
and the length of object-name.

8 object-name Input CHARACTER*n The variable name or array name
that had an incorrect value or
syntax in group-name in the
namelist input file. The length n is
part of object-name-desc and has
a maximum possible value of 250.

9 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

10 record Input CHARACTER*n The formatted input record that
contained the name that had an
incorrect value or syntax. The
length n, which includes only the
data portion of the record, is part
of record-desc.

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

No. Name Input/Output
Data Type and
Length Value

5 group-name Input CHARACTER*31 The namelist group name in the
namelist input file.

 Chapter 13. Fortran Run-Time Messages 547

 FOR1224S N FOR1224S

Symbolic Feedback Code: FOR1223

FOR1224S locator-text In the namelist group group-name in a namelist input file, object-
name had a subscript but was not an array. VS FORTRAN Version 2 Error
Number: AFB224I

Programmer Response: Correct the inconsistency between the use of object-name with a
subscript in the namelist input file and the declaration of object-name in the Fortran program
as a scalar variable. Either remove the subscript in the namelist input file or correct the dec-
laration in the program.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 8. In addition, there are these qualifying data:

Symbolic Feedback Code: FOR1224

No. Name Input/Output
Data Type and
Length Value

6 object-name Input CHARACTER*31 The name of the array that had an
incorrect subscript value in group-
name in the namelist input file.

7 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

8 record Input CHARACTER*n The formatted input record that
contained the name of the array
that had an incorrect subscript
value. The length n, which
includes only the data portion of
the record, is part of record-desc.

Name Action Taken after Resumption

RN The I/O operation is not complete, and execution continues.

No. Name Input/Output
Data Type and
Length Value

5 group-name Input CHARACTER*31 The namelist group name in the
namelist input file.

6 object-name Input CHARACTER*31 The name of the variable that had
a subscript in group-name in the
namelist input file.

7 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

8 record Input CHARACTER*n The formatted input record that
contained the name of the variable
that had a subscript. The length n,
which includes only the data
portion of the record, is part of
record-desc.

Name Action Taken after Resumption

RN The I/O operation is not complete, and execution continues.

548 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1225W N FOR1226S

FOR1225W locator-text In a namelist input file, a namelist group name or variable name
exceeded max-length characters in length. The first max-length characters
were name. VS FORTRAN Version 2 Error Number: AFB221I

Programmer Response: Ensure that the namelist input file is coded in the correct format
with the information beginning in column 2 or later in the records. Check for an ampersand
preceding the namelist group name with no intervening spaces, and check for missing delim-
iters, such as commas, quotes, or apostrophes.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, execution continues, and the
name name is ignored.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 8. In addition, there are these qualifying data:

Symbolic Feedback Code: FOR1225

FOR1226S locator-text There was an error in the specification of a name in a name-
value pair within the namelist group group-name in the namelist input file.
(Description of the error that was detected.) VS FORTRAN Version 2 Error
Number: AFB222I

Explanation: The namelist group group-name in the namelist input file had an error
involving one of the variable names given in what should be a name-value pair. The
detailed description of the error is in the message text.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for an internal file failed.
The statement statement for unit unit-number, which was connected to file-name, failed.

Programmer Response: Correct the incorrectly coded variable name in the namelist input
file or provide any missing delimiters.

System Action: The variable being processed and the remainder of the variables given in
the namelist input file become undefined. If neither the ERR nor the IOSTAT specifier is

No. Name Input/Output
Data Type and
Length Value

5 group-name-
desc

Input Q_DATA_DESC The q_data descriptor for
group_name. It contains the data
type and the length of
group-name.

6 group-name Input CHARACTER*n The namelist group name that was
too long in group-name in the
namelist input file. The length n is
part of group-name-desc and has
a maximum possible value of 255.

7 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

8 record Input CHARACTER*n The formatted input record that
contained the name that was too
long. The length n, which includes
only the data portion of the record,
is part of record-desc.

Name Action Taken after Resumption

RN The I/O operation is not complete, and execution continues.

 Chapter 13. Fortran Run-Time Messages 549

 FOR1227S N FOR1227S

present on the I/O statement, the condition is signaled. If the condition is unhandled, the
application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 8. In addition, there are these qualifying data:

Symbolic Feedback Code: FOR1226

FOR1227S locator-text Within the namelist group group-name in the namelist input file
the variable var-name was not followed by an equal sign. VS FORTRAN
Version 2 Error Number: AFB222I

Explanation: The namelist group group-name in the namelist input file contained the vari-
able name var-name. However, this name was not immeditely followed by the equal sign (=
), which should separate the name and a value.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for an internal file failed.
The statement statement for unit unit-number, which was connected to file-name, failed.

Programmer Response: Code the name-value pair in the form of the variable name fol-
lowed by an equal sign followed by a value or values.

System Action: The variable being processed and the remainder of the variables given in
the namelist input file become undefined. If neither the ERR nor the IOSTAT specifier is
present on the I/O statement, the condition is signaled. If the condition is unhandled, the
application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 10. In addition, there are these qualifying data:

No. Name Input/Output
Data Type and
Length Value

5 group-name-
desc

Input Q_DATA_DESC The q_data_descriptor for group-
name. It contains the data type
and the length of group-name.

6 group-name Input CHARACTER*n The namelist group name that
contained the variable that was
coded in error. The length n is part
of group-name-desc and has a
maximum possible value of 255.

7 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

8 record Input CHARACTER*n The formatted input record that
contained the name that was too
long. The length n which includes
only the data portion of the record,
is part of record_desc.

Name Action Taken after Resumption

RN The I/O operation is not complete, and execution continues.

No. Name Input/Output
Data Type and
Length Value

5 group-name-
desc

Input Q_DATA_DESC The q_data descriptor for group-
name. It contains the data type
and the length of group-name.

550 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1228S N FOR1228S

Symbolic Feedback Code: FOR1227

FOR1228S locator-text Within the namelist group group-name in the namelist input file
there were too many values given for the variable var-name. VS FORTRAN
Version 2 Error Number: AFB222I

Explanation: The namelist group group-name in the namelist input file contained the vari-
able name var-name followed by an the equal sign (=), which separates the name and the
values. However, following that equal sign there were more values than there were intrinsic
data items comprising the variable. There were either:

� more values than there were elements in an array variable,
� more values than there were intrinsic data items within a variable of derived type, or
� more than one value for a scalar variable of an intrinsic data type.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for an internal file failed.
The statement statement for unit unit-number, which was connected to file-name, failed.

Programmer Response: Code the name-value pair in the form of the variable name fol-
lowed by an equal sign followed by no more values than comprise the variable. For example,
a scalar variable of an intrinsic data type cannot have more than one value. If an assumed-
shape or deferred-shape array is involved, ensure that the number of values doesn't exceed
the number of elements represented by the current shape of the array. If a variable of
derived type is involved, ensure that there aren't more values than there are intrinsic data
items within the derived type, and ensure that the values are of the proper type to corre-
spond with the intrinsic data items.

If you intended for the extraneous value to be interpreted as the next variable name rather
than as a value, then code this variable name followed by an equal sign followed by this
variable's value or values.

No. Name Input/Output
Data Type and
Length Value

6 group-name Input CHARACTER*n The namelist group name that
contained the variable that wasn't
followed by an equal sign. The
length n is part of group-name-
desc and has a maximum possible
value of 255.

7 var-name-
desc

Input Q_DATA_DESC The q_data descriptor for var-
name. It contains the data type
and the length of var-name.

8 var-name Input CHARACTER*n The name of the variable that
wasn't followed by an equal sign.
The length n, which is part of var-
name-desc, has a maximum pos-
sible value of 255 even if the
variable name is actually longer.

9 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

10 record Input CHARACTER*n The formatted input record that
contained the name that wasn't fol-
lowed by an equal sign. The
length n, which includes only the
data portion of the record, is part
of record-desc.

Name Action Taken after Resumption

RN The I/O operation is not complete, and execution continues.

 Chapter 13. Fortran Run-Time Messages 551

 FOR1229S N FOR1229S

System Action: The variable being processed and the remainder of the variables given in
the namelist input file become undefined. If neither the ERR nor the IOSTAT specifier is
present on the I/O statement, the condition is signaled. If the condition is unhandled, the
application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 10. In addition, there are these qualifying data:

Symbolic Feedback Code: FOR1228

FOR1229S locator-text Within the namelist group group-name in the namelist input file
the character not-name-char was found instead of the beginning of a vari-
able name.

Explanation: In the namelist group group-name in the namelist input file, there wasn't a
variable name at a place where a variable name should have been. Instead, there was the
character not-name-char, which cannot begin a variable name. This could have occurred at
the beginning of the namelist group. Alternatively, following some other variable and its
values there could have been some string of characters that wasn't recognized either as a
value or as another variable name.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for an internal file failed.
The statement statement for unit unit-number, which was connected to file-name, failed.

No. Name Input/Output Data Type and Length Value

5 group-name-
desc

Input Q_DATA_DESC The q_data descriptor for group-
name. It contains the data type
and the length of group-name.

6 group-name Input CHARACTER*n The namelist group name that
contained the variable that had
too many values. The length n
is part of group-name-desc and
has a maximum possible value
of 255.

7 var-name-
desc

Input Q_DATA_DESC The q_data descriptor for var-
name. It contains the data type
and the length of var-name.

8 var-name Input CHARACTER*n The name of the variable that
had too many values. The
length n, which is part of var-
name-desc, has a maximum
possible value of 255 even if the
variable name is actually longer.

9 record-desc Input Q_DATA_DESC The q_data descriptor for
record. It contains the data type
and the length of record.

10 record Input CHARACTER*n The formatted input record that
contained the value that
exceeded the number of allow-
able ones. The length n, which
includes only the data portion of
the record, is part of record-
desc.

Name Action Taken after Resumption

RN The I/O operation is not complete, and execution continues.

552 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1230S N FOR1230S

Programmer Response: Code the name-value pairs in the form of the variable name fol-
lowed by an equal sign followed by no more values than comprise the variable. Be sure that
each variable name is the name of a variable given for the namelist group in the NAMELIST
statement in the Fortran program. Also be sure that the value or values are coded as literal
constants rather than as named constants.

System Action: The variable being processed and the remainder of the variables given in
the namelist input file become undefined. If neither the ERR nor the IOSTAT specifier is
present on the I/O statement, the condition is signaled. If the condition is unhandled, the
application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 8. In addition, there are these qualifying data:

Symbolic Feedback Code: FOR1229

FOR1230S locator-text In the namelist group group-name in a namelist input file, the
value for the variable object-name was not in the form of a complex con-
stant even though the variable was of complex type. The formatted input
data was input-field.

Explanation: For a READ statement, input-field is a portion of the character string that is
being interpreted as a complex constant for namelist input, and can be either the real part,
the imaginary part, or both. input-field either contained embedded blanks in the real part or
the imaginary part of the complex number, did not contain a comma as a separator between
the real part and the imaginary part, or was not enclosed in parentheses.

locator-text gives more information about the location of the error, and can be one of the
following:

The READ statement for an internal file failed.
The READ statement for unit unit-number, which was connected to file-name, failed.

Programmer Response: Ensure that input-field contains no embedded blanks in the real
part or the imaginary part of the complex number, contains a comma as a separator, is
enclosed by a left and a right parenthesis, and, if the the complex number does not fit into

No. Name Input/Output
Data Type and
Length Value

5 group-name-
desc

Input Q_DATA_DESC The q_data descriptor for group-
name. It contains the data type
and the length of group-name.

6 group-name Input CHARACTER*n The namelist group name that was
too long in group-name in the
namelist input file. The length n is
part of group-name-desc and has
a maximum possible value of 255.

7 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

8 record Input CHARACTER*n The formatted input record that
contained the string of characters
that was expected to be a variable
name but wasn't in the correct
format for a name. The length n,
which includes only the data
portion of the record, is part of
record-desc.

Name Action Taken after Resumption

RN The I/O operation is not complete, and execution continues.

 Chapter 13. Fortran Run-Time Messages 553

 FOR1231S N FOR1231S

one record, that the end of the record occurs between the real part and the comma or
between the comma and the imaginary part.

System Action: The variable being processed and the remainder of the variables given in
the namelist input file become undefined. If neither the ERR nor the IOSTAT specifier is
present on the I/O statement, the condition is signaled. If the condition is unhandled, the
application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 10. In addition, there are these qualifying data:

Symbolic Feedback Code: FOR1230

FOR1231S locator-text In the namelist group group-name in a namelist input file, the
value for the variable object-name was not a delimited character constant
even though the variable was of character type. The formatted input data
was input-field.

Explanation: For a READ statement, input-field is a portion of the character string that is
being interpreted as a character constant for namelist input. It was not delimited by apostro-
phes (') or by quotes (") as required for namelist input.

locator-text gives more information about the location of the error, and can be one of the
following:

The READ statement for an internal file failed.
The READ statement for unit unit-number, which was connected to file-name, failed.

Programmer Response: Ensure that the character constant used as the value for the vari-
able is delimited either by apostrophes (') or by quotes (").

No. Name Input/Output
Data Type and
Length Value

5 group-name-
desc

Input Q_DATA_DESC The q_data descriptor for
group_name. It contains the data
type and the length of
group-name.

6 group-name Input CHARACTER*n The namelist group name in the
namelist input file. The length n is
part of group-name-desc.

7 object-name-
desc

Input Q_DATA_DESC The q_data descriptor for
object_name. It contains the data
type and the length of
group-name.

8 object-name Input CHARACTER*n The name of the complex variable
that has an incorrect value in
group-name in the namelist input
file. The length n is part of object-
name-desc.

9 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

10 record Input CHARACTER*n The formatted input record that
contained the name of the array
that had an incorrect subscript
value. The length n, which
includes only the data portion of
the record, is part of record-desc.

Name Action Taken after Resumption

RN Execution continues, and the remainder of the input item list is ignored.

554 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1232S N FOR1232S

System Action: The variable being processed and the remainder of the variables given in
the namelist input file become undefined. If neither the ERR nor the IOSTAT specifier is
present on the I/O statement, the condition is signaled. If the condition is unhandled, the
application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 10. In addition, there are these qualifying data:

Symbolic Feedback Code: FOR1231

FOR1232S locator-text In the namelist group group-name in a namelist input file, the
variable object-name was a delimited character constant for which there
was no ending delimiter. The character constant contained or began with
the characters input-field.

Explanation: For a READ statement, input-field is a portion of the character string that is
being interpreted as a character constant for namelist input. It had a starting delimiter of
either an apostrophe or a quote, but there was corresponding ending delimiter before the
end of the file.

locator-text gives more information about the location of the error, and can be one of the
following:

The READ statement for an internal file failed.
The READ statement for unit unit-number, which was connected to file-name, failed.

Programmer Response: Ensure that the character constant used as the value for the vari-
able is delimited either by apostrophes (') or by quotes ("). Both the starting and ending
delimiter must both be apostrophes or both be quotes.

No. Name Input/Output
Data Type and
Length Value

5 group-name-
desc

Input Q_DATA_DESC The q_data descriptor for group-
name. It contains the data type
and the length of group-name.

6 group-name Input CHARACTER*n The namelist group name in the
namelist input file. The length n is
part of group-name-desc.

7 object-name-
desc

Input Q_DATA_DESC The q_data descriptor for object-
name. It contains the data type
and the length of object-name.

8 object-name Input CHARACTER*n The name of the character vari-
able that has a value that was not
properly delimited in group-name
in the namelist input file. The
length n is part of object-name-
desc.

9 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

10 record Input CHARACTER*n The formatted input record that
contained the value that was not
properly delimited. The length n,
which includes only the data
portion of the record, is part of
record-desc.

Name Action Taken after Resumption

RN Execution continues, and the remainder of the input item list is ignored.

 Chapter 13. Fortran Run-Time Messages 555

 FOR1233S N FOR1233S

Check for a doubled occurrence of the delimiter that started the character constant. Such a
doubled delimiter is not interpreted as the ending delimiter but rather as one occurrence of
that delimiter as a character within the character constant. In this case, a single occurrence
of the delimiter must follow to indicate the end of the character constant.

System Action: The variable being processed becomes undefined. If neither the ERR nor
the IOSTAT specifier is present on the I/O statement, the condition is signaled. If the condi-
tion is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 10. In addition, there are these qualifying data:

Symbolic Feedback Code: FOR1232

FOR1233S locator-text In the namelist group group-name in a namelist input file, the
variable object-name was a delimited character constant whose length,
length, exceeded max-char-length, the maximum length allowed for a char-
acter constant. The character constant began with the characters input-field.

Explanation: For a READ statement, input-field is a portion of the character string that is
being interpreted as a character constant for namelist input. This length of this constant, not
counting the starting and ending delimiters, was length, but this was longer than max-char-
length, the product-imposed maximum length of a character constant that can be interpreted
as namelist input.

locator-text gives more information about the location of the error, and can be one of the
following:

The READ statement for an internal file failed.
The READ statement for unit unit-number, which was connected to file-name, failed.

No. Name Input/Output
Data Type and
Length Value

5 group-name-
desc

Input Q_DATA_DESC The q_data descriptor for group-
name. It contains the data type
and the length of group-name.

6 group-name Input CHARACTER*n The namelist group name in the
namelist input file. The length n is
part of group-name-desc.

7 object-name-
desc

Input Q_DATA_DESC The q_data descriptor for object-
name. It contains the data type
and the length of object-name.

8 object-name Input CHARACTER*n The name of the character vari-
able that has a value that did not
have an ending delimiter in group-
name in the namelist input file.
The length n is part of object-
name-desc.

9 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

10 record Input CHARACTER*n The formatted input record that
contained the value that did not
have an ending delimiter. The
length n, which includes only the
data portion of the record, is part
of record-desc.

Name Action Taken after Resumption

RN Execution continues, and the remainder of the input item list is ignored.

556 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1250S N FOR1250S

Programmer Response: Ensure that the character constant used as the value for the vari-
able is delimited either by apostrophes (') or by quotes ("). Both the starting and ending
delimiter must both be apostrophes or both be quotes.

Check for a doubled occurrence of the delimiter that started the character constant. Such a
doubled delimiter is not interpreted as the ending delimiter but rather as one occurrence of
that delimiter as a character within the character constant. In this case, a single occurrence
of the delimiter must follow to indicate the end of the character constant.

System Action: The variable being processed and the remainder of the variables given in
the namelist input file become undefined. If neither the ERR nor the IOSTAT specifier is
present on the I/O statement, the condition is signaled. If the condition is unhandled, the
application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of READ, and parm_count has a
value of 10. In addition, there are these qualifying data:

Symbolic Feedback Code: FOR1233

FOR1250S locator-text The file definitions for the stripes of file-name did not define con-
sistent characteristics for all the stripes. VS FORTRAN Version 2 Error
Number: AFB092I

Explanation: A striped file, that is, one with ddnames of the form FTnnP001, FTnnP002,
and so on, had different characteristics given in its file definitions (DD statements or ALLO-
CATE commands) or data set labels for the different stripes. One or more of the following
parameters had different values among the stripes:

 � RECFM
 � LRECL
 � BLKSIZE
 � BUFOFF
� IN or OUT (fourth subparameter of the LABEL parameter)

No. Name Input/Output
Data Type and
Length Value

5 group-name-
desc

Input Q_DATA_DESC The q_data descriptor for group-
name. It contains the data type
and the length of group-name.

6 group-name Input CHARACTER*n The namelist group name in the
namelist input file. The length n is
part of group-name-desc.

7 object-name-
desc

Input Q_DATA_DESC The q_data descriptor for object-
name. It contains the data type
and the length of object-name.

8 object-name Input CHARACTER*n The name of the character vari-
able that has a value that was too
long in group-name in the namelist
input file. The length n is part of
object-name-desc.

9 record-desc Input Q_DATA_DESC The q_data descriptor for record. It
contains the data type and the
length of record.

10 record Input CHARACTER*n The formatted input record that
contained the value that was too
long. The length n, which includes
only the data portion of the record,
is part of record-desc.

Name Action Taken after Resumption

RN Execution continues, and the remainder of the input item list is ignored.

 Chapter 13. Fortran Run-Time Messages 557

 FOR1251S N FOR1251S

 � DISP

locator-text gives more information about the location of the error, and can be one of the
following:

The READ statement for an internal file failed.
The READ statement for unit unit-number, which was connected to file-name, failed.

Programmer Response: Ensure that the file definitions for all of the stripes have identical
values for the parameters listed in “Explanation.” If an existing data set was used, be sure
that the whatever was in the existing data set label doesn't cause this conflict; override such
a conflicting value if necessary.

System Action: If the error occurred during the execution of an OPEN statement, the unit
is not connected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O
statement, the condition is signaled. If the condition is unhandled, the application is termi-
nated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 4.

Symbolic Feedback Code: FOR1250

FOR1251S locator-text The file definition statements for the stripes of file-name had
inconsistent ddnames or data set names. VS FORTRAN Version 2 Error
Number: AFB093I

Explanation: A striped file, that is, one with ddnames of the form FTnnP001, FTnnP002,
and so on, had inconsistent ddnames and data set names in one or more of its file defi-
nitions (DD statements or ALLOCATE commands). The inconsistency could be one of the
following:

� A file definition for ddname FTnnPmmm did not refer to a data set name that ends in the
form xxxPyyy, where xxx is the number of stripes and yyy is a particular stripe number.

� A file definition for ddname FTnnPmmm did refer to a data set name that ends in the
form xxxPyyy, and either:

– The stripe numbers mmm and yyy did not match,

– The portion of the data set name other than the stripe number, that is, other than the
yyy, differed from that for other stripes, or

– The stripe number yyy and the maximum stripe number xxx did not have the same
number of digits.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statment for unit-number failed.
The INQUIRE statement failed.

Programmer Response: Assuming that there are xxx stripes, ensure that:

� There are xxx file definitions and that the file definitions have the ddnames FTnnP001,
FTnnP002, ... FTnnPsss, where nn is the two-digit unit number and sss is the three-digit
representation of the number of stripes (xxx),

� In the file definition with the ddname FTnnPmmm, the final characters of the end of the
data set name are xxxPyyy, where yyy is the stripe number, that is, yyy has the same
numeric value as mmm,

� The number of digits in xxx is the same as the number of digits in each yyy, and

� All the data set names are identical except for the trailing mmm.

Name Action Taken after Resumption

RN The I/O operation is not complete, and execution continues.

558 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1252S N FOR1270S

Here is an example of DD statements for a striped file with six stripes:

//FT1#P##1 DD DSN=MYNAME.MYFILE.ABC6P1,DISP=OLD
//FT1#P##2 DD DSN=MYNAME.MYFILE.ABC6P2,DISP=OLD
//FT1#P##3 DD DSN=MYNAME.MYFILE.ABC6P3,DISP=OLD
//FT1#P##4 DD DSN=MYNAME.MYFILE.ABC6P4,DISP=OLD
//FT1#P##5 DD DSN=MYNAME.MYFILE.ABC6P5,DISP=OLD
//FT1#P##6 DD DSN=MYNAME.MYFILE.ABC6P6,DISP=OLD

System Action: If the error occurred during the execution of an OPEN statement, the unit
is not connected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O
statement, the condition is signaled. If the condition is unhandled, the application is termi-
nated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 4. In addition, there are these
qualifying data:

Symbolic Feedback Code: FOR1251

FOR1252S locator-text A file definition statement for one of the stripes of file-name
referred to a file type or device type that cannot be used for a striped file.
VS FORTRAN Version 2 Error Number: AFB094I

Explanation: A file definition (DD statement or ALLOCATE command) for a striped file
referred to a file on a device that was neither a tape nor a non-VSAM disk file other than a
PDS member.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statment for unit-number failed.
The INQUIRE statement failed.

Programmer Response: Ensure that for each of the stripes of a striped file the file defi-
nition refers either to a tape or to a non-VSAM disk file other than a PDS member.

System Action: If the error occurred during the execution of an OPEN statement, the unit
is not connected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O
statement, the condition is signaled. If the condition is unhandled, the application is termi-
nated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 4.

Symbolic Feedback Code: FOR1252

FOR1270S The WAIT statement for unit unit-number, which was connected to file-name,
failed. There was no corresponding READ or WRITE statement. VS
FORTRAN Version 2 Error Number: AFB287I

Programmer Response: Ensure that the program executes a WAIT statement only after a
corresponding asynchronous READ or WRITE statement.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of WAIT, and parm_count has a
value of 4.

Name Action Taken after Resumption

RN The I/O operation is not complete, and execution continues.

Name Action Taken after Resumption

RN The I/O operation is not complete, and execution continues.

 Chapter 13. Fortran Run-Time Messages 559

 FOR1271S N FOR1273S

Symbolic Feedback Code: FOR1270

FOR1271S The asynchronous statement statement for unit unit-number, which was con-
nected to file-name, failed. In the file definition statement, the BLKSIZE
parameter either was omitted or had a value of 0. VS FORTRAN Version 2
Error Number: AFB239I

Programmer Response: Ensure that for a new file the block size (BLKSIZE parameter in
the DD statement or ALLOCATE command) has a nonzero value.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 4.

Symbolic Feedback Code: FOR1271

FOR1272S The asynchronous statement statement for unit unit-number, which was con-
nected to file-name, failed. The last array element in the input item list had a
lower subscript value than the first. VS FORTRAN Version 2 Error Number:
AFB228I

Programmer Response: Ensure that the starting and ending elements in the input/output
item list are specified with the lower-valued subscript first. If the subscripts involve an vari-
able, ensure that the variables are set to their intended values.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 4.

Symbolic Feedback Code: FOR1272

FOR1273S The asynchronous statement statement for unit unit-number, which was con-
nected to file-name, failed. The previous I/O statement for this unit was
neither a REWIND nor another asynchronous I/O statement. VS FORTRAN
Version 2 Error Number: AFB286I

Programmer Response: If you want to switch back and forth between asynchronous I/O
statements and the sequential I/O statement defined by the Fortran language standard, then
you must execute a REWIND statement each time you switch between the two. (Of course
you can also execute a CLOSE statement followed by an OPEN statement.) While posi-
tioned within a file, you cannot switch between the two forms of I/O statements. If executing
the REWIND statement doesn't provide the file positioning that your program requires, then
change the program so that either asynchronous I/O statements or standard sequential I/O
statements are used exclusively.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Name Action Taken after Resumption

RN The WAIT statement is ignored, and execution continues.

Name Action Taken after Resumption

RN The I/O operation is not complete, and execution continues.

Name Action Taken after Resumption

RN The I/O operation is not complete, and execution continues.

560 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1274S N FOR1276S

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 4.

Symbolic Feedback Code: FOR1273

FOR1274S The statement statement, which was not of the asynchronous form, for unit
unit-number, which was connected to file-name, failed. The previous asyn-
chronous I/O statement was not followed by a REWIND statement. VS
FORTRAN Version 2 Error Number: AFB286I

Programmer Response: If you want to switch back and forth between asynchronous I/O
statements and the sequential I/O statements defined by the Fortran language standard,
then execute a REWIND statement each time you switch between the two. (Alternatively,
you could execute a CLOSE statement followed by an OPEN statement.) While positioned
within a file, you cannot switch between the two forms of I/O statements. If executing the
REWIND statement doesn't provide the file positioning that your program requires, then
change the program so that either asynchronous I/O statements or standard sequential I/O
statements are used exclusively.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 4.

Symbolic Feedback Code: FOR1274

FOR1275S There was no corresponding WAIT statement for an asynchronous state-
ment statement that was executed for unit unit-number, which was con-
nected to file-name. VS FORTRAN Version 2 Error Number: AFB288I

Programmer Response: Ensure that the Fortran program executes a WAIT statement after
each asynchronous READ or WRITE statement.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 4.

Symbolic Feedback Code: FOR1275

FOR1276S The asynchronous statement statement for unit unit-number, which was con-
nected to file-name, failed. The file definition statement referred to a file
type or device type that cannot be used for asynchronous I/O. VS
FORTRAN Version 2 Error Number: AFB090I (format 2), AFB194I (format 1)

Explanation: An asynchronous statement statement was executed for unit unit, and one of
the following was true:

� The file definition (DD statement or ALLOCATE statement) for the ddname FTnnF001
referred to a file that was neither a tape nor an non-VSAM disk file other than a PDS
member.

Name Action Taken after Resumption

RN The I/O operation is ignored, and execution continues.

Name Action Taken after Resumption

RN The I/O operation is ignored, and execution continues.

Name Action Taken after Resumption

RN Execution continues with an implied WAIT.

 Chapter 13. Fortran Run-Time Messages 561

 FOR1277S N FOR1278S

� There was a file definition with the ddname FTnnP001.

Programmer Response: If you want to use asynchronous I/O, then provide a file definition
that refers to either a tape nor an non-VSAM disk file other than a PDS member. Also, do
not provide a file definition with the ddname FTnnP001 because asynchronous I/O cannot be
performed on striped files.

If you didn't intend to use an asynchronous I/O statement, which is identified by the ID
specifier, then correct your program so that you don't use one for a unit that's connected to
one of the prohibited file or device types.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Symbolic Feedback Code: FOR1276

FOR1277S The asynchronous statement statement for unit unit-number, which was con-
nected to file-name, failed. The unit was being used as one of the Fortran
standard I/O units. VS FORTRAN Version 2 Error Number: AFB192I

Explanation: The asynchronous statement referred to a unit that was either the standard
input unit, the error message unit, the print unit (which could be the same as the error
message unit), or the punch unit. These unit numbers are specified by the RDRUNIT,
ERRUNIT, PRTUNIT, and PUNUNIT run-time options, respectively.

Programmer Response: If you want to use asynchronous I/O, do one of the following:

� Change the unit number in your asynchronous I/O statements to refer to some unit other
than one of the prohibited units listed under “Explanation.”

� Change the value of one or more of the RDRUNIT, ERRUNIT, PRTUNIT, or PUNUNIT
run-time options so that one of them refers to the unit that you want to use for asynchro-
nous I/O, ensuring, of course, that you don't create a conflict with some other unit that's
used by your program.

If you didn't intend to use asynchronous I/O, then change the form of the I/O statement by
removing the ID specifier and making whatever other changes are needed. Note that unfor-
matted I/O statements are similar in function to asynchronous I/O statements.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 4.

Symbolic Feedback Code: FOR1277

FOR1278S The asynchronous statement statement for unit unit-number, which was con-
nected to file-name, failed. The program was executed on other than an
MVS system. VS FORTRAN Version 2 Error Number: AFB161I

Programmer Response: If you didn't intend to use asynchronous I/O, then change the
form of the I/O statement by removing the ID specifier and making whatever other changes
are needed. Note that unformatted I/O statements are similar in function to asynchronous I/O
statements.

If the performance requirements of your program are such that asynchronous I/O is needed,
then you'll have to run the program on MVS.

Name Action Taken after Resumption

RN The I/O operation is ignored, and execution continues.

Name Action Taken after Resumption

RN The I/O operation is ignored, and execution continues.

562 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1279S N FOR1280S

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 4.

Symbolic Feedback Code: FOR1278

FOR1279S The asynchronous statement statement for unit unit-number, which was con-
nected to file-name, failed. The I/O subtask terminated abnormally with the
system completion code completion-code. VS FORTRAN Version 2 Error
Number:AFB205I

Explanation: Much of the processing for an asynchronous I/O statement is done in an
MVS subtask so that its processing can overlap that of your program. The asynchronous I/O
subtask terminated abnormally with a system completion (abend) code of completion-code.

Programmer Response: Ensure that the file definition (DD statement or ALLOCATE
command) for the file you are using is coded correctly.

Ensure that your program uses the correct sequence of asynchronous READ, WRITE, and
WAIT statements with no intervening I/O statements of the standard sequential form unless a
REWIND statement is used to separate the uses of the two forms.

For the meaning of completion-code, and for possible corrective actions, refer to OS/390
DFSMS Macro Instructions for Data Sets.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 4.

FOR1280S The asynchronous statement statement for unit unit-number, which was con-
nected to file-name, failed. The record format was other than variable
spanned. VS FORTRAN Version 2 Error Number: AFB214I (format 2)

Programmer Response: Ensure that the file definition (DD statement or ALLOCATE
command) for the file indicates a RECFM value of VS.

If you're reading an existing file that has some a record format of other than variable
spanned, then you can't use asynchronous I/O statements to read it. In this case, either
change your program to use the standard sequential I/O statements, or recreate the file so
that it has variable spanned records. If you choose to recreate the file using a Fortran
program, you can produce variable spanned records with either asynchronous I/O state-
ments or with standard unformatted I/O statements. Ensure that when you recreate the file,
the file definition has a RECFM value of VS.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 4.

Name Action Taken after Resumption

RN The I/O operation is ignored, and execution continues.

Name Action Taken after Resumption

RN The I/O operation is not complete, and execution continues.

 Chapter 13. Fortran Run-Time Messages 563

 FOR1281S N FOR1330S

Symbolic Feedback Code: FOR1280

FOR1281S The asynchronous statement statement for unit unit-number, which was con-
nected to file-name, failed. The program resides in authorized library. VS
FORTRAN Version 2 Error Number: AFB952I (format 8)

Explanation: Your program was link edited with an AC option that provided an authori-
zation code of other than 0, and your program was in an authorized library. In addition, your
program used an asynchronous I/O statement, but this is inconsistent with executing in an
authorized state because of the internal implementation of asynchronous I/O.

Language Environment does not support execution of Fortran programs running in an
authorized state. Running such programs, while not diagnosed in all cases, causes a system
integrity exposure.

Programmer Response: Link edit your program without the AC option so that it does not
run in an authorized state.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 4.

Symbolic Feedback Code: FOR1281

FOR1330S The statement statement for unit unit-number failed. The file definition state-
ment for file-name referred to a VSAM file, but the file had not been con-
nected to the unit with an OPEN statement. VS FORTRAN Version 2 Error
Number: AFB168I

Programmer Response: If you intend to process a VSAM file, ensure that your program
executes an OPEN statement before any other I/O statements.

If you don't intend to process a VSAM file, change the file definition (DD statement or ALLO-
CATE command) to refer to some other file.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 4.

Symbolic Feedback Code: FOR1330

Name Action Taken after Resumption

RN The READ statement is ignored, and execution continues.

RF For an input operation, the READ statement is not completed and execution continues. For an
output operation, VS is assumed, and execution continues.

Name Action Taken after Resumption

RN The READ statement is ignored, and execution continues.

Name Action Taken after Resumption

RN The READ statement is ignored, and execution continues.

564 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1331S N FOR1340S

FOR1331S The WRITE statement for sequential access for unit unit-number, which was
connected to file-name, failed. The file was a VSAM RRDS that already con-
tained records. VS FORTRAN Version 2 Error Number: AFB162I

Programmer Response: Ensure that you don't use the sequential access form of the
WRITE statement for a VSAM relative record data set (RRDS) if the data set already con-
tains records.

If you want to replace individual records, use a value of DIRECT for the ACCESS specifier
on the OPEN statement, and use the direct access form of the WRITE statement, that is,
with a REC specifier whose value indicates the specific record to be written.

If you want to extend the file at the end or rewrite the file sequentially from somewhere other
than the end, the file can't be a VSAM RRDS, so change the file definition (DD statement or
ALLOCATE command) to refer to a non-VSAM file.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, parm_count has a value of 4.

Symbolic Feedback Code: FOR1331

FOR1340S The INQUIRE statement failed. The FILE specifier had a value of blanks, but
the UNIT specifier was not given. VS FORTRAN Version 2 Error Number:
AFB106I

Programmer Response: Correct your program to use of the four acceptable forms of the
INQUIRE statement:

INQUIRE by file
No UNIT specifier; FILE specifier with a value that is either a data set name pre-
ceded by a slash (/) or a ddname other than one of the default ddnames such
as FTnnF001

INQUIRE by unit
UNIT specifier; no FILE specifier

INQUIRE by unnamed file, format 1
UNIT specifier; FILE specifier with a value of blanks

INQUIRE by unnamed file, format 2
No UNIT specifier; FILE specifier with a value that is one of the defaults ddnames
such as FTnnF001

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data:

Name Action Taken after Resumption

RN The I/O operation is ignored, and execution continues.

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 4

2 statement Input CHARACTER*12 INQUIRE

3 unit Input INTEGER*4 Undefined

4 file Input CHARACTER*62 Undefined

Name Action Taken after Resumption

RN The I/O operation is ignored, and execution continues.

 Chapter 13. Fortran Run-Time Messages 565

 FOR1341S N FOR1342S

Symbolic Feedback Code: FOR1340

FOR1341S The INQUIRE statement failed. The FILE specifier had a value of file-name,
which, because it was other than all blanks, conflicted with the presence of
the UNIT specifier. VS FORTRAN Version 2 Error Number: AFB109I

Programmer Response: Correct your program to use of the four acceptable forms of the
INQUIRE statement:

INQUIRE by file
No UNIT specifier; FILE specifier with a value that is either a data set name pre-
ceded by a slash (/) or a ddname other than one of the default ddnames such
as FTnnF001

INQUIRE by unit
UNIT specifier; no FILE specifier

INQUIRE by unnamed file, format 1
UNIT specifier; FILE specifier with a value of blanks

INQUIRE by unnamed file, format 2
No UNIT specifier; FILE specifier with a value that is one of the defaults ddnames
such as FTnnF001

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of INQUIRE, and parm_count has
a value of 4.

Symbolic Feedback Code: FOR1341

FOR1342S The INQUIRE statement failed. The FILE specifier had a value of file-name,
which was not in the correct format for a file name. VS FORTRAN Version
2 Error Number: AFB180I (format 1)

Programmer Response: Correct your program to use of the four acceptable forms of the
INQUIRE statement:

INQUIRE by file
No UNIT specifier; FILE specifier with a value that is either a data set name pre-
ceded by a slash (/) or a ddname other than one of the default ddnames such
as FTnnF001

INQUIRE by unit
UNIT specifier; no FILE specifier

INQUIRE by unnamed file, format 1
UNIT specifier; FILE specifier with a value of blanks

INQUIRE by unnamed file, format 2
No UNIT specifier; FILE specifier with a value that is one of the defaults ddnames
such as FTnnF001

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data:

Name Action Taken after Resumption

RN The I/O operation is ignored, and execution continues.

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 4

566 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1360E N FOR1361E

Symbolic Feedback Code: FOR1342

FOR1360E On the CLOSE statement for unit unit-number, which was connected to file-
name, the STATUS specifier had a value of KEEP, but the STATUS specifier
on the OPEN statement had a value of SCRATCH. VS FORTRAN Version 2
Error Number: AFB171I

Programmer Response: Either change the OPEN statement so that its STATUS specifier
has a value of other than SCRATCH, or change the CLOSE statement so that its STATUS
specifier is either omitted or has a value of DELETE. In the latter case, the scratch file will
be deleted.

System Action: The file is closed as though STATUS='DELETE' had been specified. If
neither the ERR nor the IOSTAT specifier is present on the I/O statement, the condition is
signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of CLOSE, and parm_count has a
value of 4.

Symbolic Feedback Code: FOR1360

FOR1361E On the CLOSE statement for unit unit-number, the STATUS specifier had a
value of status, which was other than KEEP or DELETE. VS FORTRAN
Version 2 Error Number: AFB186I

Programmer Response: Correct the value of the STATUS specifier on the CLOSE state-
ment so that it has a value of either KEEP or DELETE. You can also omit the STATUS
specifier in which case the default value is:

� DELETE if the OPEN statement had a STATUS specifier with a value of SCRATCH, or

� KEEP if the OPEN statement either had no STATUS specifier or a STATUS specifier
with a value of other than SCRATCH.

System Action: The file is closed as though STATUS='KEEP' had been specified. If
neither the ERR nor the IOSTAT specifier is present on the I/O statement, the condition is
signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: The basic set of four qualifying data for I/O conditions as shown in Table 9
on page 480. Within this basic set, statement has a value of CLOSE, and parm_count has a
value of 4.

Symbolic Feedback Code: FOR1361

No. Name Input/Output
Data Type and
Length Value

2 statement Input CHARACTER*12 INQUIRE

3 unit Input INTEGER*4 Undefined

4 file Input CHARACTER*62 The name of the file to which the
INQUIRE statement was directed.

Name Action Taken after Resumption

RN The I/O operation is ignored, and execution continues.

Name Action Taken after Resumption

RN Execution continues.

Name Action Taken after Resumption

RN Execution continues.

 Chapter 13. Fortran Run-Time Messages 567

 FOR1380S N FOR1382S

FOR1380S The OPEN statement could not connect unit unit-number to file-name. The
STATUS specifier had a value of status, which was other than NEW, OLD,
REPLACE, SCRATCH, or UNKNOWN. VS Fortran Version 2 Error Number:
AFB251I

Programmer Response: Based on whether the file you're connecting exists or not, change
the value of the STATUS specifier on the OPEN statement to NEW, OLD, REPLACE,
SCRATCH, or UNKNOWN. If you code the value as a character constant, enclose the value
in quotes or apostrophes.

For the error message unit, either omit the STATUS specifier, or provide a value of
UNKNOWN.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1380

FOR1381S The OPEN statement for unit unit-number failed. The FILE specifier had a
value of ddname, which is a ddname reserved for unnamed files. VS Fortran
Version 2 Error Number: AFB107I

Programmer Response: If you want to connect the unit to an unnamed file, that is, to a file
with a ddname of FTnnFmmm, FTnnKmm, FTERRsss, or FTPRTsss, then omit the FILE
specifier from the OPEN statement. A file definition (DD statement or ALLOCATE command)
for that ddname would still be required, however.

If you want to refer to a named file, then for the FILE specifier provide a value than isn't one
of the ddnames that are used for unnamed files.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1381

FOR1382S The OPEN statement could not connect unit unit-number to file-name. The
ACTION specifier had a value of action, which was other than READ,
WRITE, or READWRITE. VS Fortran Version 2 Error Number: AFB136I

Programmer Response: Depending on whether you intend to use only input statements,
only output statements, or both, change the value of the ACTION specifier on the OPEN
statement to READ, WRITE, or READWRITE. If you code the value as a character constant,
enclose the value in quotes or apostrophes.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

568 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1383S N FOR1384S

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1382

FOR1383S The OPEN statement for unit unit-number failed. The FILE specifier had a
value of file-name, which was not in the correct format for a file name.

Explanation: VS Fortran Version 2 Error Number: AFB180I (format 2)

Programmer Response: Correct the value of the FILE specifier. If you're providing a
ddname, ensure that it consists of no more than eight characters, all of which must be alpha-
numeric, and that its first character is alphabetic.

If you're providing a data set name, code the value of the FILE specifier as a slash (/) fol-
lowed by the data set name. The data set name, which can be followed by a member name
surrounded by parentheses, must be in the format required by the DSNAME parameter of a
DD statement as described in OS/390 DFSMS Macro Instructions for Data Sets.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1383

FOR1384S The OPEN statement could not connect unit unit-number to file-name. The
ACCESS specifier had a value of access, which was other than SEQUEN-
TIAL, DIRECT, or KEYED.

Explanation: VS Fortran Version 2 Error Number: AFB182I

Programmer Response: Depending on the type of I/O statements that you want to use for
the file that you're connecting, change the value of the ACCESS specifier on the OPEN
statement to SEQUENTIAL, DIRECT, or KEYED. If you code the value as a character con-
stant, enclose the value in quotes or apostrophes.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 569

 FOR1385S N FOR1386S

Symbolic Feedback Code: FOR1384

FOR1385S The OPEN statement could not connect unit unit-number to file-name. The
BLANK specifier had a value of blank, which was other than ZERO or NULL.

Explanation: VS Fortran Version 2 Error Number: AFB183I

Programmer Response: Depending on whether you want blanks in input fields that are
read with formatted READ statements to be interpreted as zeros or nulls, change the value
of the BLANK specifier on the OPEN statement to ZERO or NULL, respectively. If you code
the value as a character constant, enclose the value in quotes or apostrophes.

If you omit the FILE specifier from the OPEN statement, a value of NULL is assumed.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1385

FOR1386S The OPEN statement could not connect unit unit-number to file-name. The
FORM specifier had a value of format, which was other than FORMATTED
or UNFORMATTED.

Explanation: VS Fortran Version 2 Error Number: AFB184I

Programmer Response: Depending on whether you intend to use formatted or unfor-
matted input/output statements for the file, change the value of the FORM specifier on the
OPEN statement to FORMATTED or UNFORMATTED, respectively. If you code the value as
a character constant, enclose the value in quotes or apostrophes.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1386

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

570 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1387S N FOR1389S

FOR1387S The OPEN statement could not connect unit unit-number to file-name. The
CHAR specifier had a value of char, which was other than DBCS or
NODBCS. Fortran Version 2 Error Number: AFB104I

Programmer Response: Depending on whether your input file contains double-byte char-
acters that are to be read with a formatted READ statement, change the value of the CHAR
specifier on the OPEN statement to DBCS or NODBCS. If you code the value as a character
constant, enclose the value in quotes or apostrophes.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1387

FOR1389S The OPEN statement could not connect unit unit-number to file-name. The
RECL specifier had a value of recl, which was not within the range 1 to
32760, inclusive. Fortran Version 2 Error Number: AFB233I

Programmer Response: Ensure that the value of the RECL specifier on the OPEN state-
ment is an integer that is neither less than 1 nor greater than 32760. In addition, ensure that
this value is the same as the value that's associated with the file through one or more of the
following, as applicable:

� The label of an existing data set

� The LRECL parameter of the DD statement or ALLOCATE command

� The LRECL value given in an invocation of the FILEINF callable service

� The record length given in the RECORDSIZE parameter of the Access Method Services
DEFINE command that was used to define the VSAM cluster.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 5.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1389

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

No. Name Input/Output
Data Type and
Length Value

5 record-length Input/Output INTEGER*4 The value of the RECL specifier
on the OPEN statement.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues. The remainder of the deallo-
cation list is processed and execution continues.

RI The value placed in record_length is used as the new value for the RECL specifier, and exe-
cution continues.

 Chapter 13. Fortran Run-Time Messages 571

 FOR1390S N FOR1393S

FOR1390S The OPEN statement could not connect unit unit-number to file-name. The
SMSVSAM server was not available.

Explanation: VSAM record level sharing was requested for the file either because of the
RLS parameter on the DD statement or ALLOCATE command or because of the RLS argu-
ment in the call to the FILEINF callable service. Record level sharing couldn't be provided
because the SMSVSAM server was not available.

Programmer Response: If VSAM record level sharing isn't required, then don't request it in
the DD statement, in the ALLOCATE command, or in the call to the FILEINF callable
service. Otherwise, correct the situation that caused the SMSVSAM server not to be avail-
able.

If you cannot resolve the problem, seek assistance from your Language Environment support
personnel.

System Action: The unit is no longer connected to a file. If neither the ERR nor the
IOSTAT specifier is present on the I/O statement, the condition is signaled. If the condition is
unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1390

FOR1393S locator-text The VSAM macro-name macro instruction executed for file-name
had a return code of return-code and an error code of X' hex-code '
(decimal-code). The SMSVSAM server was not available.

Explanation: In support of the Fortran I/O statement indicated by the message text, Lan-
guage Environment executed a VSAM macro-name macro instruction. DFSMS/MVS
detected the error indicated by the return code return-code and the error code with a
hexadecimal value of hex-code (decimal value of decimal-code). This error code indicates
that VSAM record level sharing couldn't be provided because the SMSVSAM server was not
available. (VSAM record level sharing was requested for the file either because of the RLS
parameter on the DD statement or ALLOCATE command or because of the RLS argument
in the call to the FILEINF callable service.)

Programmer Response: For the meaning of return code return-code and error code hex-
code (or decimal-code), refer to OS/390 DFSMS Macro Instructions for Data Sets.

If VSAM record level sharing isn't required, then don't request it in the DD statement, in the
ALLOCATE command, or in the call to the FILEINF callable service. Otherwise, correct the
situation that caused the SMSVSAM server not to be available.

If you are unable to resolve the problem, seek assistance from your Language Environment
support personnel.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

572 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1394S N FOR1395S

Symbolic Feedback Code: FOR1393

FOR1394S The OPEN statement could not connect unit unit-number, the error message
unit, to file-name. The FILE specifier had a value that started with a slash
(/).

Explanation: On the OPEN statement the UNIT specifier had a value that was the error
message unit number, and the FILE specifier had a value with a leading slash (/). The
leading slash indicated dynamic file allocation, that is, that a data set name rather than a
ddname was given.

Programmer Response: Dynamic allocation cannot be done from a Fortran program for a
file that's being connected to the error message unit. Therefore, take one of these actions:

� Provide a file definition (DD statement or ALLOCATE command) for the file, and use its
ddname without a slash as the value of the FILE specifier on the OPEN statement.

� Connect that file to a unit other than the error message unit by changing the unit identi-
fier.

� Remove the slash from the value of the FILE specifier if an intended ddname followed
the slash.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1394

FOR1395S The OPEN statement could not connect unit unit-number to file-name. The
ACCESS specifier had a value of KEYED, and the FILE specifier had a
value that started with a slash (/). Fortran Version 2 Error Number:
AFB102I

Explanation: The OPEN statement had a value for the ACCESS specifier that indicated
keyed access and a value for the FILE specifier with a leading slash (/). The leading slash
indicated dynamic file allocation, that is, that a data set name rather than a ddname was
given.

Programmer Response: Dynamic allocation cannot be done from a Fortran program for a
file that's being connected for keyed access. If you intend to use keyed access because the
file is a VSAM key-sequenced data set, take on of these actions:

� Provide a file definition (DD statement or ALLOCATE command) for the file, and use its
ddname without a slash as the value of the FILE specifier on the OPEN statement.

� Remove the slash from the value of the FILE specifier if an intended ddname followed
the slash.

If the file isn't a VSAM key-sequenced data set, then change the value of the ACCESS
specifier to either SEQUENTIAL or DIRECT.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 573

 FOR1396S N FOR1396S

Permissible Resume Actions:

Symbolic Feedback Code: FOR1395

FOR1396S The OPEN statement could not connect unit unit-number to file-name. The
STATUS specifier had a value of NEW, but the file already existed. Fortran
Version 2 Error Number: AFB108I (format 1)

Explanation: The OCSTATUS run-time option was in effect, and the STATUS specifier on
the OPEN statement had a value of NEW, but the file already existed according to the
Fortran definitions of file existence. These definitions are explained in VS FORTRAN Version
2 Programming Guide for CMS and MVS in the chapter “What Determines File Existence”
and generally reflect the operating system view of file existence; however, there are a few
differences. For example, using a DD statement or ALLOCATE command to allocate space
for a file on a disk volume does not mean that the file exists from the Fortran point of view.
Such a file doesn't exist until an OPEN or WRITE statement for it has been used in a Fortran
program or until it has had records written into it by some non-Fortran program or utility.

Programmer Response: The changes that you must make depend on how you intend to
processed the file in your program.

If you want to read an existing file, then change the value of the STATUS specifier to OLD.

If you want to read or update an existing file being connected for direct or keyed access,
then change the value of the STATUS specifier to OLD.

If you want to extend an existing file being connected for sequential access, then change the
value of the STATUS specifier to OLD, and take one of these actions:

� Provide the DISP=MOD parameter on the DD statement, the MOD parameter in the
ALLOCATE command, or a value of MOD for the DISP argument in the invocation of the
FILEINF callable service.

� Provide a value of APPEND for the POSITION specifier.

If you want to replace all of the records in an existing file being connected for sequential
access, then make one of these changes:

� Provide a value of OLD for the STATUS specifier and do not provide either the
DISP=MOD parameter on the DD statement, the MOD parameter on the ALLOCATE
command, nor a value of MOD for the DISP argument in the invocation of the FILEINF
callable service, or

� Provide a value of REPLACE for the STATUS specifier. In this case, if the disk file is
dynamically allocated, the original space, if any, is released, and new space is allocated.

If you want to replace all of the records in an existing file, being connected for direct or
keyed access, then provide a value of REPLACE for the STATUS specifier. In this case, if
the disk file is dynamically allocated, the original space, if any, is released, and new space is
allocated.

If you want to create and write to a new file in your program, then the STATUS specifier
value of NEW is correct. Ensure that all of the following are true:

� The file definition (DD statement or ALLOCATE command) or the data set name given in
the FILE specifier on the OPEN statement refers to the file that you intended.

� No other unit is connected to the same file and has updated it before this OPEN state-
ment was executed.

� The file does not exist according to the Fortran rules of file existence. (For example,
under certain circumstances, a file that is present on a disk volume but contains no data
can still exist according to this definition.)

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

574 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1397S N FOR1397S

If the file does exist according to the Fortran definition of file existence, but you still want the
STATUS specifier value to be NEW, then use the NOOCSTATUS run-time option. However,
consider the following:

� Because file existence is not checked, the STATUS specifier value of NEW takes pre-
cedence, meaning that any records already in the file could be overwritten.

� This run-time option causes file existence checking to be bypassed for all OPEN state-
ments.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1396

FOR1397S The OPEN statement could not connect unit unit-number to file-name. The
STATUS specifier had a value of NEW, but the file definition referred to a
file or device that was restricted to input only. Fortran Version 2 Error
Number: AFB108I (format 2)

Explanation: The STATUS specifier had a value of NEW, which implied that a file was to
be created. However, the file definition (DD statement or ALLOCATE command) or the data
set name given in the FILE specifier on the OPEN statement referred to a file or device that
doesn't allow output operations. Examples of such files include:

� An in-stream data set (DD *)

� A data set whose DD statement specifies LABEL=(,,,IN)

� A file for which the system's access control facility (such as RACF) prevents you from
updating the data set.

Programmer Response: If you want to read from a file or a device that doesn't permit
output, either omit the STATUS specifier or provide a value of OLD or UNKNOWN for the
STATUS specifier. Ensure that the file really exists and that you can read from it.

If you want to create a new file and write records on it, then the STATUS specifier value of
NEW is correct. In this case, change either of the following, as applicable, to refer to a file or
device on which you can write records:

� The file definition (DD statement or ALLOCATE command)

� For a dynamically allocated data, the data set name that follows the slash (/) in the
FILE specifier.

Don't refer to a data set such as an in-stream data set (DD *), a data set for which you don't
have RACF authority to update, or a data set whose DD statement has a LABEL=(,,,IN)
parameter.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 575

 FOR1398S N FOR1398S

Symbolic Feedback Code: FOR1397

FOR1398S The OPEN statement could not connect unit unit-number to file-name. The
STATUS specifier had a value of OLD, but the file did not exist. Fortran
Version 2 Error Number: AFB108I (format 3)

Explanation: The OCSTATUS run-time option was in effect, and the STATUS specifier on
the OPEN statement had a value of OLD, but the file didn't exist according to the Fortran
definitions of file existence. These definitions are explained in VS FORTRAN Version 2 Pro-
gramming Guide for CMS and MVS in the chapter “What Determines File Existence” and
generally reflect the operating system view of file existence; however, there are a few differ-
ences. For example, using a DD statement or ALLOCATE command to allocate space for a
file on a disk volume does not mean that the file exists from the Fortran point of view. Such
a file doesn't exist until an OPEN or WRITE statement for it has been used in a Fortran
program or until it has had records written into it by a non-Fortran program or utility.

Programmer Response: If you want to create a new file and write records on it, then
change the value of the STATUS specifier to NEW, REPLACE, or UNKNOWN.

If you want to read from or write to an existing file, then the STATUS specifier value of OLD
is correct. Ensure that all of the following are true:

� The file definition (DD statement or ALLOCATE command) or the data set name given in
the FILE specifier on the OPEN statement refers to the file that you intended.

� No other unit has been connected to the same file and has caused the file to be deleted
before this OPEN statement was executed.

� The file exists according to the Fortran rules of file existence. (For example, under
certain circumstances, a file that is present on a disk volume but contains no data
doesn't exist according to this definition.)

If the file doesn't exist according to the Fortran definition of file existence, but you still want
the STATUS specifier value to be OLD, then use the NOOCSTATUS run-time option.
However, consider the following:

� Because file existence is not checked, the STATUS specifier value of OLD will take pre-
cedence, meaning that there must be records in the file if you want to read them.

� This run-time option causes file existence checking to be bypassed for all OPEN state-
ments.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1398

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

576 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1399S N FOR1400S

FOR1399S The OPEN statement could not connect unit unit-number to file-name. The
ACTION specifier had a value of READ, but the file did not exist. Fortran
Version 2 Error Number: AFB108I (format 4)

Explanation: The ACTION specifier on the OPEN statement had a value of READ, but the
file didn't exist according to the Fortran definitions of file existence. These definitions are
explained in VS FORTRAN Version 2 Programming Guide for CMS and MVS in the chapter
“What Determines File Existence” and generally reflect the operating system view of file
existence; however, there are a few differences. For example, using a DD statement or
ALLOCATE command to allocate space for a file on a disk volume does not mean that the
file exists from the Fortran point of view. Such a file doesn't exist until an OPEN or WRITE
statement for it has been used in a Fortran program or until it has had records written into it
by some non-Fortran program or utility.

Programmer Response: If you want to write records on the file, then either omit the
ACTION specifier, or change the value of the ACTION specifier to WRITE or READWRITE.

If you want to just read from an existing file, then the ACTION specifier value of READ is
correct. Ensure that all of the following are true:

� The file definition (DD statement or ALLOCATE command) or the data set name given in
the FILE specifier on the OPEN statement refers to the file that you intended.

� No other unit has been connected to the same file and has caused the file to be deleted
before this OPEN statement was executed.

� The file exists according to the Fortran rules of file existence. (For example, under
certain circumstances, a file that is present on a disk volume but contains no data
doesn't exist according to this definition.)

If the file doesn't exist according to the Fortran definition of file existence, but you still want
to read from the file, then omit the ACTION specifier to avoid detecting this error. In this
case, ensure that the file has records that can be read.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1399

FOR1400S The OPEN statement could not connect unit unit-number to file-name. The
ACTION specifier had a value of READ, but the file definition referred to a
file or device that was restricted to output only. Fortran Version 2 Error
Number: AFB108I (format 5)

Explanation: The ACTION specifier had a value of READ, which implied that only input
processing would be performed on the file. However, the file definition (DD statement or
ALLOCATE command) or the data set name given in the FILE specifier on the OPEN state-
ment referred to a file or device that allows only output operations. Examples of such files
include:

� A system output data set (SYSOUT parameter on the DD statement)

� A data set whose DD statement specifies LABEL=(,,,OUT)

Programmer Response: Ensure that the value of the ACTION specifier is consistent with
the capabilities of the file or device referenced by the file definition (DD statement or ALLO-

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 577

 FOR1401S N FOR1401S

CATE command) or by the data set name given in the FILE specifier on the OPEN state-
ment. You might have to change either the ACTION specifier, the file definition, or the data
set name.

If you want to write on a file or device that allows only output, either omit the ACTION
specifier or provide a value of WRITE for the action specifier.

If you want to read from a file, then change the file definition (DD statement or ALLOCATE
command) or the data set name given in the FILE specifier on the OPEN statement to refer
to a file or device from which you can read records. Ensure that the file exists or that are
records to be read.

If you want to read to and write from the file, then ensure that the file or device allows you to
perform both input and output. In this case, either omit the ACTION specifier, or provide a
value of READWRITE for the ACTION specifier.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1400

FOR1401S The OPEN statement could not connect unit unit-number to file-name. The
ACTION specifier had a value of action, but the file definition referred to a
file or device that was restricted to input only. Fortran Version 2 Error
Number: AFB108I (format 6)

Explanation: The ACTION specifier had a value of action, which implied that output state-
ments, such WRITE or ENDFILE, would to be executed. However, the file definition (DD
statement or ALLOCATE command) or the data set name given in the FILE specifier on the
OPEN statement referred to a file or device that doesn't allow output operations. Examples
of such files include:

� An in-stream data set (DD *)

� A data set whose DD statement specifies LABEL=(,,,IN)

� A file for which the system's access control facility (such as RACF) prevents you from
updating the data set.

Programmer Response: Ensure that the value of the ACTION specifier is consistent with
the capabilities of the file or device referenced by the file definition (DD statement or ALLO-
CATE command) or by the data set name given in the FILE specifier on the OPEN state-
ment. You might have to change either the ACTION specifier, the file definition, or the data
set name.

If you want to read from a file or a device that doesn't permit output, either omit the ACTION
specifier or provide a value of READ for the STATUS specifier. Ensure that the file really
exists and that you can read from it.

If you want to create a new file and write records on it, then provide a value of WRITE for
the ACTION specifier. In this case, ensure that either of the following, as applicable, refers to
a file or device on which you can write records:

� The file definition (DD statement or ALLOCATE command)

� For a dynamically allocated data, the data set name that follows the slash (/) in the FILE
specifier

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

578 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1402S N FOR1402S

If you want to read to and write from the file, then ensure that the file or device allows you to
perform both input and output. In this case, either omit the ACTION specifier, or provide a
value of READWRITE for the ACTION specifier.

If you provide a value of WRITE or READWRITE for the ACTION specifier, don't refer to a
data set such as an in-stream data set (DD *), a data set for which you don't have RACF
authority to update, or a data set whose DD statement has a LABEL=(,,,IN) parameter.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1401

FOR1402S The OPEN statement could not connect unit unit-number to file-name. The
ACTION specifier, which had a value of READ, conflicted with the STATUS
specifier, which had a value of status. Fortran Version 2 Error Number:
AFB108I (format 8)

Explanation: The ACTION specifier on the OPEN statement had a value of READ, which
implied that you would read from but not write to a file which should already exist. However,
the value of status for the STATUS implied that a new file was to be created. This was
inconsistent because you can't read from a newly created file until records have been written
on it.

Programmer Response: If you want to read from an existing file without writing on it, then
the value of READ for the ACTION specifier is correct. Either omit the STATUS specifier, or
provide a value of OLD or UNKNOWN for the STATUS specifier. Ensure that the file defi-
nition (DD statement or ALLOCATE command) or the data set name given in the FILE
specifier on the OPEN statement refers to a file that exists so that you can read from it.

If you want to write records on the file, change the value of the ACTION specifier to WRITE,
or, if you want to both write to and read from the file, either change the value of the ACTION
specifier to READWRITE or omit the ACTION specifier. For the STATUS specifier, use a
value of NEW if you want to create a file that doesn't already exist, a value of REPLACE if
you want to create a new file replacing the existing one if it already exists, or a value of OLD
if you want to use an existing file even if you want to rewrite it. Omitting the STATUS
specifier or providing value of UNKNOWN is the equivalent of NEW if the file doesn't exist or
of OLD if it does exist.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1402

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 579

 FOR1403S N FOR1404S

FOR1403S The OPEN statement could not connect unit unit-number to file-name. The
file did not exist, and the file definition referred to a file or device that was
restricted to input only. Fortran Version 2 Error Number: AFB108I (format
9)

Explanation: The file definition (DD statement or ALLOCATE command) or the data set
name given in the FILE specifier on the OPEN statement referred to a file or device that
doesn't allow output operations. Examples of such files include:

� A data set whose DD statement specifies LABEL=(,,,IN)

� A file for which the system's access control facility (such as RACF) prevents you from
updating the data set.

However, the file didn't exist according to the Fortran definitions of file existence; this pre-
cludes any meaningful access to the file.

The Fortran definitions of file existence are explained in VS FORTRAN Version 2 Program-
ming Guide for CMS and MVS in the chapter “What Determines File Existence” and gener-
ally reflect the operating system view of file existence; however, there are a few differences.
For example, using a DD statement or ALLOCATE command to allocate space for a file on a
disk volume does not mean that the file exists from the Fortran point of view. Such a file
doesn't exist until an OPEN or WRITE statement for it has been used in a Fortran program
or until it has had records written into it by some non-Fortran program or utility.

Programmer Response: If you want to create a new file, ensure that the file definition (DD
statement or ALLOCATE command) or the data set name given in the FILE specifier on the
OPEN statement refers to a file or device that allows you to perform output operations.

If you want to read from an existing file, ensure that all of the following are true:

� The file definition (DD statement or ALLOCATE command) or the data set name given in
the FILE specifier on the OPEN statement refers to the file that you intended.

� No other unit has been connected to the same file and has caused the file to be deleted
before this OPEN statement was executed.

� The file exists according to the Fortran rules of file existence. (For example, under
certain circumstances, a file that is present on a disk volume but contains no data
doesn't exist according to this definition.)

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1403

FOR1404S The OPEN statement could not connect unit unit-number to file-name. The
ACCESS specifier had a value of DIRECT, and the file already existed, but
the file was empty. Fortran Version 2 Error Number: AFB108I (format 10)

Explanation: The file that was to be connected for direct access existed prior to the exe-
cution of the OPEN statement. However, there were no records in the file, and such a file
can't be used for direct access. The fact that the file seemed to exist is based on one of the
following:

� The file was previously connected for sequential access within the same executable
program and was closed without any records having been written. Unless the STATUS

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

580 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1405S N FOR1405S

specifier on that CLOSE statement had a value of DELETE, such a file is seen as an
existing file according to the Fortran definitions of file existence, which are explained in
VS FORTRAN Version 2 Programming Guide for CMS and MVS in the chapter “What
Determines File Existence.”

� The file was dynamically allocated, that is, the FILE specifier had a data set name pre-
ceded by a slash (/), and before execution of the OPEN statement the data set existed
on the disk volume but contained no records.

� The NOOCSTATUS run-time option was in effect, the file didn't contain any records, and
the file hadn't been used previously within the same executable program.

Programmer Response: If you want to connect an existing file for direct access, ensure
that all of the following are true:

� The file definition (DD statement or ALLOCATE command) or the data set name given in
the FILE specifier on the OPEN statement refers to the file that you intended.

� The file contains at least one record.

� The program that created the file successfully closed it.

� The file contains unblocked fixed-length records, that is, the RECFM value is F.

If you want to create a new file, then change the value of the STATUS specifier to NEW or
SCRATCH.

If the file might have existed before the execution of the OPEN statement and if you want to
replace whatever might have been in that file, then take one of these actions, as applicable:

� If the file is a named file, provide a value of REPLACE for the STATUS specifier.

� If the file was used earlier in a Fortran program, provide a value of DELETE for the
STATUS specifier on the CLOSE statement for that previous use of the file.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

FOR1405S The OPEN statement could not connect unit unit-number to file-name. The
ACTION specifier, which had a value of WRITE, conflicted with the KEYS
specifier, which listed more than one key. Fortran Version 2 Error Number:
AFB121I

Explanation: A value of WRITE was provided for the ACTION specifier on an an OPEN
statement that specified keyed access; this implied that records were to be loaded into the
file using the file's primary key. However, the KEYS specifier listed more than one start-end
pair, and this is not permitted when loading records into the file.

Programmer Response: If you want to load records into the file with records that are pre-
sented in increasing sequence of the primary key, then either remove the KEYS specifier or
specify only the start-end pair that represents the primary key for the file. Ensure that the file
definition (DD statement or ALLOCATE command) refers to the base cluster of the VSAM
key-sequenced data set rather than to a path that corresponds to one of the alternate index
keys.

If you want to process a file that is not empty, change the value of the ACTION specifier to
READ or READWRITE.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 581

 FOR1406S N FOR1407S

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1405

FOR1406S The OPEN statement could not connect unit unit-number to file-name. The
KEYS specifier was given, but the ACCESS specifier did not have a value
of KEYED. Fortran Version 2 Error Number: AFB137I

Programmer Response: If you were connecting a VSAM key-sequenced data set (KSDS),
then change the value of the ACCESS specifier to KEYED. Otherwise, remove the KEYS
specifier from the OPEN statement, and ensure that the ACCESS specifier has a value of
either SEQUENTIAL or DIRECT, as appropriate to your use of the file. If you code the value
of the ACCESS specifier as a character constant, enclose the value in quotes or apostro-
phes.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1406

FOR1407S The OPEN statement could not connect unit unit-number to file-name. The
ACCESS specifier had a value of KEYED, and the ACTION specifier had a
value of READ, but the file was empty. Fortran Version 2 Error Number:
AFB138I

Programmer Response: Ensure that the VSAM key-sequenced data set (KSDS) that you
want to process is referenced by the file definition (DD statement or ALLOCATE command).

If you want to read from a file that has records, then:

� If the file referenced by the file definition is a base cluster, that is, the file with the
primary key, then ensure that is was successfully loaded with records, either in a Fortran
program or by a program written in some other language.

� If the file referenced by the file definition is a path for an alternate index, then ensure
that the Access Method Services BLDINDEX command successfully built the alternate
index after the base cluster was loaded.

If you want to start with an empty file and add records to it in other than ascending sequence
of the primary key, then change the value of the ACCESS specifier to READWRITE. In this
case the OPEN statement processing simulates the loading of the file and deletes all loaded
records; then VSAM no longer considers the file to be empty.

If you want to load records into an empty file in the fastest way, follow these steps:

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

582 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1408S N FOR1408S

1. On the file definition (DD statement or ALLOCATE command), provide the data set name
of the file's base cluster, that is, of the file with the primary key.

2. Execute an OPEN statement with a value of WRITE for the ACTION specifier and a
value of KEYED for the ACCESS specifier; either omit the KEYS specifier or provide a
KEYS specifier with a single start-end pair that represents the position in the record of
the file's primary key.

3. Execute at least one WRITE statement to write the records; ensure that you write the
records in ascending sequence of the primary key.

4. Execute a CLOSE statement.

After these steps, the file is available to be connected using an ACTION specifier of either
READ or READWRITE.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1407

FOR1408S The OPEN statement could not connect unit unit-number to file-name. The
RECL specifier was given, but the ACCESS specifier did not have a value
of DIRECT. Fortran Version 2 Error Number: AFB155I (format 1)

Programmer Response: If you intend to execute direct access READ or WRITE state-
ments, which have a REC specifier, then change the value of the ACCESS specifier to
DIRECT. If you code the value as a character constant, enclose the value in quotes or apos-
trophes.

If you want to use sequential or keyed access, then remove the RECL specifier from the
OPEN statement.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1408

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 583

 FOR1409S N FOR1410S

FOR1409S The OPEN statement could not connect unit unit-number to file-name. The
ACCESS specifier had a value of DIRECT, but the RECL specifier was not
given. Fortran Version 2 Error Number: AFB155I (format 2)

Programmer Response: If you intend to execute direct access READ or WRITE state-
ments, which have a REC specifier, then add the RECL specifier to the OPEN statement.
Ensure that this value given for the RECL specifier is the same as the value that's associ-
ated with the file through one or more of the following, as applicable:

� The label of an existing data set

� The LRECL parameter of the DD statement or ALLOCATE command

� The LRECL value given in an invocation of the FILEINF callable service

� The record length given in the RECORDSIZE parameter of the Access Method Services
DEFINE command that was used to define the VSAM cluster

If you want to use sequential or keyed access, then change the value of the ACCESS
specifier to SEQUENTIAL or KEYED. If you code the value as a character constant, enclose
the value in quotes or apostrophes.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1409

FOR1410S The OPEN statement could not connect unit unit-number to file-name. The
FILE specifier was given, but the STATUS specifier had a value of
SCRATCH. Fortran Version 2 Error Number: AFB255I

Programmer Response: If you want to connect a named file, then on the OPEN statement
provide the FILE specifier and either omit the STATUS specifier or change the value of the
STATUS specifier to NEW, OLD, REPLACE, or UNKNOWN.

If you want to connect a file as a scratch (or temporary) file, then omit the FILE specifier and
provide a value of SCRATCH for the STATUS specifier.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1410

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

584 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1411S N FOR1412S

FOR1411S The OPEN statement could not connect unit unit-number to file-name. The
ACCESS specifier had a value of DIRECT, but the file definition referred to
a file or device that was not supported for direct access. Fortran Version 2
Error Number: AFB090I, AFB114I (format 1), AFB165I (format 1)

Programmer Response: If you intend to use direct access, ensure that the file definition
(DD statement or ALLOCATE command) or the data set name given in the FILE specifier on
the OPEN statement refers to one of the following:

� For a non-VSAM file, a disk file that is not a PDS member.
� A VSAM relative record data set (RRDS).

If you intend to use direct access and you want to use an unnamed file (that is, you've
omitted the FILE specifier on the OPEN statement), then ensure that there is no corre-
sponding file definition with a ddname of the form that is used for a striped file. (This prohib-
ited form is FTnnPmmm, where nn is the unit number given on the OPEN statement.)
Instead, use a ddname of the form FTnnF001. If you need the file definition with a ddname
of the form FTnnPmmm because you're also processing a striped file, then change the unit
number either for the direct access I/O or for the striped file I/O.

If you didn't intend to use direct access I/O, change the ACCESS specifier on the OPEN
statement to either SEQUENTIAL or KEYED.

If you want to process a VSAM key-sequenced data set (KSDS), then change the ACCESS
specifier on the OPEN statement to KEYED. Do not confuse sequential or direct access with
the sequential or direct retrieval statements that are used with keyed access. Sequential and
direct access are indicated by the ACCESS specifier on the OPEN statement. Sequential
and direct retrieval statements are forms of the READ statement that can be used when the
file is connected for keyed access, that is, when the ACCESS specifier on the OPEN state-
ment has a value of KEYED.

If you want to process a VSAM linear data set, don't use Fortran I/O statements; instead,
use the data-in-virtual callable services described in VS FORTRAN Version 2 Language and
Library Reference.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1411

FOR1412S The OPEN statement could not connect unit unit-number to file-name. The
ACCESS specifier had a value of SEQUENTIAL, but the file definition
referred to a file or device that was not supported for sequential access.
Fortran Version 2 Error Number: AFB165I (format 1)

Programmer Response: If you want to use sequential access, ensure that the file defi-
nition (DD statement or ALLOCATE command) or the data set name given in the FILE
specifier on the OPEN statement does not refer to a VSAM key-sequenced data set (KSDS)
nor to a VSAM linear data set.

If you want to process a VSAM key-sequenced data set (KSDS), then change the ACCESS
specifier on the OPEN statement to KEYED. Do not confuse sequential or direct access with
the sequential or direct retrieval statements that are used with keyed access. Sequential and
direct access are indicated by the ACCESS specifier on the OPEN statement. Sequential

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 585

 FOR1413S N FOR1413S

and direct retrieval statements are forms of the READ statement that can be used when the
file is connected for keyed access, that is, when the ACCESS specifier on the OPEN state-
ment has a value of KEYED.

If you want to process a VSAM linear data set, don't use Fortran I/O statements; instead,
use the data-in-virtual callable services described in VS FORTRAN Version 2 Language and
Library Reference.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1412

FOR1413S The OPEN statement for unit unit-number failed. The unit was already con-
nected to file-name, and the specifier specifier had a value that differed from
the value that was already established. Fortran Version 2 Error Number:
AFB120I, AFB100I

Explanation: The OPEN statement referred to a unit that was already connected to a file.
Because the FILE specifier was either omitted or had a value that was same as the name of
the file to which the unit was already connected, the OPEN statement did not cause the file
to be disconnected and opened again; instead, the OPEN statement applied to the already
existing connection. In addition, the specifier specifier on the OPEN statement had a value
that was different from the value established earlier. This is not allowed because only the
BLANK, CHAR, DELIM, and PAD specifiers can change the properties of the connection
when the OPEN statement refers to an existing connection between a unit and a file.

Programmer Response: Ensure that both the OPEN statement and any previously exe-
cuted I/O statements refer to the unit number that you intend.

If you want to retain the existing connection between the unit and the file, then take one of
these actions:

� Remove the specifier specifier from the OPEN statement.

� If you do use the specifier specifier, then ensure that its value is the same as what is
already in effect.

If you want to use the OPEN statement to establish a new connection between the unit and
the file, then take one of the following actions to disconnect the unit from the file to which it's
already connected and to connect the unit to a different file:

1. Execute a CLOSE statement followed by another OPEN statement.

2. For a named file only, execute an OPEN statement with a FILE specifier whose value is
different from the name of the file to which the unit is already connected. This has the
effect of executing a CLOSE statement with no STATUS specifier followed by the OPEN
statement.

For either of these two cases, all specifiers coded on the OPEN statement and the default
values for all omitted specifiers provide the properties of the new connection between the
unit and the file.

System Action: The unit is no longer connected to a file. If neither the ERR nor the
IOSTAT specifier is present on the I/O statement, the condition is signaled. If the condition is
unhandled, the application is terminated.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

586 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1414S N FOR1414S

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1413

FOR1414S The OPEN statement could not connect unit unit-number to file-name. The
KEYS specifier referred to a key with a record position of start : end, but
none of the file definitions for this file referred to a file with this key.
Fortran Version 2 Error Number: AFB134I

Programmer Response: Ensure that the start-end pairs given in the KEYS specifier on the
OPEN statement refer to files that have keys in the indicated positions in the record.

Provide the same number of file definitions (DD statements or ALLOCATE commands) as
there are start-end pairs in the KEYS specifier. Use file definitions with these ddnames:

� For an unnamed file: FTnnK01, FTnnK02, ... FTnnKkk, where nn is the unit number and
kk is the number of start-end pairs in the KEYS specifier. Both nn and kk consist of
exactly two digits.

� For a named file: file-name, file-name 1, file-name 2, ... file-name k, where file-name is
the file name given in the FILE specifier and k is an integer whose value is one less than
the number of start-end pairs in the KEYS specifier. If file-name is eight characters long,
the numeric suffixes overlay the last character of file-name.

Ensure that each of the file definitions with the ddnames used for keyed access files refers
to a file with one of the keys listed as a start-end pair in the KEYS specifier. Check the
VSAM Access Method Services DEFINE CLUSTER, DEFINE ALTERNATE INDEX, and
DEFINE PATH commands that were used for the file to ensure that the intended keys are
referenced. In referring to the positions with a record, the first position in a record is position
1 from the point of view of the KEYS specifier on the OPEN statement, but the first position
in a record is position 0 from the point of view of KEYS parameter on the DEFINE CLUSTER
or DEFINE ALTERNATEINDEX command. Therefore, the following KEYS specifier on an
OPEN statement:

KEYS(9:11)

is equivalent to the following KEYS parameter on the DEFINE CLUSTER or DEFINE
ALTERNATEINDEX command:

KEYS(3 8)

Each indicates a three-character key starting in the ninth position in the record.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1414

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 587

 FOR1415S N FOR1416S

FOR1415S The OPEN statement could not connect unit unit-number to file-name. The
file was already connected to another unit. Fortran Version 2 Error Number:
AFB172I

Programmer Response: Ensure that the file name file-name isn't used in the FILE
specifier on an OPEN statement while this same file is still connected to another unit.
Correct the logic of the program to take one of these actions:

� Execute a CLOSE statement if necessary to disconnect the file from the first unit before
you execute the second OPEN statement.

� Change the name given in the FILE specifier on one of the applicable OPEN statements
to refer to a different file.

� If you intended to change only the values of the BLANK, CHAR, DELIM, or PAD
specifiers for an existing connection of a unit and file (rather than establishing a con-
nection), then ensure that the OPEN statement refers to the same unit as the one to
which the file is already connected.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1415

FOR1416S The OPEN statement could not connect unit-number to ddname, the error
message unit. The specifier specifier had a value that is not allowed for the
error message unit.

Programmer Response: If you want to execute an OPEN statement that refers to the error
message unit and therefore to the Language Environment message file, then ensure that the
following specifiers are either omitted or given the values indicated:

Facilities other than what are implied by the acceptable values in the preceding list are not
available with the error message unit. If you require the one of these unavailable facilities,
change the OPEN statement and the other I/O statements to refer to a unit other than the
error message unit.

Designating the error message unit and the print unit as different units lets you use the print
unit in a manner similar to what was available with the error message unit in VS FORTRAN
Version 2. This is because the print unit doesn't have the usage restrictions of the error
message unit unless it's the same unit as the error message unit. Use the ERRUNIT and
PRTUNIT run-time options to provide the unit numbers for the error message unit and the
print unit.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

Specifier Acceptable value

STATUS UNKNOWN
ACCESS SEQUENTIAL
FORM FORMATTED
ACTION WRITE
POSITION ASIS

588 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1417S N FOR1417S

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1416

FOR1417S The OPEN statement could not connect unit unit-number to file-name.
Because there were key-count keys listed in the KEYS specifier, conflicting
ddnames were generated to refer to different parts of the file. Fortran
Version 2 Error Number: AFB131I

Explanation: The OPEN statement for keyed access referred to the named file file-name
and specified more that one start-end pair in the keys specifier. The required file definitions
have the following ddnames: file-name, file-name 1, file-name 2, ... file-name k, where file-
name is the file name given in the FILE specifier and k is an integer whose value is one less
than the number of start-end pairs in the KEYS specifier. However, in this case file-name
was eight characters long, and the numeric suffixes had to overlay the last character of file-
name. But file-name itself ended in one of the required suffix characters, thus causing a
conflict in the ddnames. For example, suppose that the OPEN statement contained the fol-
lowing specifiers:

FILE='CONFILE2'
KEYS=(2:4, 6:1#, 15:2#)

In this example, because there are three keys and because the ddname is eight characters
long, the ddnames CONFILE2, CONFILE1, and CONFILE2 would be needed. The conflict is
that there are only two rather than three unique ddnames.

Programmer Response: If you intend to use key-count keys, then change the the file
name in the FILE specifier on OPEN statement to one that has at least one of these
characteristics:

� Fewer than eight characters
� An alphabetic character in the last position
� A digit in the last position, where the numeric value of that digit is not less than key-

count

Also provide file definitions (DD statements or ALLOCATE commands) for the ddnames
listed under “Explanation.”

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1417

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 589

 FOR1425S N FOR1419S

FOR1425S The OPEN statement for unit unit-number failed. For a keyed file, the file
definition statement for ddname1 referred to a file that had a record length
of length1, but ddname2 referred to a file that had a record length of length2.
 Fortran Version 2 Error Number: AFB132I

Programmer Response: Change the file definitions (DD statements or ALLOCATE com-
mands) for this file so that they all refer to files that represent the same base cluster. For
each of the alternate index keys that you want to use, do not refer to the data set name of
the alternate index itself. Instead, use the data set name of the path that refers to the alter-
nate index. Such a path is defined with the Access Method Services DEFINE PATH
command. This path gives you access to the records in the base cluster through the alter-
nate index.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1425

FOR1419S The OPEN statement for unit unit-number failed. More than one key was
specified for a keyed file, but the file definition statement for ddname
referred to a file that was empty. Fortran Version 2 Error Number: AFB133I

Programmer Response: You cannot load records into an empty file and refer to more than
one key using a single OPEN statement.

If you have already loaded the file with records and have established the alternate indexes,
then ensure that the file definitions (DD statements or ALLOCATE commands) refer to the
appropriate base cluster and to the various paths that are associated with the alternate
indexes. Follow steps 8 through 9 in the list that follows.

If you just want to load records into an empty file, then don't refer to more than one key in
the KEYS specifier. To load records into the file, follow steps 1 through 4 in the list that
follows.

To establish the file so that you can use more that one key, as indicated by the KEYS
specifier, then follow these steps to load records into the base cluster and to make alternate
indexes available:

1. On the file definition (DD statement or ALLOCATE command), provide the data set name
of the file's base cluster, that is, of the file with the primary key.

2. Execute an OPEN statement with a value of WRITE for the ACTION specifier and a
value of KEYED for the ACCESS specifier; either omit the KEYS specifier or provide a
KEYS specifier with a single start-end pair that represents the position in the record of
the file's primary key.

3. Execute at least one WRITE statement to write the records; ensure that you write the
records in ascending sequence of the primary key.

4. Execute a CLOSE statement.

Perform the following with Access Method Service commands rather than with Fortran I/O
statements:

5. Define each alternate index with the DEFINE ALTERNATEINDEX command.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

590 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1420S N FOR1421S

6. Build each alternate index with the BLDINDEX command.

7. Create a path for each alternate index with the DEFINE PATH command.

In a Fortran program you can then use keyed access to refer to more than one key as
follows:

8. In the KEYS specifier on the OPEN statement, provide a start-end pair for each of the
keys, either the primary key or one or more alternate index keys, that you want to use in
your program.

9. Provide file definitions (DD statements or ALLOCATE commands) that refer to files
representing each of the keys indicated by the KEYS specifier. For an alternate index
keys, ensure that the file definition refers to the data set name of the path rather than of
the alternate index itself.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1419

FOR1420S The OPEN statement for unit unit-number failed. The FILE specifier had a
value of CEEDUMP, which is the ddname of the Language Environment
dump file.

Programmer Response: Either use a ddname of other than CEEDUMP in the FILE
specifier on the OPEN statement or omit the FILE specifier to refer to an unnamed file.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1420

FOR1421S The OPEN statement for unit unit-number failed. The FILE specifier had a
value of ddname, which was the ddname of the Language Environment
message file.

Explanation: The ddname of ddname, which was given as the value of the FILE specifier
on the OPEN statement, is already a Language Environment message file. This message file
could be the current one, or it could be some previously used message file that hasn't yet
been closed.

Programmer Response: Take one or more of these actions:

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 591

 FOR1423S N FOR1424S

� Use a ddname other than ddname as the value of the FILE specifier on the OPEN state-
ment. Ensure that the ddname that you select isn't also a message file.

� Change the ddname of the message file to a value other than ddname. Do this by
changing the ddname given in the MSGFILE run-time option or by changing the value of
the FILE specifier in an OPEN statement that refers to the error message unit.

� Close the current message file with a CLOSE statement that refers to the error message
unit, and connect the error message unit to a different message file with an OPEN state-
ment that refers to the error message unit. (Closing the current message file causes the
current message file to revert back to the ddname given in the MSGFILE run-time
option.)

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1421

FOR1423S The OPEN statement could not connect unit unit-number. The STATUS
specifier had a value of REPLACE, but there was no FILE specifier.

Programmer Response: Ensure that if the OPEN statement has a value of REPLACE for
the STATUS specifier then it also has a FILE specifier.

If you don't want to replace a possibly existing file, then don't use a value of REPLACE for
the STATUS specifier.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1423

FOR1424S The OPEN statement could not connect unit unit-number to file-name. The
PAD specifier was given, but the file was to be connected for unformatted
input/output.

Programmer Response: Make one of these changes in the OPEN statement:

� If you want to use formatted input/output statements, then:

– For sequential access either omit the FORM specifier, or change the value of the
FORM specifier to FORMATTED.

– For direct or keyed access, provide a value of FORMATTED of the FORM specifier.

� If you want to use unformatted input/output statements, then remove the PAD specifier.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

592 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1425S N FOR1426S

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1424

FOR1425S The OPEN statement could not connect unit unit-number to file-name. The
PAD specifier had a value of pad, which was other than YES or NO.

Programmer Response: Based on whether you want formatted records to be treated as
though they were padded with blanks when they are read, change the value of the PAD
specifier on the OPEN statement to YES or NO. If you code the value as a character con-
stant, enclose the value in quotes or apostrophes.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1425

FOR1426S The OPEN statement could not connect unit unit-number to file-name. The
RECL specifier had a value of recl-val, which was incompatible with the
maximum record length, record-size, which was given in the DEFINE
CLUSTER command for the VSAM relative record data set (RRDS).

Programmer Response: Ensure that the file definition (DD statement or ALLOCATE
command) refers to the data set that you intend.

Ensure that the value given in the RECL specifier on the OPEN statement that was used for
direct access is the same as the value given in RECORDSIZE parameter of the Access
Method Services DEFINE CLUSTER command that defined the VSAM relative record data
set (RRDS). Use the LISTCAT command, if necessary, to determine the value that was
given when the DEFINE CLUSTER command defined the RRDS.

System Action: The unit is no longer connected to a file. If neither the ERR nor the
IOSTAT specifier is present on the I/O statement, the condition is signaled. If the condition is
unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of OPEN, and
parm_count has a value of 6.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 593

 FOR1427S N FOR1427S

Permissible Resume Actions:

Symbolic Feedback Code: FOR1426

FOR1427S The OPEN statement could not connect unit unit-number to file-name. The
RECL specifier had a value of recl-val, which was incompatible with the
length of the data, data-length, which the records in the file can hold.

Explanation: The value of the RECL specifier on the OPEN statement was incorrect in one
or more of these ways:

� It was not a positive value.

� It exceeded the maximum data length that was established for the records in a file with
variable-length records.

� It was not identical to the record length established for a file with fixed-length records.

The data length for the file could have been established on the file definition (DD statement
or ALLOCATE command), in a call to the FILEINF callable service that applied to a file that
was dynamically allocated, or in the Access Method services DEFINE CLUSTER command.
For a file that already existed prior to execution of the OPEN statement, this length might
have been established when the file was first created.

Programmer Response: Ensure that the file definition or FILE specifier on the OPEN
statement refers to the file that you intended.

Change the value of the RECL specifier on the OPEN statement, or change the record
length wherever it was established. For a file with fixed-length records, the value of the
RECL specifier must be identical to the value established elsewhere for the file.

For a file with variable-length records, the value of the RECL specifier must not exceed the
length of the data that the records can hold. In this case, remember that the value of the
LRECL parameter (for example, as a DCB subparameter on a DD statement) includes the
four-byte record descriptor word, but the value of RECL specifier on the OPEN statement
does not. Therefore, when you use variable-length records, the value of the RECL specifier
cannot exceed the LRECL value less 4.

System Action: The unit is no longer connected to a file. If neither the ERR nor the
IOSTAT specifier is present on the I/O statement, the condition is signaled. If the condition is
unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of OPEN, and
parm_count has a value of 6.

No. Name Input/Output
Data Type and
Length Value

5 record-size Input INTEGER*4 The length of the data (or the
maximum length of the data)
established for the file through the
DEFINE CLUSTER command for
the VSAM data set

6 recl-val Input INTEGER*4 The length of the data indicated by
the RECL specifier.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

No. Name Input/Output
Data Type and
Length Value

5 data-length Input INTEGER*4 The length of the data (or the
maximum length of the data)
established for the file.

594 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1428S N FOR1428S

Permissible Resume Actions:

Symbolic Feedback Code: FOR1427

FOR1428S The OPEN statement could not connect unit unit-number to file-name. The
STATUS specifier had a value of REPLACE, but the file definition referred
to a file or device that was restricted to input only.

Explanation: The STATUS specifier had a value of REPLACE, which implied that a file
should be created after deleting the existing one, if any. However, the file definition (DD
statement or ALLOCATE command) or the data set name given in the FILE specifier on the
OPEN statement referred to a file or device that doesn't allow output operations. Examples
of such files include:

� An in-stream data set (DD *)

� A data set whose DD statement specifies LABEL=(,,,IN)

� A file for which the system's access control facility (such as RACF) prevents you from
updating the data set

Programmer Response: If you want to read from a file or a device that doesn't permit
output, either omit the STATUS specifier or provide a value of OLD or UNKNOWN for the
STATUS specifier. Ensure that the file really exists and that you can read from it.

If you want to delete a file that might exist and to create a new file and write records on it,
then the STATUS specifier value of REPLACE is correct. As an alternative, use a value of
NEW for the STATUS specifier if the file isn't supposed to exist before the execution of the
OPEN statement. In either case, change either of the following, as applicable, to refer to a
file or device on which you can write records:

� The file definition (DD statement or ALLOCATE command)

� For a dynamically allocated data, the data set name that follows the slash (/) in the FILE
specifier

Don't refer to a data set such as an in-stream data set (DD *), a data set for which you don't
have RACF authority to update, or a data set whose DD statement has a LABEL=(,,,IN)
parameter.

System Action: The unit is no longer connected to a file. If neither the ERR nor the
IOSTAT specifier is present on the I/O statement, the condition is signaled. If the condition is
unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1428

No. Name Input/Output
Data Type and
Length Value

6 recl-val Input INTEGER*4 The length of the data indicated by
the RECL specifier.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 595

 FOR1429S N FOR1430S

FOR1429S The OPEN statement could not connect unit unit-number to file-name. The
POSITION specifier had a value of pos, which was other than ASIS,
REWIND, or APPEND.

Programmer Response: Based on where you want the file to be positioned after execution
of the OPEN statement, change the value of the POSITION specifier on the OPEN state-
ment to ASIS, REWIND, or APPEND. If you code the value as a character constant, enclose
the value in quotes or apostrophes.

System Action: The unit is no longer connected to a file. If neither the ERR nor the
IOSTAT specifier is present on the I/O statement, the condition is signaled. If the condition is
unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1429

FOR1430S The OPEN statement could not connect unit unit-number to file-name. The
POSITION specifier was given, and the ACCESS specifier had a value of
access.

Programmer Response: If you want to connect the file for sequential access, then change
the value of the ACCESS specifier on the OPEN statement to SEQUENTIAL.

If you want to connect a file for direct or keyed access, then remove the POSITION specifier
from the OPEN statement because the POSITION specifier applies only to sequential
access.

Do not confuse sequential or direct access with the sequential or direct retrieval statements
that are used with keyed access. Sequential and direct access are indicated by the ACCESS
specifier on the OPEN statement. Sequential and direct retrieval statements are forms of the
READ statement that can be used when the file is connected for keyed access, that is, when
the ACCESS specifier on the OPEN statement has a value of KEYED.

System Action: The unit is no longer connected to a file. If neither the ERR nor the
IOSTAT specifier is present on the I/O statement, the condition is signaled. If the condition is
unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1430

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

596 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1431S N FOR1432S

FOR1431S The OPEN statement could not connect unit unit-number to file-name. The
DELIM specifier had a value of delim, which was other than APOSTROPHE,
QUOTE, or NONE.

Programmer Response: Based on what delimiters you want to surround character values
in output written with list-directed and namelist formatting, change the value of the DELIM
specifier on the OPEN statement to APOSTROPHE, QUOTE, or NONE. If you code the
value as a character constant, enclose the value in quotes or apostrophes.

A value of APOSTROPHE causes delimiters of ' to be used in the output, and a value of
QUOTE causes delimiters of " to be used.

If you omit the DELIM specifier, then for list-directed formatting the character values are
written without delimiters, and for namelist formatting the character values are surrounded by
apostrophes.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1431

FOR1432S The OPEN statement could not connect unit unit-number to file-name. The
DELIM specifier was given, but the file was to be connected for unfor-
matted input/output.

Programmer Response: Make one of these changes in the OPEN statement:

� If you want to use formatted input/output statements, then:

– For sequential access either omit the FORM specifier, or change the value of the
FORM specifier to FORMATTED.

– For direct or keyed access, provide a value FORMATTED of the FORM specifier.

� If you want to use unformatted input/output statements, then remove the DELIM
specifier.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1432

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 597

 FOR1433S N FOR1434S

FOR1433S The OPEN statement could not connect unit unit-number to file-name. The
POSITION specifier had a value of APPEND, but the file definition referred
to a file or a device for which positioning to the end is not allowed.

Explanation: The POSITION specifier had a value of APPEND on an OPEN statement for
a file that resides on a device that does not honor positioning commands in a way that would
permit positioning the file to its terminal point. Most tape and disk files support positioning
commands, whereas the following do not:

� In-stream data sets (DD *)
� System output data sets (SYSOUT parameter on the DD statement)

 � Terminals
 � Card readers
 � Printers
 � Card punches

Programmer Response: Ensure that the file definition (DD statement or ALLOCATE
command) or the data set name given in the FILE specifier on the OPEN statement refers to
the file that you intended.

If the logic of your program requires that the file be positioned at its terminal point when it is
connected, change the file definition or the data set name given in the FILE specifier to refer
to a file or a device that supports this type of positioning. If the positioning to the terminal
point is not required, either remove the POSITION specifier on the OPEN statement or
change its value to ASIS or REWIND.

System Action: The unit is no longer connected to a file. If neither the ERR nor the
IOSTAT specifier is present on the I/O statement, the condition is signaled. If the condition is
unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1433

FOR1434S The OPEN statement could not connect unit unit-number to file-name. The
file definition referred to a member of a partitioned data set (PDS), the
POSITION specifier had a value of APPEND, and the ACTION specifier
didn't have a value of READ.

Explanation: The file definition (DD statement or ALLOCATE command) or the data set
name given in the FILE specifier on the OPEN statement referred to a member of a parti-
tioned data set (PDS). The OPEN statement had a POSITION specifier with a value of
APPEND, which indicates that the file should be positioned to its endfile record. However,
because the ACTION specifier was either omitted or was coded with a value of other than
READ, writing of records onto the file is implied. It is not possible to write records onto the
end of an existing member of a PDS.

Programmer Response: Ensure that the file definition or FILE specifier on the OPEN
statement refers to the file that you intended.

If you want to write a new or replacement member of a PDS, then remove the POSITION
specifier and provide a value of WRITE for the ACTION specifier.

If you want to read an existing member of a PDS from the beginning, provide a value of
READ for the ACTION specifier and either remove the POSITION specifier or provide a
value of REWIND for it.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

598 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1435S N FOR1435S

If you want to read an existing member of a PDS after first positioning the file to the end (so
that you can execute BACKSPACE statements, for example), then the value of APPEND for
the POSITION specifier is correct. In this case, provide a value of READ for the ACTION
specifier.

System Action: The unit is no longer connected to a file. If neither the ERR nor the
IOSTAT specifier is present on the I/O statement, the condition is signaled. If the condition is
unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1434

FOR1435S The OPEN statement could not connect unit unit-number to file-name. The
file definition referred to a concatenation of data sets, and the POSITION
specifier had a value of APPEND.

Explanation: The file definition (DD statement or ALLOCATE command) referred to a con-
catenation of data sets, that is, to a sequence data sets that was to be processed as though
it consisted of a continuous sequence of records in a single file. The POSITION specifier on
the OPEN statement had a value of APPEND, which implied that this file was to be posi-
tioned at its terminal point. Such positioning cannot be done for a file that is a concatenation
of data sets.

Programmer Response: Ensure that the file definition refers to the file that you intended.

If the file that you want to process is a concatenation of data sets, either remove the POSI-
TION specifier on the OPEN statement or change its value to REWIND or ASIS. You won't
be able to position this file to its terminal point.

If the logic of your program requires that the file be positioned at its terminal point when it is
connected, change the file definition to refer to a file or a device that supports this type of
positioning.

System Action: The unit is no longer connected to a file. If neither the ERR nor the
IOSTAT specifier is present on the I/O statement, the condition is signaled. If the condition is
unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1435

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 599

 FOR1436S N FOR1437S

FOR1436S The OPEN statement could not connect unit unit-number to file-name. The
file definition referred to a concatenation of data sets, and the STATUS
specifier had a value of REPLACE.

Explanation: The file definition (DD statement or ALLOCATE command) referred to a con-
catenation of data sets, that is, to a sequence data sets that was to be processed as though
it consisted of a continuous sequence of records in a single file. The STATUS specifier on
the OPEN statement had a value of REPLACE, which implied that this file was to be deleted
and recreated. This deletion and recreation cannot be done for a file that is a concatenation
of data sets.

Programmer Response: Ensure that the file definition refers to the file that you intended.

If the file that you want to process is a concatenation of data sets, either remove the
STATUS specifier on the OPEN statement or change its value to OLD or UNKNOWN. You
won't be able to delete the existing file.

If the logic of your program requires that the file be deleted and recreated, change the file
definition to refer to a file or a device that supports file deletion.

System Action: The unit is no longer connected to a file. If neither the ERR nor the
IOSTAT specifier is present on the I/O statement, the condition is signaled. If the condition is
unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1436

FOR1437S The OPEN statement could not connect unit unit-number to file-name. The
file definitions referred to a striped file, and the POSITION specifier had a
value of APPEND.

Explanation: The file definitions (DD statements or ALLOCATE commands) referred to a
striped file, that is, to a file with ddnames of the form FTnnPmmm, where nn is the unit
number and mmm is the stripe number. The POSITION specifier on the OPEN statement
had a value of APPEND, which implied that this file was to be positioned at its terminal point.
Such positioning cannot be done for a striped file.

Programmer Response: Ensure that the file definition refers to the file that you intended.

If the file that you want to process is a striped file, either remove the POSITION specifier on
the OPEN statement or change its value to REWIND or ASIS. You won't be able to position
this file to its terminal point.

If the logic of your program requires that the file be positioned at its terminal point when it is
connected, change the ddname on the file definition to the form FTnnF001. Ensure that the
file or a device referenced by the file definition is one that supports this type of positioning.

System Action: The unit is no longer connected to a file. If neither the ERR nor the
IOSTAT specifier is present on the I/O statement, the condition is signaled. If the condition is
unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

600 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1438S N FOR1439S

Symbolic Feedback Code: FOR1437

FOR1438S The OPEN statement could not connect unit unit-number to file-name. The
RECL specifier had a value of recl-val, which is smaller than the minimum
length, high-key-pos, needed to contain all of the file's keys.

Programmer Response: Either remove the RECL specifier from the OPEN statement or
increase its value so that it is large enough to contain all record positions of each of the keys
listed as start-end pairs in the KEYS specifier on the OPEN statement.

If you don't need to refer to certain of the keys, then don't list the unneeded ones as
start-end pairs in the KEYS specifier.

System Action: The unit is no longer connected to a file. If neither the ERR nor the
IOSTAT specifier is present on the I/O statement, the condition is signaled. If the condition is
unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of OPEN, and
parm_count has a value of 6.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1438

FOR1439S The OPEN statement for unit unit-number, which was already connected to
file file-name, failed. The POSITION specifier had a value of position, which
was other than ASIS.

Explanation: The OPEN statement referred to a unit that was already connected to a file.
Because the FILE specifier was either omitted or had a value that was same as the name of
the file to which the unit was already connected, the OPEN statement did not cause the file
to be disconnected and opened again; instead, the OPEN statement applied to the already
existing connection. In addition, the POSITION specifier on the OPEN statement had a value
of either REWIND or APPEND. This is not allowed because only the BLANK, CHAR, DELIM,
and PAD specifiers can change the properties of the connection when the OPEN statement
refers to an existing connection between a unit and a file.

Programmer Response: Ensure that both the OPEN statement and any previously exe-
cuted I/O statements refer to the unit number that you intend.

If you want to retain the existing connection between the unit and the file, then either remove
the POSITION specifier from the OPEN statement or change the value of the POSITION
specifier to ASIS.

If you want to use the OPEN statement to establish a new connection between the unit and
the file, then take one of the following actions to disconnect the unit from the file to which it's
already connected and to connect the unit to a different file:

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

No. Name Input/Output
Data Type and
Length Value

5 recl-val Input INTEGER*4 The value from the RECL specifier
in the OPEN statement.

6 high-key-pos Input INTEGER*4 The minimum record size needed
to include all the keys specified in
the KEYS specifier.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 601

 FOR1440S N FOR1440S

� Execute a CLOSE statement followed by another OPEN statement.

� For a named file only, execute an OPEN statement with a FILE specifier whose value is
different from the name of the file to which the unit is already connected. This has the
effect of executing a CLOSE statement with no STATUS specifier followed by the OPEN
statement.

For either of these two cases, all specifiers coded on the OPEN statement and the default
values for all omitted specifiers provide the properties of the new connection between the
unit and the file.

System Action: If the unit is other than the error message unit, the unit is no longer con-
nected to a file. If neither the ERR nor the IOSTAT specifier is present on the I/O statement,
the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1439

FOR1440S The OPEN statement could not connect unit unit-number to file-name. The
STATUS specifier had a value of SCRATCH, but the file definition referred
to a file or device that is restricted to input only.

Explanation: The STATUS specifier had a value of SCRATCH, which implied that a tempo-
rary file was to be created and that output statements, such WRITE or ENDFILE, would be
executed. However, the file definition (DD statement or ALLOCATE command) or the data
set name given in the FILE specifier on the OPEN statement referred to a file or device that
doesn't allow output operations. Examples of such files include:

� An in-stream data set (DD *)

� A data set whose DD statement specifies LABEL=(,,,IN)

� A file for which the system's access control facility (such as RACF) prevents you from
updating the data set

Programmer Response: Ensure that the value of the STATUS specifier is consistent with
the capabilities of the file or device referenced by the file definition (DD statement or ALLO-
CATE command) or by the data set name given in the FILE specifier on the OPEN state-
ment. You might have to change either the STATUS specifier, the file definition, or the data
set name.

If you want to read from a file or a device that doesn't permit output, either remove the
STATUS specifier or change its value to OLD. Ensure that the file really exists and that you
can read from it.

If you want to create a temporary file and write records on it, then the value of SCRATCH for
the STATUS specifier is correct. In this case, ensure that the file definition refers to a file or
device on which you can write records. Note that when the STATUS specifier has a value of
SCRATCH, you must omit the FILE specifier.

If you want to create a new file that is other than a temporary file, either remove the
STATUS specifier or change its value to NEW or REPLACE. The value of REPLACE allows
you to create a new file if it doesn't already exist or to delete an existing one and create a
new one.

If you want to overwrite the records in an existing file, either remove the STATUS specifier or
change its value to OLD. Unless you specify either a value of APPEND for the POSITION
specifier, the DISP=MOD parameter in the DD statement, or the MOD specifier in the ALLO-

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

602 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1441S N FOR1441S

CATE command, the file will be positioned to the beginning and the first WRITE statement
will overwrite any existing records.

In any of the cases for which a file is to be created or records are to be written, ensure that
the file definition refers to a file or device on which you can write records. For example, don't
refer to a data set such as an in-stream data set (DD *), a data set for which you don't have
RACF authority to update, or a data set whose DD statement has a LABEL=(,,,IN) param-
eter.

System Action: The unit is no longer connected to a file. If neither the ERR nor the
IOSTAT specifier is present on the I/O statement, the condition is signaled. If the condition is
unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1440

FOR1441S The OPEN statement could not connect unit unit-number to file-name. The
STATUS specifier had a value of SCRATCH, but the ACTION specifier had a
value of READ

Explanation: The STATUS specifier had a value of SCRATCH, which implied that a tempo-
rary file was to be created and that output statements, such WRITE or ENDFILE, would be
executed. However, the ACTION specifier had a value of READ, which implied that that no
output statements would be executed.

Programmer Response: Ensure that the value of the STATUS specifier is consistent with
the value of the ACTION specifier and with the capabilities of the file or device referenced by
the file definition (DD statement or ALLOCATE command) or by the data set name given in
the FILE specifier on the OPEN statement. You might have to change either the STATUS
specifier, the ACTION specifier, the file definition, or the data set name.

If you just want to read from a file, then the value of READ for the ACTION specifier is
correct. In this case, either remove the STATUS specifier or change its value to OLD.
Ensure that the file really exists and that you can read from it.

If you want to create a temporary file and write records on it, then the value of SCRATCH for
the STATUS specifier is correct. In this case, either remove the ACTION specifier or change
its value to READWRITE. Also ensure that the file definition refers to a file or device on
which you can write records. Note that when the STATUS specifier has a value of
SCRATCH, you must omit the FILE specifier.

System Action: The unit is no longer connected to a file. If neither the ERR nor the
IOSTAT specifier is present on the I/O statement, the condition is signaled. If the condition is
unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1441

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

Name Action Taken after Resumption

RN The OPEN statement is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 603

 FOR1500S N FOR1502S

FOR1500S locator-text System-message Fortran Version 2 Error Number: AFB225I
(format 1), AFB225I (format 2)

Explanation: An I/O error was detected by one of the underlying operating system's access
methods; the error is described by System-message. Examples of causes include these
situations:

� A permanent I/O error was encountered.

� The length of the data to be read or written was inconsistent with the block size specified
in the file definition (DD statement or ALLOCATE command) or in the call to the FILEINF
callable service for a dynamically allocated file.

� The length of the data to be read or written was inconsistent with the capabilities of the
I/O device.

� The physical end of a tape was encountered while reading or writing a record.

� A storage medium error occurred on either tape or disk.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for unit unit-number failed.
The INQUIRE statement failed.
An error occurred during enclave termination.

Programmer Response: Examine the description of the error described by System-
message, and try to determine and fix the cause of the error. Check the possibilities listed
under “Explanation.” If you are unable to resolve the problem, seek assistance from your
Language Environment support personnel.

System Action: If the error occurred during the execution of an OPEN statement, the unit
is no longer connected to a file. If neither the ERR nor the IOSTAT specifier is present on
the I/O statement, the condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1501

FOR1502S locator-text The volume volser did not have enough space available to create
the new data set data-set-name. Fortran Version 2 Error Number: AFB103I
(format 1)

Explanation: The data set data-set-name was to be created using dynamic file allocation.
(Dynamic allocation occurred either because data-set-name was given in the FILE specifier
on the OPEN statement or because a value of SCRATCH was given in the STATUS
specifier and there was no corresponding file definition, that is, no DD statement or ALLO-
CATE command.) The volume serial number volser was given as a value for the VOLSER or
VOLSERS argument on the immediately preceding call to the FILEINF callable service, and
this disk volume didn't have the amount of space either indicated by the CYL, TRK,
MAXBLK, or MAXREC argument on the FILEINF call.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for unit unit-number failed.
The INQUIRE statement failed.

where statement is the OPEN statement.

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

604 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1503S N FOR1503S

Programmer Response: Take one or more of these actions:

� If amount of space indicated by the CYL, TRK, MAXBLK, or MAXREC argument on the
call to the FILEINF callable service is larger than you need, reduce the value.

� Use a volume other than volser if you know of one that might have more space.

� Remove the VOLSER or VOLSERS argument on the call to the FILEINF callable service
so that space can be found on any available disk volume.

System Action: If the error occurred during the execution of an OPEN statement, the unit
is no longer connected to a file. If neither the ERR nor the IOSTAT specifier is present on
the I/O statement, the condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1502

FOR1503S locator-text The data set data-set-name had been allocated to another job
and was not available. Fortran Version 2 Error Number: AFB103I (format
2), AFB103I (format 3)

Explanation: The data set data-set-name was to be connected using dynamic file allo-
cation. (Dynamic allocation occurred either because data-set-name was given in the FILE
specifier on the OPEN statement or because a value of SCRATCH was given in the
STATUS specifier and there was no corresponding file definition, that is, no DD statement or
ALLOCATE command.) However, your use of the data set was denied because one or both
of these conditions existed:

� Another job had exclusive use of data-set-name.

� Another job was using data-set-name but your job wanted exclusive use of it.

The job, either your job or the other job, that requested exclusive use of the data set did so
in one or more of these ways:

� In the immediately preceding call to the FILEINF callable service, the DISP argument
had a value of NEW, OLD, or MOD.

� On the DD statement the DISP parameter had a value of NEW, OLD, or MOD.

� The ALLOCATE command had a NEW, OLD, or MOD parameter. For a non-VSAM data
set or for a VSAM data set when VSAM record level sharing was not used (that is, there
was no RLS parameter on the DD statement, on the ALLOCATE command, or on the
call to FILEINF), either of the following implied exclusive use of the data set:

� On the OPEN statement the STATUS specifier had a value of NEW.

� On the OPEN statement the ACTION specifier was either omitted or had a value of
READWRITE or WRITE.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for unit unit-number failed.
The INQUIRE statement failed.

Programmer Response: If you can run the conflicting jobs, or at least the portions of them
that use the data set data-set-name, at different times, then schedule the jobs accordingly.

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 605

 FOR1504S N FOR1504S

If you must run the conflicting jobs at the same time and if both need the data set at the
same time, then change either or both jobs so that they request shared use of the data set.
To do this, take one or more of the following actions, as applicable, in both jobs:

� Change the value of the DISP argument for the FILEINF callable service to SHR.

� Change the value of the DISP parameter on the DD statement to SHR.

� Remove the NEW, OLD, or MOD parameter on the ALLOCATE command and replace it
with SHR. For a non-VSAM data set or for a VSAM data set when VSAM record level
sharing is not used:

� Change the value of the STATUS specifier on the OPEN statement to OLD.

� Change the value of the ACTION specifier on the OPEN statement to READ.

Note that except when VSAM record level sharing is used, the changes listed don't allow a
file to be created nor do they allow either job to update the file.

System Action: If the error occurred during the execution of an OPEN statement, the unit
is no longer connected to a file. If neither the ERR nor the IOSTAT specifier is present on
the I/O statement, the condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1503

FOR1504S locator-text The volume volser, which should have contained the data set
data-set-name, could not be found. Fortran Version 2 Error Number:
AFB103I (format 4)

Explanation: The data set data-set-name was to be connected using dynamic file allo-
cation. (Dynamic allocation occurred either because data-set-name was given in the FILE
specifier on the OPEN statement.) The volume serial number volser was given as a value for
the VOLSER or VOLSERS argument on the immediately preceding call to the FILEINF call-
able service, but this disk volume wasn't available.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for unit unit-number failed.
The INQUIRE statement failed.

Programmer Response: Ensure that volume serial number given as the value of the
VOLSER or VOLSERS argument on the call to the FILEINF callable service is one that
resides on the device given by the DEVICE argument.

If the data set is cataloged, you don't need to specify the volume serial number, so remove
the VOLSER or VOLSERS argument.

System Action: If the error occurred during the execution of an OPEN statement, the unit
is no longer connected to a file. If neither the ERR nor the IOSTAT specifier is present on
the I/O statement, the condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

606 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1505S N FOR1505S

Symbolic Feedback Code: FOR1504

FOR1505S locator-text An incorrect device name, dev-name, was specified for the data
set data-set-name. Fortran Version 2 Error Number: AFB103I (format 5)

Explanation: The data set data-set-name was to be connected using dynamic file allo-
cation. (Dynamic allocation occurred either because data-set-name was given in the FILE
specifier on the OPEN statement or because a value of SCRATCH was given in the
STATUS specifier and there was no corresponding file definition, that is, no DD statement or
ALLOCATE command.) The device name dev-name was given either as the value for the
DEVICE argument on the immediately preceding call to the FILEINF callable service or as
the default value that was established during the installation of Language Environment.
However, this device name wasn't known on your system.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for unit unit-number failed.
The INQUIRE statement failed.

Programmer Response: Ensure that the value given for the DEVICE argument in the call
to the FILEINF callable service is a valid device on your system. If you didn't provide the
DEVICE argument, then dev-name was the default value assigned during the installation of
Language Environment. In this latter case or if you are unable to resolve the problem, seek
assistance from your Language Environment support personnel to determine the device
names that can be used at your site.

You can code the device name in the same three ways that you can code this same infor-
mation in the UNIT parameter on the DD statement:

� A three-character hexadecimal number of the device. For example, 130.

� The generic name of the device that identifies a device by machine type and model. For
example, 3380.

� A group name, which identifies a group of devices by a symbolic name. For example,
SYSDA.

System Action: If the error occurred during the execution of an OPEN statement, the unit
is no longer connected to a file. If neither the ERR nor the IOSTAT specifier is present on
the I/O statement, the condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1505

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 607

 FOR1506S N FOR1507S

FOR1506S locator-text The volume did not have enough space for the directory for the
data set data-set-name. Fortran Version 2 Error Number: AFB103I (format 6)

Explanation: The data set data-set-name was to be created using dynamic file allocation.
(Dynamic allocation occurred because data-set-name was given in the FILE specifier on the
OPEN statement.) The data set was to be a partitioned data set (PDS) and the number of
directory blocks was given as the value of the DIR argument on the immediately preceding
call to the FILEINF callable service. However, the number of directory blocks was so large
that there wasn't enough space for the whole directory on the volume given by the VOLSER
or VOLSERS argument, if any, on the FILEINF call.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for unit unit-number failed.
The INQUIRE statement failed.

Programmer Response: Take one or more of these actions:

� If the number of directory blocks indicated by the DIR argument on the call to the
FILEINF callable service is larger than you need, reduce the value.

� On the VOLSER or VOLSERS argument on the call to FILEINF, specify a volume that
might have more space.

System Action: If the error occurred during the execution of an OPEN statement, the unit
is no longer connected to a file. If neither the ERR nor the IOSTAT specifier is present on
the I/O statement, the condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1506

FOR1507S locator-text The space requested for the directory was greater than the
amount of primary space requested for the data set data-set-name. Fortran
Version 2 Error Number: AFB103I (format 7)

Explanation: The data set data-set-name was to be created using dynamic file allocation.
(Dynamic allocation occurred because data-set-name was given in the FILE specifier on the
OPEN statement.) The data set was to be a partitioned data set (PDS) and the number of
256-byte directory blocks was given as the value of the DIR argument on the immediately
preceding call to the FILEINF callable service. However, the number of directory blocks was
so large that it wouldn't fit into the amount of disk space indicated by the CYL, TRK,
MAXBLK, or MAXREC argument on the call to FILEINF.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for unit unit-number failed.
The INQUIRE statement failed.

where statement is the OPEN statement.

Programmer Response: Take one or more of these actions:

� If the number of directory blocks indicated by the DIR argument on the call to the
FILEINF callable service is larger than you need, reduce the value.

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

608 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1508S N FOR1509S

� Increase the amount of disk space indicated by the CYL, TRK, MAXBLK, or MAXREC
argument on the call to FILEINF. Ensure that you have available to you a disk volume
with enough space to allocate a data set of this size.

System Action: If the error occurred during the execution of an OPEN statement, the unit
is no longer connected to a file. If neither the ERR nor the IOSTAT specifier is present on
the I/O statement, the condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1507

FOR1508S locator-text A required catalog was not available for the data set data-set-
name. Fortran Version 2 Error Number: AFB103I (format 8)

Explanation: The data set data-set-name was to be referenced using dynamic file allo-
cation. (Dynamic allocation occurred because data-set-name was given in the FILE specifier
on the OPEN statement.) However, a catalog in which the data set was supposed to be
cataloged wasn't available.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for unit unit-number failed.
The INQUIRE statement failed.

Programmer Response: If the data set was created using Access Method Services and if
the CATALOG parameter was used on the DEFINE command. then supply a JOBCAT or
STEPCAT DD statement that refers to that same catalog.

In this doesn't resolve the problem, seek assistance from your Language Environment
support personnel.

System Action: If the error occurred during the execution of an OPEN statement, the unit
is no longer connected to a file. If neither the ERR nor the IOSTAT specifier is present on
the I/O statement, the condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1508

FOR1509S locator-text The catalog did not have enough space to add an entry for the
data set data-set-name. Fortran Version 2 Error Number: AFB103I (format 9)

Explanation: The data set data-set-name was to be created using dynamic file allocation.
(Dynamic allocation occurred because data-set-name was given in the FILE specifier on the
OPEN statement.) However, there wasn't enough space available in a catalog for the new
data set to be cataloged.

locator-text gives more information about the location of the error, and can be one of the
following:

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 609

 FOR1510S N FOR1510S

The statement statement for unit unit-number failed.
The INQUIRE statement failed.

where statement is the OPEN statement.

Programmer Response: Seek assistance from your Language Environment support per-
sonnel.

System Action: If the error occurred during the execution of an OPEN statement, the unit
is no longer connected to a file. If neither the ERR nor the IOSTAT specifier is present on
the I/O statement, the condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1509

FOR1510S locator-text The data set data-set-name could not be dynamically allocated
because the limit had been reached for the number of dynamically allo-
cated files that could be in use at the same time. Fortran Version 2 Error
Number: AFB169I (format 2)

Explanation: The data set data-set-name was to be referenced using dynamic file allo-
cation. (Dynamic allocation occurred either because data-set-name was given in the FILE
specifier on the OPEN statement or because a value of SCRATCH was given in the
STATUS specifier and there was no corresponding file definition, that is, no DD statement or
ALLOCATE command.) All possible ddnames that can be used for dynamic allocated files
were in use, so no more files could be dynamically allocated.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for unit unit-number failed.
The INQUIRE statement failed.

Programmer Response: Reduce the number of dynamically allocated files.

If you've happened to use ddnames of either of these forms:

 sDFnnnnn
 DFsnnnnn

where s is @, #, or $, and nnnnn is in the range from 00000 to 99999, then don't use these
as ddnames of your own because they are what Language Environment uses internally for
dynamically allocated files.

System Action: If the error occurred during the execution of an OPEN statement, the unit
is no longer connected to a file. If neither the ERR nor the IOSTAT specifier is present on
the I/O statement, the condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1510

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

610 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1511S N FOR1550S

FOR1511S locator-text A permanent I/O error was detected while searching the parti-
tioned data set (PDS) directory for file-name. Fortran Version 2 Error
Number: AFB219I (format 11)

Programmer Response: Ensure that the following are true:

� The data set was a PDS.

� The data set name wasn't used without a member name for input/output operations. Vio-
lating this restriction might have caused the directory to be overwritten.

� There weren't two different members in the data set being used for output operations at
the same time.

System Action: If the error occurred during the execution of an OPEN statement, the unit
is no longer connected to a file. If neither the ERR nor the IOSTAT specifier is present on
the I/O statement, the condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1512

FOR1550S locator-text The SVC 99 function executed for the data set data-set-name had
a return code of return-code and an error reason code of reason-code.
System-message Seek assistance from your Language Environment support
personnel. Fortran Version 2 Error Number: AFB103I (format 10)

Explanation: The data set data-set-name was to be referenced using dynamic file allo-
cation. (Dynamic allocation occurred either because data-set-name was given in the FILE
specifier on the OPEN statement or because a value of SCRATCH was given in the
STATUS specifier and there was no corresponding file definition, that is, no DD statement or
ALLOCATE command.) The internally executed SVC 99 service, which performs the
dynamic allocation, detected the error reflected by return code return-code and error reason
code reason-code. It also provided System-message to explain the error.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for unit unit-number failed.
The INQUIRE statement failed.

Programmer Response: For the meaning of return code return-code and error reason
code reason-code, refer to OS/390 DFSMS Macro Instructions for Data Sets.

If you are unable to resolve the problem, seek assistance from your Language Environment
support personnel.

System Action: If the error occurred during the execution of an OPEN statement, the unit
is no longer connected to a file. If neither the ERR nor the IOSTAT specifier is present on
the I/O statement, the condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 611

 FOR1551W N FOR1552C

Symbolic Feedback Code: FOR1550

FOR1551W locator-text The SVC 99 function executed for the data set data-set-name
was successful, but an unusual condition occurred. The information reason
code was information-code. System-message Fortran Version 2 Error
Number: AFB103I (format 10)

Explanation: The data set data-set-name was to be referenced using dynamic file allo-
cation. (Dynamic allocation occurred either because data-set-name was given in the FILE
specifier on the OPEN statement or because a value of SCRATCH was given in the
STATUS specifier and there was no corresponding file definition, that is, no DD statement or
ALLOCATE command.) The internally executed SVC 99 service, which performs the
dynamic allocation, detected an exceptional situation (not necessarily an error) reflected by
information code information-code. It also provided System-message to explain the situation.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for unit unit-number failed.
The INQUIRE statement failed.

Programmer Response: For the meaning of information code information-code, refer to
OS/390 DFSMS Macro Instructions for Data Sets.

If you are unable to resolve the problem, seek assistance from your Language Environment
support personnel.

System Action: The file is allocated or deallocated, and execution continues.

Qualifying Data: None

Symbolic Feedback Code: FOR1551

FOR1552C The SVC 99 function executed for the file file-name during enclave initializa-
tion had a return code of return-code and an error reason code of reason-
code. System-message Seek assistance from your Language Environment
support personnel. Fortran Version 2 Error Number: AFB936I (format 2)

Explanation: Dynamic allocation occurred for the print unit, file name file-name, because
there was no corresponding file definition, that is, no DD statement or ALLOCATE command.
The internally executed SVC 99 service, which performs the dynamic allocation, detected the
error reflected by return code return-code and error reason code reason-code. It also pro-
vided System-message to explain the error.

Programmer Response: For the meaning of return code return-code and error reason
code reason-code, refer to OS/390 DFSMS Macro Instructions for Data Sets.

If you are unable to resolve the problem, seek assistance from your Language Environment
support personnel.

System Action: The condition is signaled, and execution of the enclave terminates.

Qualifying Data: None

Permissible Resume Actions: None Symbolic Feedback Code: FOR1552

Name Action Taken after Resumption

RN Execution resumes.

612 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1553C N FOR1554S

FOR1553C The SVC 99 function executed for the file file-name during enclave termi-
nation had a return code of return-code and an error reason code of reason-
code. System-message Seek assistance from your Language Environment
support personnel. Fortran Version 2 Error Number: AFB936I (format 3)

Explanation: Dynamic allocation had occurred earlier for the print unit, file name file-name,
because there was no corresponding file definition, that is, no DD statement or ALLOCATE
command. Then during termination, the deallocation of this file occurred. The internally exe-
cuted SVC 99 service, which performs the dynamic allocation, detected the error reflected by
return code return-code and error reason code reason-code. It also provided System-
message to explain the error.

Programmer Response: For the meaning of return code return-code and error reason
code reason-code, refer to OS/390 DFSMS Macro Instructions for Data Sets.

If you are unable to resolve the problem, seek assistance from your Language Environment
support personnel.

System Action: The condition is signaled, and execution of the enclave terminates.

Qualifying Data: None

Permissible Resume Actions: None Symbolic Feedback Code: FOR1553

FOR1554S locator-text The macro-name macro instruction executed for file-name had a
return code of return-code and a reason code of reason-code. Seek assist-
ance from your Language Environment support personnel. Fortran Version
2 Error Number: AFB091I, AFB225I (format 5), AFB219I (format 9)

Explanation: In support of the Fortran I/O statement indicated by the message text, Lan-
guage Environment executed a non-VSAM macro-name macro instruction. DFSMS/MVS
detected the error indicated by return code return-code and reason code reason-code.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for unit unit-number failed.
The INQUIRE statement failed.
An error occurred during enclave termination.

Programmer Response: For the meaning of return code return-code and reason code
reason-code, refer to OS/390 DFSMS Macro Instructions for Data Sets. If you are unable to
resolve the problem, seek assistance from your Language Environment support personnel.

System Action: If the error occurred during the execution of an OPEN statement, the unit
is no longer connected to a file. If neither the ERR nor the IOSTAT specifier is present on
the I/O statement, the condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1556

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 613

 FOR1557S N FOR1558S

FOR1557S locator-text The VSAM macro-name macro instruction executed for file-name
had a return code of return-code. Seek assistance from your Language
Environment support personnel. Fortran Version 2 Error Number: AFB111I
(format 4), AFB130I, AFB167I

Explanation: In support of the Fortran I/O statement indicated by the message text, Lan-
guage Environment executed a VSAM macro-name macro instruction. DFSMS/MVS
detected the error indicated by return code return-code.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for unit unit-number failed.
The INQUIRE statement failed.
An error occurred during enclave termination.

Programmer Response: For the meaning of return code return-code refer to OS/390
DFSMS Macro Instructions for Data Sets. If you are unable to resolve the problem, seek
assistance from your Language Environment support personnel.

System Action: If the error occurred during enclave termination or from a CLOSE state-
ment, the file is disconnected, but not deleted (as though the STATUS specifier had been
coded with a value of KEEP). If the error occurred during the execution of an OPEN state-
ment, the unit is no longer connected to a file.

If neither the ERR nor the IOSTAT specifier is present on the I/O statement, the condition is
signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1557

FOR1558S locator-text The VSAM macro-name macro instruction executed for file-name
had a return code of return-code and an error code of X'hex-code' (decimal-
code). Seek assistance from your Language Environment support per-
sonnel. Fortran Version 2 Error Number: AFB111I (format 4), AFB130I,
AFB167I

Explanation: In support of the Fortran I/O statement indicated by the message text, Lan-
guage Environment executed a VSAM macro-name macro instruction. DFSMS/MVS
detected the error indicated by the return code return-code and the error code with a
hexadecimal value of hex-code (decimal value of decimal-code).

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for unit unit-number failed.
The INQUIRE statement failed.
An error occurred during enclave termination.

Programmer Response: For the meaning of return code return-code and error code hex-
code (or decimal-code), refer to OS/390 DFSMS Macro Instructions for Data Sets. If you are
unable to resolve the problem, seek assistance from your Language Environment support
personnel.

System Action: If the error occurred during enclave termination or from a CLOSE state-
ment, the file is disconnected, but not deleted (as though the STATUS specifier had been
coded with a value of KEEP). If the error occurred during the execution of an OPEN state-
ment, the unit is no longer connected to a file.

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

614 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1559S N FOR1559S

If neither the ERR nor the IOSTAT specifier is present on the I/O statement, the condition is
signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1558

FOR1559S locator-text There was a system completion code of completion-code
involving file file-name. Seek assistance from your Language Environment
support personnel. Fortran Version 2 Error Number: AFB111I (format 1),
AFB225I (format 4)

Explanation: In support of the Fortran I/O statement indicated by the message text, Lan-
guage Environment executed a data management macro instruction such as OPEN, READ,
WRITE, or CHECK. Either MVS or DFSMS/MVS detected the error indicated by the system
completion (abend) code completion-code.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for unit unit-number failed.
The INQUIRE statement failed.
An error occurred during enclave termination.

Programmer Response: Ensure that the file definition (DD statement or ALLOCATE
command) for the file you are using is coded correctly. If the the program uses dynamic
allocation for the file, ensure that both the data set name given in the FILE specifier on the
OPEN statement and the arguments on call to the FILEINF callable service are coded cor-
rectly.

For the meaning of completion-code and for possible corrective actions, refer to OS/390
DFSMS Macro Instructions for Data Sets.

System Action: If the error occurred during enclave termination or from a CLOSE state-
ment, the file is disconnected, but not deleted (as though the STATUS specifier had been
coded with a value of KEEP). If the error occurred during the execution of an OPEN state-
ment, the unit is no longer connected to a file.

If neither the ERR nor the IOSTAT specifier is present on the I/O statement, the condition is
signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1559

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 615

 FOR1560S N FOR1563S

FOR1560S locator-text There was a system completion code of completion-code and a
reason code of reason-code involving file file-name. Seek assistance from
your Language Environment support personnel. Fortran Version 2 Error
Number: AFB111I (format 1), AFB225I (format 4), AFB219I (format 10)

Explanation: In support of the Fortran I/O statement indicated by the message text, Lan-
guage Environment executed a data management macro instruction such as OPEN, READ,
WRITE, or CHECK. Either MVS or DFSMS/MVS detected the error indicated by system
completion (abend) code completion-code and reason code reason-code.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for unit unit-number failed.
The INQUIRE statement failed.
An error occurred during enclave termination.

Programmer Response: Ensure that the file definition (DD statement or ALLOCATE
command) for the file you are using is coded correctly. If the the program uses dynamic
allocation for the file, ensure that both the data set name given in the FILE specifier on the
OPEN statement and the arguments on call to the FILEINF callable service are coded cor-
rectly.

For the meaning of system completion code completion-code and reason code reason-code,
and for possible corrective actions, refer to OS/390 DFSMS Macro Instructions for Data Sets.

System Action: If the error occurred during enclave termination or from a CLOSE state-
ment, the file is disconnected, but not deleted (as though the STATUS specifier had been
coded with a value of KEEP). If the error occurred during the execution of an OPEN state-
ment, the unit is no longer connected to a file.

If neither the ERR nor the IOSTAT specifier is present on the I/O statement, the condition is
signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1561

FOR1563S The statement statement for unit unit-number, which was connected to file-
name, failed. A block that was read had an unexpected length. Fortran
Version 2 Error Number: AFB091I

Explanation: In a record of the file being read, there were one mor more of the following
inconsistencies:

� The record format was either V, VS, D, VB, VBS, or DB, and the block descriptor did not
match the actual block size.

� The record format was either V, VS, D, VB, VBS, or DB, and the record descriptor
implied that the record extended past the end of the block.

� The record format was VBS, and a record descriptor value was too small; that is, it
implied no data but it was not a valid VBS null segment.

� The record format was D, and the actual block size did not exceed the specified block
size.

� The record format was FB with a block preface, and the actual block size did not exceed
the specified block preface size.

� The record format was FB, and the last record extended beyond the end of the block.

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

616 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1570S N FOR1570S

(The record format refers to the RECFM value that is provided either in the file definition (DD
statement or ALLOCATE command) or in the label of an existing file.)

Programmer Response: Ensure that the file definition (DD statement or ALLOCATE
command) for the file you are using is coded correctly in the following ways:

� The file definition refers to the data set that you want to process.

� The RECFM value, if any, indicates the same record format that was specified when the
file was created.

� The LRECL value, if any, indicates the same record length that was specified when the
file was created.

� The BLKSIZE value, if any, indicates the same block length that was specified when the
file was created.

Ensure that the file was closed successfully when it was created. If it wasn't, then the file
must be created again because the last block might not have been written correctly.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1565

FOR1570S locator-text The file definition with the ddname ddname was missing.
Fortran Version 2 Error Number: AFB219I (format 1), AFB219I (format 7)

Explanation: There was no file definition (DD statement or ALLOCATE command) with the
ddname implied by the I/O statement.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for unit unit-number failed.
The INQUIRE statement failed.
An error occurred during enclave termination.

Programmer Response: Determine the ddname implied by the I/O statement, and provide
a DD statement or ALLOCATE command with this ddname.

If the file is an unnamed file, then the ddname takes the form FTnnF001 for sequential and
direct access files and the form FTnnKmm for keyed access files, where nn is the unit
number. A file is an unnamed file in either of these cases:

� The OPEN statement that connects the unit and the file has no FILE specifier.

� The unit is seen as preconnected to a file because a sequential I/O statement is exe-
cuted for the unit before an OPEN statement.

If the file is a named file, then the ddname has the value given for the FILE specifier on the
OPEN statement.

If you want to refer to the file through dynamic allocation, then ensure that there is an OPEN
statement with a FILE specifier whose value consists of a slash (/) followed by the data set
name. In this case, no file definition is needed.

If the OPEN statement has no FILE specifier and you want that OPEN statement to refer to
an existing connection between the unit and a file, then ensure that the unit is already con-
nected to a file before the OPEN statement is executed. (Failure to observe this restriction
could cause the OPEN statement to be interpreted as referring to an unnamed file.)

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 617

 FOR1571S N FOR1571S

System Action: If the error occurred during the execution of an OPEN statement, the unit
is no longer connected to a file. If neither the ERR nor the IOSTAT specifier is present on
the I/O statement, the condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1570

FOR1571S locator-text The OPEN macro instruction executed for file-name had a
system completion code of completion-code and a reason code of reason-
code. Seek assistance from your Language Environment support per-
sonnel. Fortran Version 2 Error Number: AFB219I (format 1)

Explanation: In support of the Fortran I/O statement indicated by the message text, Lan-
guage Environment executed an OPEN macro instruction. Either MVS or DFSMS/MVS
detected the error indicated by system completion (abend) code completion-code and reason
code reason-code.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for unit unit-number failed.
The INQUIRE statement failed.
An error occurred during enclave termination.

Programmer Response: Ensure that the file definition (DD statement or ALLOCATE
command) for the file you are using is coded correctly. If the the program uses dynamic
allocation for the file, ensure that both the data set name given in the FILE specifier on the
OPEN statement and the arguments on call to the FILEINF callable service are coded cor-
rectly.

For the meaning of system completion code completion-code and reason code reason-code,
and for possible corrective actions, refer to OS/390 DFSMS Macro Instructions for Data Sets.

System Action: If the error occurred during the execution of an OPEN statement, the unit
is no longer connected to a file. If neither the ERR nor the IOSTAT specifier is present on
the I/O statement, the condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1571

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

618 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1900E N FOR1900E

FOR1900E locator-text The file file-name was to be deleted, but the file definition
referred to a file or device for which file deletion was not possible. Fortran
Version 2 Error Number: AFB105I, AFB111I (format 2)

Explanation: One of the following implied that the file deletion was to occur:

� The CLOSE statement had a STATUS specifier with a value of DELETE.

� The CLOSE statement referred to a unit for which the corresponding OPEN statement
had a STATUS specifier with a value of SCRATCH.

� During enclave termination, a unit was still connected to a file for which the corre-
sponding OPEN statement had a STATUS specifier with a value of SCRATCH.

In addition, the OCSTATUS run-time option was in effect, and the file had a characteristic,
such as one of the following, that precluded file deletion:

� VSAM data set that is not empty and that is not reusable
� Unlabeled tape data set
� In-stream (DD *) data set
� Sysout data set

 � Terminal
� Unit record input data set
� Unit record output data set

 � Subsystem file
� Concatenation of multiple data sets
� Keyed file with an alternate index
� LABEL=(,,,IN) parameter on the DD statement
� IN parameter on the ALLOCATE command

 � Multiple sub-files
� Connected with an OPEN statement that had an ACTION specifier with a value of READ

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for unit unit-number failed.
The INQUIRE statement failed.
An error occurred during enclave termination.

Programmer Response: If file deletion is required so that further use of the file isn't pos-
sible, then change one or more of the following to avoid referring to a file with any of the
characteristics listed under “Explanation”:

� The value of the ACTION specifier on the OPEN statement to either WRITE or
READWRITE

� The value of the FILE specifier on the OPEN statement to refer to some other ddname
� The value of the FILE specifier on the OPEN statement to refer to some other data set

name
� The value of the UNIT specifier on the OPEN statement to refer to some other Fortran

unit number
� The DD statement parameters such as the reference to a particular device or data set
� The ALLOCATE command parameters such as the reference to a particular device or

data set
� The reusability attribute of a VSAM data set in the Access Method Services DEFINE

CLUSTER command
� The combination of DD statements or ALLOCATE command parameters that concat-

enate multiple data sets under a single ddname

If file deletion isn't required, then either use the NOOCSTATUS run-time option, or modify
the program in one or more of the following ways so that file deletion won't occur:

� On the OPEN statement, either omit the STATUS specifier or provide a value other than
SCRATCH.

� On the CLOSE statement, either omit the STATUS specifier or provide a value other
than DELETE.

 Chapter 13. Fortran Run-Time Messages 619

 FOR1910S N FOR1910S

System Action: The file is disconnected, but not deleted (as though the STATUS specifier
on the CLOSE statement had been coded with a value of KEEP). If neither the ERR nor the
IOSTAT specifier is present on the I/O statement, the condition is signaled. If the condition is
unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1900

FOR1910S locator-text The end of the file was reached. Fortran Version 2 Error
Number: AFB200I, AFB217I

Explanation: The execution of the READ statement requested that a record be read even
though the file was already positioned beyond the last data record in the file.

This is the end-of-file condition and might not be an error.

For a READ statement that specified namelist formatting, this also could have occurred for
the following reason: For the namelist group name given in the FMT specifier on the READ
statement, there was no corresponding namelist group in the input file at a point beyond
where the file was already positioned. Some syntax error within the input file, such as a
missing &END delimiter or a missing quote or apostrophe delimiter, might have caused the
namelist group to treated as part of some other construct and thus appear as though it
wasn't in the input file.

locator-text gives more information about the location of the error, and can be one of the
following:

The statement statement for an internal file failed.
The statement statement for unit unit-number, which was connected to file-name, failed.

where statement is READ.

Programmer Response: Ensure that the READ statement refers to the unit that you
intended, that the unit is connected to the file that you intended, and that the file definition
(DD statement or ALLOCATE command) or the data set name given in the FILE specifier on
the OPEN statement refers to the file that you intended. Also ensure that the file was created
successfully, either in a program or by some manual process such as an editor.

If the file is the one you want to read, modify the program to detect the end of the file in one
of these ways:

� Use the END specifier on the READ statement so that your program can gain control at
some specific label when the end-of-file condition occurs.

� Use the IOSTAT specifier on the READ statement so that upon completion of the READ
statement your program can determine whether the end-of-file condition occurred. A
value of −1 in the variable given in the IOSTAT specifier indicates that the end-of-file
condition occurred.

� If you know the number of records in the file prior to reading them, maintain a count of
the number of records read so that your program doesn't attempt to read beyond the last
data record.

If your program uses statements that position the file, ensure that the logic of the program
and the contents of the file don't cause the file to be inadvertently positioned to the wrong
place. The following statements affect the position within the file:

 � ENDFILE
 � BACKSPACE
 � REWIND

Name Action Taken after Resumption

RN The file is closed but not deleted, and execution continues.

620 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1915S N FOR1915S

� OPEN with a POSITION specifier that has a value of APPEND
� READ statement, even with no input item list
� READ statement with a format specification that has a slash (/) edit descriptor
� WRITE, which for sequential access causes the record that's written to become the last

record in the file

In addition, if the DD statement has the DISP=MOD parameter or the ALLOCATE command
has the MOD parameter, the file is positioned beyond the last data record when it's first
connected.

If namelist formatting is requested on the READ statement because the FMT specifier refers
to the a namelist group name declared in a NAMELIST statement, ensure that the namelist
group indicated by the FMT specifier is actually in the file at some point beyond the current
position. (There's no attempt to read through the entire file to find the namelist group; the
search is only from the current file position.) In the file, identify the namelist group with an
ampersand (&) followed by the namelist group name with no intervening blanks. Ensure that
the ampersand begins in position 2 or later, and that all positions preceding the ampersand
in the record are blank.

In a namelist input file, ensure that all namelist groups, especially any that precede the one
referenced by the failing READ statement, are coded in the correct format. Remember that
all information must start no earlier than position 2 of the records. Pay attention to all delim-
iters, such as commas, equal signs, quotes, and apostrophes, to ensure that they are used
as required. Also ensure that each namelist group is ended by the characters &END.

System Action: If the IOSTAT=ios specifier is present on the READ statement, ios
becomes defined either with the value −1 if ios is an integer variable or with the condition
token for FOR1910 if ios is a character variable of length 12. If the END=stl specifier is
present on the READ statement, control passes to the label stl. If neither the END nor the
IOSTAT specifier is present on the READ statement, the condition is signaled. If the condi-
tion is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, statement has a value of READ, and
parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1910

FOR1915S The OPEN statement for unit unit-number failed. The FILE specifier was not
given, and the unit number was greater than 99, the maximum unit number
allowed for unnamed files. Fortran Version 2 Error Number: AFB175I

Programmer Response: If you want to connect an unnamed file, ensure that the value
given for the the unit number does not exceed the smaller of either 99 or the highest unit
number allowed at your site.

If you want to connect a named file, add a FILE specifier to the OPEN statement and
provide either a ddname or a data set name, the latter preceded by a slash (/).

If you want the OPEN statement to refer to an existing connection between a unit and a file
(so that you can use one or more of the BLANK, CHAR, DELIM, and PAD specifiers to
change the properties of the connection), then ensure that the unit is connected to a file
before executing the OPEN statement.

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

RF If the error occurred on a READ statement for sequential access to an unnamed file that is
neither VSAM nor striped, the data set sequence number is increased by 1 and the next
subfile is read; otherwise, execution continues.

 Chapter 13. Fortran Run-Time Messages 621

 FOR1916S N FOR1917S

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.
The statement is ignored, and processing continues.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, file has a value of blanks, and parm_count has
a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1915

FOR1916S The statement statement for unit unit-number failed. The unit number was
either less than 0 or greater than max-unit-num, the highest unit number
allowed at your installation. Fortran Version 2 Error Number: AFB220I

Programmer Response: Ensure that the unit number given on the statement statement is
a positive number that doesn't exceed max-unit-num, which was established during the
installation or customization of Language Environment as the highest unit number available
at your site.

The defaults provided by IBM have 99 as the highest unit number. However, this can be
changed by updating the UNTABLE parameter of the AFHOUTCM macro instruction in the
module AFHOUTAG. For more information, refer to OS/390 Language Environment
Customization.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.
The statement is ignored, and execution continues.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, file has a set of blanks, and parm_count has a
value of 5. In addition, there are these qualifying data:

Permissible Resume Actions:

Symbolic Feedback Code: FOR1916

FOR1917S The statement statement could not be executed for unit unit-number. The
unit was not connected to a file. Fortran Version 2 Error Number: AFB110I

Programmer Response: Ensure that the statement statement refers to the unit that you
intended.

Check the logic of your program to ensure that the unit unit-number is connected to a file
before executing the statement statement. Here are some items to examine or correct:

� Determine whether some error occurred during the An error detected for an OPEN state-
ment, for example, usually causes the unit to be disconnected from the file. If such an
error occurred, correct the problem.

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

No. Name Input/Output
Data Type and
Length Value

5 max-unit-
name

Input INTEGER*4 The highest unit number allowed
at your installation.

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

622 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1920S N FOR1920S

� Ensure that a CLOSE statement didn't disconnect the unit from the file. If it did, then
either execute an OPEN statement to reconnect the unit to a file or don't execute the
CLOSE statement.

� If you want to use a preconnected file, that is, one that can be read or written without
first executing an OPEN statement, then ensure that there's a file definition (DD state-
ment or ALLOCATE command) with a ddname FTnnF001, where nn is the two-digit unit
number.

� If you want to use a unit number greater than 99, then use an OPEN statement to
connect a named file to the unit. To connect a named file, provide the FILE specifier on
the OPEN statement.

It's possible for the statement statement used for sequential access to automatically recon-
nect a unit to an unnamed file. To do this, ensure that these conditions are met:

� The unit number doesn't exceed 99.

� There's a file definition with the ddname FTnnF001, where nn is the two-digit unit
number. This is the file to which the unit will be reconnected.

� The NOOCSTATUS run-time option is in effect.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, file has a value of blanks, and parm_count has
a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1917

FOR1920S The statement statement for unit unit-number, which was connected to file-
name, failed. The file definition referred to a file or device that was
restricted to input only. Fortran Version 2 Error Number: AFB108I (format
7)

Explanation: The statement is an output statement, but the file definition (DD statement or
ALLOCATE command) or the data set name given in the FILE specifier on the OPEN state-
ment referred to a file or device that doesn't allow output operations. Examples of such files
include:

� An in-stream data set (DD *)

� A data set whose DD statement specifies LABEL=(,,,IN)

� A file for which the system's access control facility (such as RACF) prevents you from
updating the data set

Programmer Response: Ensure that I/O statement to be executed is consistent with the
capabilities of the file or device referenced by the file definition (DD statement or ALLOCATE
command) or by the data set name given in the FILE specifier on the OPEN statement. You
might have to change either the file definition, the data set name, or the I/O statements used
to process the file.

If you want to perform output operations on a file, don't refer to an input-only data set such
as an in-stream data set (DD *), a data set for which you don't have RACF authority to
update, or a data set whose DD statement has a LABEL=(,,,IN) parameter.

System Action: If the error occurred during the execution of an OPEN statement, the unit
is no longer connected to a file. If neither the ERR nor the IOSTAT specifier is present on
the I/O statement, the condition is signaled. If the condition is unhandled, the application is
terminated.

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 623

 FOR1921S N FOR1922S

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1920

FOR1921S The statement statement for unit unit-number, which was connected to file-
name, failed. Execution of this statement was inconsistent with the ACTION
specifier on the OPEN statement, which had a value of action. Fortran
Version 2 Error Number: AFB122I

Programmer Response: Either change the value of the ACTION specifier on the OPEN
statement that connected the unit to the file, or change the logic of your program so that you
don't execute a statement that isn't allowed by the value that you provide for the ACTION
specifier. Also ensure that the ACCESS specifier has a value that indicates the type of file
access that you want to use. Here are the permissible statements based on the values of the
ACTION specifier and of the ACCESS specifier:

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1921

FOR1922S The statement statement for unit unit-number, which was connected to file-
name, failed. The file was not usable because a permanent I/O error was
detected Fortran Version 2 Error Number: AFB152I

Programmer Response: Determine the cause of the error on some previous I/O statement
that was executed for this unit, and correct the problem.

To continue using a file connected for sequential access after an error has occurred, execute
a REWIND statement.

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

Value of ACTION
Specifier

Value of
ACCESS
Specifier Permissible Input/Output Statements

READ SEQUENTIAL
KEYED

READ, BACKSPACE, REWIND, CLOSE with
STATUS='KEEP'

READ DIRECT READ, CLOSE with STATUS='KEEP'

READWRITE SEQUENTIAL READ, BACKSPACE, REWIND, WRITE, ENDFILE,
CLOSE with STATUS='KEEP'

READWRITE DIRECT READ, WRITE, CLOSE with any STATUS value

READWRITE KEYED READ, BACKSPACE, REWIND, WRITE, REWRITE,
DELETE, CLOSE with any STATUS value

WRITE SEQUENTIAL WRITE, ENDFILE, CLOSE with any STATUS value

WRITE DIRECT WRITE, CLOSE with any STATUS value

WRITE KEYED WRITE, CLOSE with STATUS='KEEP'

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

624 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1923S N FOR1924S

To use the same unit or file through a newly established file connection, execute a CLOSE
statement followed by an OPEN statement.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1922

FOR1923S The statement statement for unit unit-number, which was connected to file-
name, failed. An implied DO in the input or output item list inconsistently
specified the initial, terminal, and increment values. The initial value was
initial-value; the terminal value was terminal-value, and the increment value
was increment-value. Fortran Version 2 Error Number: AFB203I

Explanation: In the input or output item list of a READ or WRITE statement there was an
implied DO such as the following:

(A(I), I =initial-value, terminal-value, increment-value)

For one of the levels of nesting in the implied DO, the combination of initial-value, terminal-
value, and increment-value was incorrect in one of these ways:

� increment-value = 0

� terminal-value < initial-value and increment-value > 0

� terminal-value > initial-value and increment-value < 0

Programmer Response: Ensure that the combination of the initial value, terminal value,
and increment value in the implied DO doesn't have any of the inconsistencies listed under
“Explanation” for any level of nesting.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1923

FOR1924S The statement statement for unit unit-number failed. The statement was exe-
cuted from within an MTF parallel subroutine and referred to an unnamed
file. Fortran Version 2 Error Number: AFB923I

Programmer Response: Change the MTF parallel subroutine so that the I/O statements
refer only to named rather than to unnamed files. A file is an unnamed file in either of these
cases:

� The OPEN statement that connects the unit and the file has no FILE specifier.

� The unit is seen as preconnected to a file because a sequential I/O statement is exe-
cuted for the unit before an OPEN statement. (Except for the standard input unit, the
error message unit, and the print unit, preconnected files don't exist in an MTF parallel
subroutine.)

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 625

 FOR1925S N FOR1925S

A file is a named file if the OPEN statement that connects the unit and the file has a FILE
specifier. Therefore, in the parallel subroutine include the FILE specifier on each OPEN
statement that's used to connect a unit to a file.

If the OPEN statement has no FILE specifier and you want that OPEN statement to refer to
an existing connection between the unit and a file, then ensure that the unit is already con-
nected to a file before the OPEN statement is executed. (Failure to observe this restriction
could cause the OPEN statement to be interpreted as referring to an unnamed file.)

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled either in the parallel subroutine
or in the main task program, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, file has a value of blanks, and parm_count has
a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1924

FOR1925S The statement statement for unit unit-number, which was the error message
unit, failed. The statement or the form of the statement that was used is not
permitted for the error message unit. Fortran Version 2 Error Number:
AFB234I

Explanation: The statement statement referred to the error message unit and therefore to
the Language Environment message file, but was other than one of the following statements
that is allowed to refer explicitly to the error message unit:

 � OPEN statement
 � INQUIRE statement
 � CLOSE statement
� WRITE statement for sequential access and formatted I/O

The following statements refer to the print unit. They are allowed to refer implicitly to the
error message unit when the error message unit and the print unit are the same unit:

 � PRINT statement
� WRITE statement that has * as the unit identifier

Programmer Response: Change the program so that if you refer to the error message unit
you use only the statements or forms of statements listed under “Explanation.” For example,
do not use these statements:

� WRITE statement for direct access (REC specifier)
� WRITE statement for keyed access (KEY specifier)
� WRITE statement for asynchronous I/O (ID specifier)
� WRITE statement for unformatted I/O (no format specifier)

 � ENDFILE statement
 � REWIND statement
 � BACKSPACE statement
 � DELETE statement
 � REWRITE statement

If you need to use any of the prohibited statements or forms of statements, change the unit
specifier to refer to some unit other than the error message unit. If you need only the BACK-
SPACE, REWIND, or ENDFILE statements in conjunction with output that's directed to the
print unit (rather than explicitly to the error message unit), then take both of the following
actions:

� Use the ERRUNIT and PRTUNIT run-time options to define the error message unit and
the print unit as different units.

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

626 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1926S N FOR1927S

� On the BACKSPACE, REWIND, or ENDFILE statement, provide a unit number that is
the same as what you've used as the value of the PRTUNIT run-time option.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, file has a value of blanks, and parm_count has
a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1925

FOR1926S locator-text The file name was file-name. The immediately previous invoca-
tion of the FILEINF callable service failed. Fortran Version 2 Error Number:
AFB219I (format 9)

Programmer Response: Determine the cause of the error that caused the previous call to
the FILEINF callable service to fail; then correct the problem.

If the call to the FILEINF callable service doesn't need to be used for the OPEN or INQUIRE
statement, then remove the call.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1926

FOR1927S An I/O statement was executed, but some other I/O statement had not yet
completed. Fortran Version 2 Error Number: AFB904I

Explanation: There was a recursive call to the Fortran input/output library routines that are
part of Language Environment. Here are some situations that could have caused the recur-
sive call:

� Within the input item list on a READ statement there was a reference to a user-written
function that performs some other I/O operation. To illustrate this situation, here's an
example of a READ statement with a function reference:

READ (8) I, A(INXFUNC(I))

and here's an example of the referenced function subprogram with a PRINT statement
whose execution causes error FOR1927 to be detected:

FUNCTION INXFUNC (X)
 INTEGERC4 INXFUNC
 INTEGERC4 X

IF (X .GT. 4) THEN
PRINT C, 'INCORRECT SUBSCRIPT VALUE. ASSUMING 1.'
INXFUNC = 1

 ELSE
INXFUNC = X

 ENDIF
 END

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 627

 FOR1928S N FOR1928S

� As a result of some error that was detected during the execution of a Fortran I/O state-
ment, the following occurred:

1. The condition representing the error was signaled.

2. Assuming that a user-written condition handler had been registered before the I/O
statement was executed, the condition handler was entered. This condition handler
included a Fortran subprogram.

3. The Fortran subprogram executed a PRINT statement to report the error.

The condition handling was considered to be a subordinate part of the original failing I/O
statement. Therefore, execution of the PRINT statement in the condition handler caused
the prohibited recursive entry into the input/output library and thus caused error
FOR1927 to be detected.

Programmer Response: Restructure the program to avoid the recursive entry into the
Fortran input/output library.

System Action: The ERR and IOSTAT specifiers are not honored. The condition is sig-
naled. If the condition is unhandled, the application is terminated.

Qualifying Data:

Permissible Resume Actions: None Symbolic Feedback Code: FOR1927

FOR1928S During execution of an I/O statement that had an IOSTAT specifier, a condi-
tion occurred from the internal use of some Language Environment call-
able service.

Explanation: Some unusual condition occurred during the execution of an I/O statement
that had an IOSTAT=ios specifier, where ios was an INTEGER*4 variable. This condition
wasn't one that was detected by the Fortran library portion of Language Environment but
rather by one of the internally used routines that are part of Language Environment. Because
the IOSTAT specifier was present, this condition was not signaled. Instead, a value of 1928
was returned in ios.

(If ios had been a character variable of length 12, the condition token reflecting the condition
that was detected would have been returned. If the IOSTAT specifier had not been present,
that condition would have been signaled.)

Programmer Response: If there isn't some obvious problem involving either the I/O state-
ment, the file definition (DD statement or ALLOCATE command), or the virtual storage avail-
able to the application, remove (at least temporarily) the IOSTAT specifier. Then the
condition reflecting the problem that was detected will be signaled.

System Action: If the IOSTAT=ios specifier is present on the I/O statement, and if ios is an
integer variable, the value 1928 is returned in ios. If ios is a character variable of length 12,
the condition token that reflects the error that was detected by the internally executed call-
able service is returned in ios.

If neither the ERR nor the IOSTAT specifier is present on the I/O statement, the condition
detected by the internally executed callable service is signaled. If the condition is unhandled,
the application is terminated.

Qualifying Data: None

Permissible Resume Actions: None

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 4

2 statement Input CHARACTER*12 The name of the I/O statement
being processed

3 unit Input INTEGER*4 Undefined

4 file Input CHARACTER*62 Undefined

628 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR1929S N FOR1931S

Symbolic Feedback Code: FOR1928

FOR1929S The statement statement for unit unit-number, which was connected to file-
name, failed. The ADVANCE specifier had a value of advance, which was
other than YES or NO.

Programmer Response: Based on whether you want to use advancing or nonadvancing
input/output, change the value of the ADVANCE specifier on the statement statement to YES
or NO. If you code the value as a character constant, enclose the value in quotes or apostro-
phes.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1929

FOR1930S The statement statement for unit unit-number, which was connected to file-
name, failed. The EOR specifier was provided on a formatted READ state-
ment that did not have an ADVANCE specifier with the value NO.

Programmer Response: If you want to use the advancing READ statement, that is, the
conventional form of the READ statement, remove the EOR specifier from the READ state-
ment. Also remove the SIZE specifier if it is present.

If you want to use nonadvancing input/output, then on the READ statement provide an
ADVANCE specifier with a value of NO. If you code the value as a character constant,
enclose the value in quotes or apostrophes.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1930

FOR1931S The statement statement for unit unit-number, which was connected to file-
name, failed. The SIZE specifier was provided on a formatted READ state-
ment that did not have an ADVANCE specifier with the value NO.

Programmer Response: If you want to use the advancing READ statement, that is, the
conventional form of the READ statement, remove the SIZE specifier from the READ state-
ment. Also remove the EOR specifier if it is present.

If you want to use nonadvancing input/output, then on the READ statement provide an
ADVANCE specifier with a value of NO. If you code the value as a character constant,
enclose the value in quotes or apostrophes.

System Action: If neither the ERR nor the IOSTAT specifier is present on the I/O state-
ment, the condition is signaled. If the condition is unhandled, the application is terminated.

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

 Chapter 13. Fortran Run-Time Messages 629

 FOR2000C N FOR2001C

Qualifying Data: Only the basic set of four qualifying data for I/O conditions as shown in
Table 9 on page 480. Within this basic set, parm_count has a value of 4.

Permissible Resume Actions:

Symbolic Feedback Code: FOR1931

FOR2000C The MTF parallel subroutine load module module-name, the name of which
was specified in the AUTOTASK run-time option, did not exist in the load
library specified by the AUTOTASK file definition statement. VS FORTRAN
Version 2 Error Number: AFB919I-1

Programmer Response: Ensure that your multitasking facility (MTF) parallel subroutine
load module was link-edited as a member of the partitioned data set referenced by the file
definition (DD statement or ALLOCATE command) with the ddname of AUTOTASK. Use the
name of this member in the AUTOTASK run-time option, which must be in the following
format:

AUTOTASK(loadmod,numtasks)

where:

loadmod
Is the name of the parallel subroutine load module; that is, the name of the member in
the data set referenced by the file definition with the ddname AUTOTASK.

numtasks
Is the number of tasks to be created by MTF.

System Action: The condition is signaled, and the application is terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2000

FOR2001C The PDS member member-name, the name of which was specified in the
AUTOTASK run-time option as the name of the MTF parallel subroutine
load module, was not a valid load module. VS FORTRAN Version 2 Error
Number: AFB919I-2

Programmer Response: Ensure that your multitasking facility (MTF) parallel subroutine
load module was link-edited as a member of the partitioned data set referenced by the file
definition (DD statement or ALLOCATE command) with the ddname of AUTOTASK. Use the
name of this member in the AUTOTASK run-time option, which must be in the following
format:

AUTOTASK(loadmod,numtasks)

where:

loadmod
Is the name of the parallel subroutine load module; that is, the name of the member in
the data set referenced by the file definition with the ddname AUTOTASK.

numtasks
Is the number of tasks to be created by MTF.

System Action: The condition is signaled, and the application is terminated.

Qualifying Data: None

Permissible Resume Actions: None

Name Action Taken after Resumption

RN The I/O operation is not completed, and execution continues.

630 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR2003C N FOR2005C

Symbolic Feedback Code: FOR2001

FOR2003C The MTF parallel subroutine load module module-name, the name of which
was specified in the AUTOTASK run-time option, had the not-editable
linkage editor attribute. VS FORTRAN Version 2 Error Number: AFB919I-3

Programmer Response: Ensure that your multitasking facility (MTF) parallel subroutine
load module was link-edited as a member of the partitioned data set referenced by the file
definition (DD statement or ALLOCATE command) with the ddname of AUTOTASK. Also
ensure that there were no failures during the link-editing process.

System Action: The condition is signaled, and the application is terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2003

FOR2004C The MTF parallel subroutine load module module-name, the name of which
was specified in the AUTOTASK run-time option, did not contain the entry
point VFEIS#. VS FORTRAN Version 2 Error Number: AFB919I-4

Programmer Response: Ensure that your multitasking facility (MTF) parallel subroutine
load module was link-edited as a member of the partitioned data set referenced by the file
definition (DD statement or ALLOCATE command) with the ddname of AUTOTASK. Also
ensure that the module VFEIS# was included during the link-edit process. As an example of
how to link-edit your parallel subroutine load module, assume that:

� You've compiled your parallel subroutine, and it's in the temporary data set
&&LOADSET.

� You want the load module to be given the member name SUB001, and you want it
placed in the load load with the data set name MY.SUB.LOAD.

Then you would code the following job step to link-edit your parallel subroutine load module:

 //LINKPS EXEC CEEWCL,PGMLIB='MY.SUB.LOAD',GOPGM=SUB##1
 //SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
 // DD C
 INCLUDE SYSLIB(VFEIS#)
 ENTRY VFEIS#
 /C

System Action: The condition is signaled, and the application is terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2004

FOR2005C The MTF parallel subroutine load module module-name, the name of which
was specified in the AUTOTASK run-time option, contained VFEIS#, but
VFEIS# was not the entry point of the load module. VS FORTRAN Version 2
Error Number: AFB919I-5

Programmer Response: Ensure that your multitasking facility (MTF) parallel subroutine
load module was link-edited as a member of the partitioned data set referenced by the file
definition (DD statement or ALLOCATE command) with the ddname of AUTOTASK. Also
ensure that the your parallel subroutine is a subroutine subprogram, or possibly more than
one subroutine subprogram, and that there is no main program.

As an example of how to link-edit your parallel subroutine load module, assume that:

� You've compiled your parallel subroutine, and it's in the temporary data set
&&LOADSET.

� You want the load module to be given the member name SUB001, and you want it
placed in the load load with the data set name MY.SUB.LOAD.

 Chapter 13. Fortran Run-Time Messages 631

 FOR2030C N FOR2032C

Then you would code the following job step to link-edit your parallel subroutine load module:

 //LINKPS EXEC CEEWCL,PGMLIB='MY.SUB.LOAD',GOPGM=SUB##1
 //SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
 // DD C
 INCLUDE SYSLIB(VFEIS#)
 ENTRY VFEIS#
 /C

System Action: The condition is signaled, and the application is terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2005

FOR2030C The AUTOTASK file definition statement was missing. VS FORTRAN
Version 2 Error Number: AFB925I-1

Programmer Response: Ensure that your multitasking facility (MTF) parallel subroutine
load module was link-edited as a member of a partitioned data set. Do not use a partitioned
data set extended (PDSE). Provide a file definition (DD statement or ALLOCATE command)
with the ddname of AUTOTASK; in this file definition, refer to the data set into which you
link-edited your parallel subroutine load module.

System Action: The condition is signaled, and the application is terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2030

FOR2031C The AUTOTASK file definition statement did not specify a load library. VS
FORTRAN Version 2 Error Number: AFB925I-2

Programmer Response: Ensure that your multitasking facility (MTF) parallel subroutine
load module was link-edited as a member of a partitioned data set. Do not use a partitioned
data set extended (PDSE). In the file definition (DD statement or ALLOCATE command) with
the ddname of AUTOTASK, refer to the data set into which you link-edited your parallel sub-
routine load module.

System Action: The condition is signaled, and the application is terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2031

FOR2032C The OPEN macro instruction executed for the load library that was speci-
fied by the AUTOTASK file definition statement and that should contain the
MTF parallel subroutine load module had a system completion code of
completion-code and a reason code of reason-code. Seek assistance from
your Language Environment support personnel. VS FORTRAN Version 2
Error Number: AFB925I-1

Explanation: During the initialization of the Fortran multitasking facility (MTF), Language
Environment executed an OPEN macro instruction that referred to the file definition (DD
statement or ALLOCATE command) with a ddname of AUTOTASK. (This is the file definition
that is supposed to refer to the partitioned data set (PDS) into which was link-edited the
parallel subroutine load module with the name given in the AUTOTASK run-time option.)
Either MVS or DFSMS/MVS detected the error indicated by system completion (abend) code
completion-code and reason code reason-code.

Programmer Response: Ensure that the file definition with the ddname AUTOTASK is
coded correctly and that it refers to the PDS (not PDSE) into which was link-edited the par-
allel subroutine load module with the name given in the AUTOTASK run-time option.

632 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR2040S N FOR2041S

For the meaning of system completion code completion-code and reason code reason-code,
and for possible corrective actions, refer to OS/390 MVS System Codes.

System Action: The condition is signaled, and the application is terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2032

FOR2040S The MTF callable service service-name failed. The service was called from
an MTF parallel subroutine. VS FORTRAN Version 2 Error Number:
AFB920I-1, AFB157I-1

Explanation: The multitasking facility (MTF) callable service service-name was called from
a parallel subroutine. However, this service is restricted to use in the main task program.

Programmer Response: Remove the call to service-name from the parallel subroutine,
and, if necessary, place the call in the main task program instead.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data:

Permissible Resume Actions:

Symbolic Feedback Code: FOR2040

FOR2041S The MTF callable service service-name failed. The service was called with
an argument list in an incorrect format. VS FORTRAN Version 2 Error
Number: AFB920I-2, AFB157I-3

Explanation: The argument list provided in the call to the service-name callable service
was incorrect in one of these ways:

� There was no argument list when one was required.

� The argument list had an incorrect number of arguments.

� For either the DSPTCH or SHRCOM callable service, the argument list wasn't in the
internally-generated form produced by the Fortran compiler when there are character
arguments. This could have occurred because:

– The first argument was not of character type.

– The call was made from a program compiled by the VS FORTRAN Version 1 or the
VS FORTRAN Version 2 compiler with the the LANGLVL(66) compiler option.

– The call was made from a program compiled by the VS FORTRAN Version 1 com-
piler at a level prior to Release 3.

– The call was made from a program compiled by the FORTRAN IV H Extended or the
FORTRAN IV G1 compiler.

– The call was made from an assembler language program, and the arguments were
not provided in the form required when there are character arguments.

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 2

2 service-name Input CHARACTER*6 The name of the MTF callable
service

Name Action Taken after Resumption

RN The service is ignored, and execution resumes.

 Chapter 13. Fortran Run-Time Messages 633

 FOR2042S N FOR2042S

Programmer Response: Ensure that the argument list contains the required number of
arguments and that the arguments are of the required type. For further information, refer to
the chapter “Multitasking Facility (MTF) Subroutines” in VS FORTRAN Version 2 Language
and Library Reference.

For either the DSPTCH or SHRCOM callable service, follow these rules: If the program is
written in Fortran, compile it with the VS FORTRAN Version 2 compiler, and do not specify
the LANGLVL(66) compiler option. If it is written in assembler language, use the Fortran con-
ventions for argument lists with character arguments. These conventions are described in the
section “Passing Character Arguments Using the Standard Linkage Convention” in Appendix
B of VS FORTRAN Version 2 Programming Guide for CMS and MVS.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data:

Permissible Resume Actions:

Symbolic Feedback Code: FOR2041

FOR2042S The MTF callable service service-name failed. The multitasking facility was
not active. VS FORTRAN Version 2 Error Number: AFB920I-3

Programmer Response: If you intend to use the Fortran multitasking facility (MTF), then
do the following to make MTF active for the application:

1. Link-edit your parallel subroutine load module as a member of a partitioned data set.

2. Provide a file definition (DD statement or ALLOCATE command) with the ddname of
AUTOTASK. Refer this file definition to the data set into which you link-edited your par-
allel subroutine load module.

3. Provide the AUTOTASK run-time option in the following format:

AUTOTASK(loadmod,numtasks)

where:

loadmod
Is the name of the parallel subroutine load module; that is, the name of the member
in the data set referenced by the file definition with the ddname AUTOTASK.

numtasks
Is the number of tasks to be created by MTF.

If you didn't intend to use MTF, then make one of these changes:

� If the call to service-name was meant to refer to one of your own routines rather than to
the MTF callable service, then during the link-editing of your application, ensure that your
own routine is included in the load module. Do this either by using the linkage editor
INCLUDE statement or by concatenating the library containing your routine ahead of the
Language Environment product library in the SYSLIB DD statement.

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 2

2 service-name Input CHARACTER*6

The name of the
MTF callable service

Name Action Taken after Resumption

RN The service is ignored, and execution resumes.

634 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR2044S N FOR2044S

� If the call to service-name was coded to use the MTF callable service, then remove the
call because you can't use this callable service unless MTF is active for the application
(as discussed earlier).

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data:

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2043

FOR2044S The MTF callable service SHRCOM failed. The dynamic common block
common-name was not declared in any program unit that was invoked in
the main task program. VS FORTRAN Version 2 Error Number: AFB099I

Programmer Response: Ensure that common block name, common-name, given as the
argument for the SHRCOM callable service is the name that you intended. If you code the
name as a character constant, enclose the name in quotes or apostrophes.

Also ensure that at least one program unit that was entered before the SHRCOM callable
service was invoked has a declaration of the common block as a dynamic common block.
(Declaring it in the program unit that invokes the SHRCOM callable service meets this
requirement.) Specify the common block as a dynamic common block by supplying its name
as a suboption of the DC compile-time option.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data:

Permissible Resume Actions:

Permissible Resume Actions:

Symbolic Feedback Code: FOR2044

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 2

2 service-name Input CHARACTER*6 The name of the MTF callable
service

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 3

2 service-name Input CHARACTER*6 SHRCOM

3 common-
name

Input CHARACTER*31 The name of the dynamic common
block

Name Action Taken after Resumption

RN The service is ignored, and execution resumes.

 Chapter 13. Fortran Run-Time Messages 635

 FOR2056S N FOR2057S

FOR2056S MTF subtask subtask-number abnormally terminated during execution of
parallel subroutine subroutine-name. The system completion code was
system-completion-code, and the reason code was reason-code. VS
FORTRAN Version 2 Error Number: AFB922I-2

Explanation: At the time that a call was made to one of multitasking facility (MTF) callable
services SYNCRO, DSPTCH, or SHRCOM, Language Environment detected that the parallel
subroutine subroutine-name in MTF subtask subtask-number had ended unexpectedly
because of the abnormal termination indicated by the system completion code completion-
code and reason code reason-code. The message describing this abnormal termination is in
the message file for the subtask. This message file is the one referenced by the file definition
(DD statement or ALLOCATE command) with the ddname FTERRsss, where sss is the
three-digit representation of subtask-number.

Programmer Response: For the meaning of system completion code completion-code and
reason code reason-code, and for possible corrective actions, refer to OS/390 MVS System
Codes.

System Action: The condition FOR2056 is signaled in the main task program. If the condi-
tion is unhandled, the application is terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2056

FOR2057S MTF subtask subtask-number abnormally terminated during execution of
parallel subroutine subroutine-name. The user completion code was user-
completion-code, and the reason code was reason-code. VS FORTRAN
Version 2 Error Number: AFB922I-2

Explanation: At the time that a call was made to one of multitasking facility (MTF) callable
services SYNCRO, DSPTCH, or SHRCOM, Language Environment detected that the parallel
subroutine subroutine-name in MTF subtask subtask-number had ended unexpectedly
because of the abnormal termination indicated by the user completion code completion-code
and reason code reason-code. If the parallel subroutine wrote any output on the message
file before terminating, that output is in the message file for the subtask. This message file is
the one referenced by the file definition (DD statement or ALLOCATE command) with the
ddname FTERRsss, where sss is the three-digit representation of subtask-number.

The abnormal termination was requested by executing an assembler language ABEND
macro instruction or by calling one of the CEE3ABD, SYSABN, or SYSABD callable ser-
vices, among others. The exact meaning of the user completion code completion-code and
reason code reason-code depends on the application that requested the abnormal termi-
nation. Some form of information about the meaning of these codes should be available to
users of that application.

Programmer Response: Correct the problem indicated by the user completion code
completion-code and reason code reason-code.

System Action: The condition FOR2057 is signaled in the main task program. If the condi-
tion is unhandled, the application is terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2057

636 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR2058S N FOR2060S

FOR2058S MTF subtask subtask-number terminated during execution of MTF parallel
subroutine subroutine-name because of an unhandled condition of severity
severity. VS FORTRAN Version 2 Error Number: AFB922I-2

Explanation: At the time that a call was made to one of multitasking facility (MTF) callable
services SYNCRO, DSPTCH, or SHRCOM, Language Environment detected that the parallel
subroutine subroutine-name in MTF subtask subtask-number had ended unexpectedly
because of an unhandled condition of severity severity. The message describing this condi-
tion is in the message file for the subtask. This message file is the one referenced by the file
definition (DD statement or ALLOCATE command) with the ddname FTERRsss, where sss is
the three-digit representation of subtask-number.

Programmer Response: Correct the problem indicated by the unhandled condition.

System Action: The condition FOR2058 is signaled in the main task program. If the condi-
tion is unhandled, the application is terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2058

FOR2059S A CSECT with the name CEEUOPT was present in the MTF parallel subrou-
tine load module.

Programmer Response: Link-edit the parallel subroutine load module without the CSECT
with the name CEEUOPT.

If you want to provide run-time options that are link-edited with the application, then link-edit
the CSECT with the name CEEUOPT into the main task load module. The run-time options
that you specify in this manner or in any other manner will apply in the main task program
and in all parallel subroutines.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2059

FOR2060S The MTF callable service DSPTCH could not be completed. The first argu-
ment to the DSPTCH callable service specified that subroutine-name was to
be invoked as a parallel subroutine, but the parallel subroutine load
module did not contain a subroutine with the specified name. VS FORTRAN
Version 2 Error Number: AFB921I

Programmer Response: Ensure that the parallel subroutine name, subroutine-name, given
as the first argument for the DSPTCH callable service is the name that you intended. If you
code the name as a character constant, enclose the name in quotes or apostrophes. Do not
provide a name that exceeds eight characters in length.

Ensure that the parallel subroutine subroutine-name is link-edited into your multitasking
facility (MTF) parallel subroutine load module. Also ensure that this load module is link-edited
as a member of the partitioned data set referenced by the file definition (DD statement or
ALLOCATE command) with the ddname of AUTOTASK. Use the name of this member in the
AUTOTASK run-time option, which must be in the following format:

AUTOTASK(loadmod,numtasks)

where:

loadmod
Is the name of the parallel subroutine load module; that is, the name of the member in
the data set referenced by the file definition with the ddname AUTOTASK.

 Chapter 13. Fortran Run-Time Messages 637

 FOR2062C N FOR2063C

numtasks
Is the number of tasks to be created by MTF.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data:

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2060

FOR2062C During MTF initialization, the macro-name macro instruction had a return
code of return-code. Seek assistance from your Language Environment
support personnel. VS FORTRAN Version 2 Error Number: AFB924I

Explanation: During the initialization of the Fortran multitasking facility (MTF), Language
Environment executed a macro-name macro instruction. Either MVS or DFSMS/MVS
detected the error indicated by return code return-code.

Programmer Response:

For the meaning of return code return-code, and for possible corrective actions, refer to one
of the following:

OS/390 MVS System Codes
OS/390 DFSMS Macro Instructions for Data Sets

If you are unable to resolve the problem, seek assistance from your Language Environment
support personnel.

System Action: The condition is signaled, and the application is terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2062

FOR2063C During MTF initialization, the macro-name macro instruction had a return
code of return-code and a reason code of reason-code. Seek assistance from
your Language Environment support personnel. VS FORTRAN Version 2
Error Number: AFB925I

Explanation: During the initialization of the Fortran multitasking facility (MTF), Language
Environment executed a macro-name macro instruction. Either MVS or DFSMS/MVS
detected the error indicated by return code return-code and reason code reason-code.

Programmer Response:

For the meaning of return code return-code and reason code reason-code, and for possible
corrective actions, refer to one of the following:

OS/390 MVS System Codes
OS/390 DFSMS Macro Instructions for Data Sets

If you are unable to resolve the problem, seek assistance from your Language Environment
support personnel.

System Action: The condition is signaled, and the application is terminated.

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 3

2 service-name Input CHARACTER*6 DSPTCH

3 subroutine-
name

Input CHARACTER*8 The name of the MTF parallel sub-
routine

638 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR2064S N FOR2064S

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2063

FOR2064S The MTF callable service DSPTCH could not be completed. The MTF main
task program was operating in 31-bit addressing mode, but the parallel
subroutine load module had the linkage editor attribute that indicated 24-bit
addressing mode. VS FORTRAN Version 2 Error Number: AFB927I

Programmer Response: Determine whether any routine in the parallel subroutine load
module must execute in 24-bit addressing mode or why the linkage editor gave it the attri-
bute indicating that it must. For example, code compiled by the FORTRAN IV H Extended
compiler must run in 24-bit addressing mode; therefore, if the parallel subroutine load
module contains such code, then this attribute is correct.

If a routine in the parallel subroutine load module must execute in 24-bit addressing mode,
then ensure that the main task program is running in 24-bit addressing mode at the time that
it calls the DSPTCH callable service. Do this in one of these ways:

� When you link-edit the main task program, provide these linkage editor options:

AMODE=24
RMODE=24

This causes the main task program to be invoked in 24-bit addressing mode and to
reside below 16 Mb.

� If a portion of the main task program must run in 31-bit addressing mode, then use an
assembler language routine to switch into 24-bit addressing mode at some point prior to
calling the DSPTCH callable service. (Also switch back into 31-bit addressing mode as
necessary.) Remember that in order to switch successfully into 24-bit addressing mode,
the load module must reside below 16 Mb. To ensure that the load module is loaded
below 16 Mb, provide this linkage editor option:

RMODE=24

If you're sure that no routine in the parallel subroutine load module must be invoked in 24-bit
addressing mode, then when you link-edit this load module, provide this linkage editor
option:

AMODE=31

In addition, if the parallel subroutine load module can reside above 16 Mb, then provide this
linkage editor option as well:

RMODE=ANY

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data:

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2064

No. Name Input/Output
Data Type and
Length Value

1 parm-count Input INTEGER*4 3

2 service-name Input CHARACTER*6 DSPTCH

3 subroutine-
name

Input CHARACTER*8 The name of the MTF parallel sub-
routine

 Chapter 13. Fortran Run-Time Messages 639

 FOR2065C N FOR2069C

FOR2065C The MTF main task program load module was created with Language Envi-
ronment, but the MTF parallel subroutine load module was created with VS
FORTRAN. VS FORTRAN Version 2 Error Number: AFB928I

Programmer Response: Link-edit parallel subroutine load module using Language Envi-
ronment. This is required because your main task program was link-edited using Language
Environment.

If, when you link-edit your parallel subroutine load module, you want to use your executable
load module (rather than the original object modules) as input to the linkage editor, then
remember to replace the VS FORTRAN library modules that are in that load module. For
information on how to do this, refer to OS/390 Language Environment Programming Refer-
ence.

System Action: The condition is signaled, and the application is terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2065

FOR2067S The MTF main task program terminated while subtask subtask-number was
still executing parallel subroutine subroutine-name. VS FORTRAN Version 2
Error Number: AFB930I

Programmer Response: Ensure that before the main task program ends it invokes the
SYNCRO callable service to wait for the completion of the parallel subroutines.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2067

FOR2068C MTF internal error error-number was detected. Seek assistance from your
Language Environment support personnel. VS FORTRAN Version 2 Error
Number: AFB931I

Programmer Response: Because this error is not likely to be caused by your application,
seek assistance from your Language Environment support personnel.

System Action: The condition is signaled, and the application is terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2068

FOR2069C MTF subtask subtask-number failed during initialization. VS FORTRAN
Version 2 Error Number: AFB922I-1

Explanation: During the initialization of the Fortran multitasking facility (MTF) by Language
Environment, subtask subtask-number couldn't be started successfully. The message
describing this situation is in the message file for the subtask. This message file is the one
referenced by the file definition (DD statement or ALLOCATE command) with the ddname
FTERRsss, where sss is the three-digit representation of subtask-number.

Programmer Response: Correct the problem indicated in the message file for subtask
subtask-number.

System Action: The condition is signaled, and the application is terminated.

Qualifying Data: None

Permissible Resume Actions: None

640 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR2070I N FOR2072I

Symbolic Feedback Code: FOR2069

FOR2070I MTF subtask subtask-number abnormally terminated during execution of
parallel subroutine subroutine-name. The system completion code was
system-completion-code, and the reason code was reason-code. VS
FORTRAN Version 2 Error Number: AFB922I-2

Explanation: The parallel subroutine subroutine-name in MTF subtask subtask-number
ended unexpectedly because of the abnormal termination indicated by the system com-
pletion code completion-code and reason code reason-code. The message describing this
abnormal termination is in the message file for the subtask. This message file is the one
referenced by the file definition (DD statement or ALLOCATE command) with the ddname
FTERRsss, where sss is the three-digit representation of subtask-number.

Programmer Response: For the meaning of system completion code completion-code and
reason code reason-code, and for possible corrective actions, refer to OS/390 MVS System
Codes.

System Action: The condition FOR2070 is signaled in the main task program during termi-
nation of the application.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2070

FOR2071I MTF subtask subtask-number ended during execution of MTF parallel sub-
routine subroutine-name because a statement that requested an immediate
termination was executed. The subtask return code was return-code. VS
FORTRAN Version 2 Error Number: AFB922I-3

Explanation: The parallel subroutine subroutine-name in MTF subtask subtask-number
ended because of a request to explicitly terminate the application with return code return-
code. Examples of such requests include the execution either of a STOP statement or of a
call to the EXIT or SYSRCX callable service.

Programmer Response: Correct the problem indicated either by return code return-code or
by any other messages the parallel subroutine wrote.

System Action: The condition FOR2071 is signaled in the main task program during termi-
nation of the application.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2071

FOR2072I MTF subtask subtask-number terminated during execution of MTF parallel
subroutine subroutine-name because of an unhandled condition of severity
severity. VS FORTRAN Version 2 Error Number: AFB922I-2

Explanation: The parallel subroutine subroutine-name in MTF subtask subtask-number
ended unexpectedly because of an unhandled condition of severity severity. The message
describing this condition is in the message file for the subtask. This message file is the one
referenced by the file definition (DD statement or ALLOCATE command) with the ddname
FTERRsss, where sss is the three-digit representation of subtask-number.

Programmer Response: Correct the problem indicated by the unhandled condition.

System Action: The condition FOR2072 is signaled in the main task program during termi-
nation of the application.

Qualifying Data: None

Permissible Resume Actions: None

 Chapter 13. Fortran Run-Time Messages 641

 FOR2073I N FOR2101S

Symbolic Feedback Code: FOR2072

FOR2073I MTF subtask subtask-number abnormally terminated during execution of
parallel subroutine subroutine-name. The user completion code was user-
completion-code, and the reason code was reason-code. VS FORTRAN
Version 2 Error Number: AFB922I-2

Explanation: The parallel subroutine subroutine-name in MTF subtask subtask-number
ended unexpectedly because of the abnormal termination indicated by the user completion
code completion-code and reason code reason-code. If the parallel subroutine wrote any
output on the message file before terminating, that output is in the message file for the
subtask. This message file is the one referenced by the file definition (DD statement or
ALLOCATE command) with the ddname FTERRsss, where sss is the three-digit represen-
tation of subtask-number.

The abnormal termination was requested by executing an assembler language ABEND
macro instruction or by calling one of the CEE3ABD, SYSABN, or SYSABD callable ser-
vices, among others. The exact meaning of the user completion code completion-code and
reason code reason-code depends on the application that requested the abnormal termi-
nation. Some form of information about the meaning of these codes should be available to
users of that application.

Programmer Response: Correct the problem indicated by the user completion code
completion-code and reason code reason-code.

System Action: The condition FOR2073 is signaled in the main task program during termi-
nation of the application.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2073

FOR2101S Based on the value given for the SIZE suboption of the VECTOR compile-
time option, the program unit was compiled so that it could run only on a
machine with a section size of comp-section-size. However, execution was
on a machine with a section size of mach-section-size. VS FORTRAN
Version 2 Error Number: AFB934I

Explanation: When the program unit was compiled, the VECTOR compile-time option had
one of these forms:

VECTOR(... SIZE(LOCAL) ...)
In this case, the machine on which the program unit was compiled had a section
size of comp-section-size, and the compiler produced code that could be run only on
a machine with this same section size.

VECTOR(... SIZE(comp-section-size) ...)
In this case, the compiler was directed to produce code that could be run only on a
machine with a section size of comp-section-size.

In either case, because the compiled code was capable of running only on a machine with a
section size of comp-section-size, it couldn't be run on the machine that had a section size of
mach-section-size.

Programmer Response: If you want the compiled code to be able on run on machines
with various section sizes, then compile the program with the following VECTOR compile-
time option, which has the IBM-supplied default for the SIZE suboption:

VECTOR(... SIZE(ANY) ...)

When the SIZE(ANY) suboption is used, the code sequences are not as efficient as they
would be if the code were targeted only for machines with a specific section size.

If you can ensure that the compiled code will be run only on a machine with the a section
size of mach-section-size, and if you want the code to be optimized for machines with that
section size, then compile the program with the following VECTOR compile-time option:

642 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR2102S N FOR2121C

VECTOR (... SIZE(mach-section-size) ...)

If you can ensure that the compiled code will be run only on a machine with the same
section size as that on which it is compiled, and if you want the code to be optimized for
machines with that section size, then compile the program with the following VECTOR
compile-time option:

VECTOR(... SIZE(LOCAL) ...)

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2101

FOR2102S An internal table used to control the allocation of vector spill areas was
corrupted and couldn't be used. VS FORTRAN Version 2 Error Number:
AFB935I

Explanation: At entry to a program unit that was compiled with the VECTOR compile-time
option, a Language Environment routine detected an inconsistency in a table that was sup-
posed to control allocation of storage for vector spill areas, which are areas used to store the
contents of vector registers. Most likely the table in virtual storage was overlaid by some
routine (but not necessarily by the routine containing the table that was destroyed).

Programmer Response: Determine and correct the cause of the overlaid table. In Fortran
program units, this is often caused by:

� Using subscripts that reference virtual storage outside the declared bounds of an array

� Referring to variables that are in EQUIVALENCE statements when the variables are
declared to overlay too much storage

� Referring to storage that's addressed through a pointer whose value isn't properly estab-
lished

� In a CALL statement or function reference, providing actual arguments that are not con-
sistent with the dummy arguments declared in the subprogram. The actual arguments
could be of the wrong type, rank, or have the wrong array bounds. There could be an
incorrect number of actual arguments

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2102

FOR2121C A suboption of the AUTOTASK run-time option was missing. VS FORTRAN
Version 2 Error Number: AFB917I-1

Programmer Response: If you want to use the Fortran multitasking facility (MTF), provide
the AUTOTASK run-time option in the following format:

AUTOTASK(loadmod,numtasks)

where:

loadmod
Is the name of the parallel subroutine load module; that is, the name of the member in
the data set referenced by the file definition with the ddname AUTOTASK.

 Chapter 13. Fortran Run-Time Messages 643

 FOR2130C N FOR2131S

numtasks
Is the number of tasks to be created by MTF.

If you didn't intend to use MTF, then either remove the AUTOTASK run-time option or
specify the NOAUTOTASK run-time option.

System Action: The condition is signaled, and the application is terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2121

FOR2130C A construct of the parallel feature of VS FORTRAN Version 2 could not be
completed. Parallel programs cannot be executed using Language Environ-
ment.

Explanation: The program was compiled with VS FORTRAN Version 2 Release 5 or 6 and
was considered to be a parallel program for one or more of these reasons:

� The program contained parallel language constructs.

� The program invoked one of the parallel callable services (PEORIG, PEPOST, PEWAIT,
PETERM, PLCOND, PLFREE, PLLOCK, PLORIG, or PLTERM).

� The program was compiled with the PARALLEL compile-time option.

You cannot run a parallel program if it has been link-edited with Language Environment.

Programmer Response: If you want to link-edit and run the program with Language Envi-
ronment, then compile it without the PARALLEL compile-time option, and remove the parallel
language constructs and any calls to the parallel callable services.

If you want to continue to run the program as a parallel program, then link-edit it with the VS
FORTRAN Version 2 Release 6 library. In this case, don't code anything in the program
(including in any related subprograms) that makes use of any of the Language Environment
features that aren't in VS FORTRAN Version 2 Release 6. You can then run the program
either with the VS FORTRAN Version 2 Release 6 library or with Language Environment.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2130

FOR2131S The program program-name was compiled by VS FORTRAN Version 2 com-
piler with the EC option, which is not supported by Language Environment.

Explanation: The program was compiled with VS FORTRAN Version 2 Release 5 or 6 with
the EC compile-time option. This option specified that certain common blocks were be
treated as extended common blocks and that their virtual storage was to be allocated in data
spaces. You cannot run such a program if it has been link-edited with Language Environ-
ment.

Programmer Response: If you want to link-edit and run the program with Language Envi-
ronment, then compile it without the EC compile-time option. Specify the common blocks as
dynamic common blocks by giving their names as suboptions of the DC compile-time option.
However, unless you can reduce the size of the extended common blocks, this approach
won't work if the program and the common blocks won't fit in the primary address space.

If you want to continue to run the program with extended common blocks, then link-edit it
with the VS FORTRAN Version 2 Release 6 library. In this case, don't code anything in the
program (including in any related subprograms) that makes use of any of the Language
Environment features that aren't in VS FORTRAN Version 2 Release 6. You can then run

644 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 FOR2132S N FOR2133S

the program either with the VS FORTRAN Version 2 Release 6 library or with Language
Environment.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2131

FOR2132S An invalid argument was provided to an INTEGER*8 simulation routine. VS
FORTRAN Version 2 Error Number: AFB177I

Explanation: An INTEGER*8 simulation routine was implicitly referenced by the compiled
code because of the use of an integer variable of length 8. One of the arguments to this
routine had an unexpected value. Most likely the argument or argument list in virtual storage
was overlaid by some routine (but not necessarily by the routine containing the argument
that was destroyed).

Programmer Response: Determine and correct the cause of the overlaid argument. In
Fortran program units, this is often caused by:

� Using subscripts that reference virtual storage outside the declared bounds of an array

� Referring to variables that are in EQUIVALENCE statements when the variables are
declared to overlay too much storage

� Referring to storage that's addressed through a pointer whose value is not properly
established

� In a CALL statement or function reference, providing actual arguments that are not con-
sistent with the dummy arguments declared in the subprogram. The actual arguments
could be of the wrong type, rank, or have the wrong array bounds. There could be an
incorrect number of actual arguments

If you are unable to resolve the problem, seek assistance from your Language Environment
support personnel.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2132

FOR2133S A program interruption occurred during the simulation of an INTEGER*8
instruction. VS FORTRAN Version 2 Error Number: AFB178I

Explanation: An INTEGER*8 simulation routine in the Fortran library portion of Language
Environment was implicitly referenced by the compiled code because of the use of an integer
variable of length 8. During the execution of this simulation routine, a program interruption
occurred.

Programmer Response: Examine the operands involved in any use of integer variables of
length 8, and correct any errors that you find. Here are some errors that might have caused
the program interruption:

� Using subscripts that reference virtual storage outside the declared bounds of an array

� Referring to variables that are in EQUIVALENCE statements when the variables are
declared to overlay too much storage

� Referring to storage that's addressed through a pointer whose value isn't properly estab-
lished

 Chapter 13. Fortran Run-Time Messages 645

� In a CALL statement or function reference, providing actual arguments that are not con-
sistent with the dummy arguments declared in the subprogram. The actual arguments
could be of the wrong type, rank, or have the wrong array bounds. There could be an
incorrect number of actual arguments

If you are unable to resolve the problem, seek assistance from your Language Environment
support personnel.

System Action: The condition is signaled. If the condition is unhandled, the application is
terminated.

Qualifying Data: None

Permissible Resume Actions: None

Symbolic Feedback Code: FOR2133

646 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0004S N IBM0006S

Chapter 14. PL/I Run-Time Messages

The following messages pertain to PL/I for MVS & VM. Each message is followed
by an explanation describing the condition that caused the message, a programmer
response suggesting how you might prevent the message from occurring again,
and a system action indicating how the system responds to the condition that
caused the message.

The messages also contain a symbolic feedback code, which represents the first 8
bytes of a 12-byte condition token. You can think of the symbolic feedback code as
the nickname for a condition. As such, the symbolic feedback code can be used in
user-written condition handlers to screen for a given condition, even if it occurs at
different locations in an application.

The messages in this section contain alphabetic suffixes that have the following
meaning:

I Informational message
W Warning message
E Error message
S Severe error message
C Critical error message

IBM0004S The program terminated with user code= user-code

Explanation: The program terminated with a user code.

Programmer Response: Check your program documentation or the program source to
determine the reason the code was issued.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM004

IBM0005S The number of files, CONTROLLED variables, or fetched procedures
exceeded the limit.

Explanation: The total length of the pseudoregister vector for the program was more than
4096 bytes. Four bytes are used for each file constant, controlled variable, and fetched pro-
cedure.

Programmer Response: Modify the program so the pseudoregister vector does not exceed
4096 bytes by reducing the number of files or controlled variables used or by restructuring
the program into several external procedures.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM005

IBM0006S The program could not be executed because it did not have a main proce-
dure.

Explanation: There are two possible causes for this error:

� An attempt was made to run a program which contained one or more external PL/I pro-
cedures. None of the procedures had the MAIN or FETCHABLE option in the PROCE-
DURE statement.

� An attempt was made to FETCH a load module with entry PLISTART or CEESTART

 Copyright IBM Corp. 1991, 2000 647

 IBM0010W N IBM0021S

which contained one or more external PL/I procedures. None of the procedures had the
MAIN or FETCHABLE option in the PROCEDURE statement.

Programmer Response: Ensure that the first external PL/I procedure to be invoked has
the MAIN or FETCHABLE option in the PROCEDURE statement. When fetching a load
module, follow the instructions on “Link-Editing Fetchable Load Modules” in OS/390 Lan-
guage Environment Programming Guide.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM006

IBM0010W An invalid length or address was found in the PLICALLB argument list for
ISA, HEAP, or TASKHEAP storage. The length or address was ignored.

Explanation: If the length or address of ISA, HEAP, or TASKHEAP storage is provided, it
must be valid and for the length it must be a multiple of 8 bytes and for the address it must
be on a double-word boundary.

Programmer Response: Check the provided length and/or address to make sure it is valid
and follows the rules.

System Action: Execution continues.

Symbolic Feedback Code: IBM00A

IBM0011W The ISA or HEAP storage provided in the PLICALLB argument list was
above the 16M line but the BELOW suboption of the STACK or HEAP run-
time option was in effect. The provided storage was ignored.

Explanation: The location of the user-provided ISA or HEAP storage conflicts with the
location in effect in the STACK or HEAP run-time option. The provided storage is ignored but
the provided length is still used.

Programmer Response: Make sure the location of the provided ISA or HEAP storage
agrees with the location in the STACK or HEAP run-time option.

System Action: Execution continues.

Symbolic Feedback Code: IBM00B

IBM0020S ONCODE=600. The CONVERSION condition was raised by a SIGNAL state-
ment.

Explanation: The program contained a SIGNAL statement to raise the CONVERSION con-
dition for which there was no associated ON-unit.

Programmer Response: Either remove the SIGNAL statement or include an ON-unit for
the CONVERSION condition in the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM00K

IBM0021S ONCODE=601. The CONVERSION condition was raised because of
unknown source attributes on input.

Explanation: The CONVERSION condition was raised within a GET LIST or GET DATA
statement with the FILE option. The attributes of the source data could not be determined.

Example:

DCL (A,B) CHAR(14);
GET LIST(A,B);

where the input stream contained 'PIG'C, 'DOG'. The condition will be raised when the
first item is encountered. The value for ONSOURCE would be: “'PIG'C,” and value of
ONCHAR would be: “C.” The ONCODE associated with this message is 601.

648 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0022S N IBM0024S

Programmer Response: Include a suitable ON-unit in the program to monitor errors in the
input data revealed by the CONVERSION condition. Use the ONSOURCE and ONCHAR
built-in functions to identify the error and the ONSOURCE and ONCHAR pseudovariables to
assign a valid value so the program can continue processing. Also, check the input data for
correctness before rerunning the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM00L

IBM0022S ONCODE=602. The CONVERSION condition was raised because of
unknown source attributes on input after the TRANSMIT condition was
detected.

Explanation: The CONVERSION condition was raised after an error caused the
TRANSMIT condition to be raised. For an example of the conversion error, refer to the
explanation given for message IBM0021. The ONCODE associated with this message is
602.

Programmer Response: Correct the transmit error. If the conversion error recurs after cor-
recting the transmit error, refer to the steps for conversion errors in message IBM0021.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM00M

IBM0023S ONCODE=oncode-value The CONVERSION condition was raised because of
unknown source attributes.

Explanation: The CONVERSION condition was raised within a GET LIST STRING or GET
DATA STRING statement. For an example of the conversion error, refer to the explanation
for message IBM0021.

Programmer Response: Follow the steps given for conversion errors in message
IBM0021.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM00N

IBM0024S ONCODE=oncode-value The CONVERSION condition was raised because a
conversion error occurred using F-format on input.

Explanation: An invalid character was detected in an F-format input field. The ONCODEs
associated with this message are:

� 603 - GET STRING statement

� 604 - GET FILE statement

Programmer Response: Include a suitable ON-unit in the program to monitor errors in the
input data that are revealed by the CONVERSION condition. Use the ONSOURCE and
ONCHAR built-in functions to identify the error and the ONSOURCE and ONCHAR
pseudovariables to assign a valid numeric value so the program can continue processing.
Also, ensure all input is in the correct format before running the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM00O

 Chapter 14. PL/I Run-Time Messages 649

 IBM0025S N IBM0029S

IBM0025S ONCODE=605. The CONVERSION condition was raised because a conver-
sion error occurred using F-format on input after the TRANSMIT condition
was detected.

Explanation: An invalid character was detected in an F-format input field. A transmission
error also occurred and may be the cause of the conversion error. The ONCODE associated
with this message is 605.

Programmer Response: Correct the transmit error. If the conversion error recurs after cor-
recting the transmit error, refer to the steps given for message IBM0024.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM00P

IBM0027S ONCODE=oncode-value The CONVERSION condition was raised because a
conversion error occurred using E-format on input.

Explanation: An invalid character was detected in an E-format input field. The ONCODEs
associated with this message are:

� 606 - GET STRING statement

� 607 - GET FILE statement

Programmer Response: Refer to the steps for conversion errors in message IBM0024.
Use the ONSOURCE and ONCHAR built-in functions to identify the error, and the
ONSOURCE and ONCHAR pseudovariables to assign a valid value so the program can con-
tinue processing.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM00R

IBM0028S ONCODE=608. The CONVERSION condition was raised because a conver-
sion error occurred using E-format on input after the TRANSMIT condition
was detected.

Explanation: An invalid character was detected in an E-format input field. A transmission
error also occurred and may be the cause of the conversion error. The ONCODE associated
with this message is 608.

Programmer Response: Correct the transmission error. If the conversion error recurs after
correcting the transmission error, refer to the steps for message IBM0024.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM00S

IBM0029S ONCODE=oncode-value The CONVERSION condition was raised because a
conversion error occurred using B-format on input.

Explanation: An invalid character was detected in a B-format input field. The ONCODEs
associated with this message are:

� 609 - GET STRING statement

� 610 - GET FILE statement

Programmer Response: Include a suitable ON-unit in the program to monitor errors in the
input data that are revealed by the CONVERSION condition. Use the ONSOURCE and
ONCHAR built-in functions to identify the error and the ONSOURCE and ONCHAR
pseudovariables to assign a valid bit character so the program can continue processing.
Also, ensure all input is in the correct format before running the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM00T

650 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0031S N IBM0034S

IBM0031S ONCODE=611. The CONVERSION condition was raised because a conver-
sion error occurred using B-format on input after the TRANSMIT condition
was detected.

Explanation: An invalid character was detected in a B-format input field. A transmission
error also occurred and may be the cause of the conversion error. The ONCODE associated
with this message is 611.

Programmer Response: Correct the transmission error. If the conversion error recurs after
correcting the transmission error, refer to the steps for message IBM0029.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM00V

IBM0032S ONCODE=612. The CONVERSION condition was raised because a conver-
sion error occurred when converting a character string to an arithmetic
value.

Explanation: An invalid character was detected in a character string that was being con-
verted to an arithmetic data type. The ONCODE associated with this message is 612.

Programmer Response: If the error is in the conversion of a PL/I source program constant
or in the conversion of a character string created while the program is running, correct the
source program. Recompile and rerun the program. Use the ONSOURCE and ONCHAR
built-in functions to identify the error, and the ONSOURCE and ONCHAR pseudovariables to
assign a valid value so the program can continue processing.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM010

IBM0033S ONCODE=613. The CONVERSION condition was raised because a conver-
sion error occurred when converting character to arithmetic on input or
output.

Explanation: A character which is invalid for conversion to an arithmetic form was detected
in one of the following:

� An arithmetic constant in a list-directed or data-directed item.

� A character constant being converted to an arithmetic form in a list-directed or data-
directed item.

� An A-format input field being converted to an arithmetic form.

The ONCODE associated with this message is 613.

Programmer Response: Refer to the steps for message IBM0024.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM011

IBM0034S ONCODE=614. The CONVERSION condition was raised because a conver-
sion error occurred when converting from character on input after the
TRANSMIT condition was detected.

Explanation: A character is invalid for conversion to an arithmetic form was detected in
one of the following:

� An arithmetic constant in a list-directed or data-directed input item.

� A character constant being converted to an arithmetic form in a list-directed or data
directed input item.

� An A-format input field being converted to an arithmetic form.

A transmission error also occurred and may be the cause of the conversion error. The
ONCODE associated with this message is 614.

 Chapter 14. PL/I Run-Time Messages 651

 IBM0035S N IBM0037S

Programmer Response: Correct the transmission error. If the conversion error recurs after
correcting the transmission error, refer to the steps for message IBM0024.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM012

IBM0035S ONCODE=615. The CONVERSION condition was raised because a conver-
sion error occurred when converting from character to bit.

Explanation: An invalid character was detected in a character string that was being con-
verted to a bit string. The ONCODE associated with this message is 615.

Programmer Response: If the error is in the conversion of a program constant or in the
conversion of a character string created while the program is running, correct the source
program. Recompile and rerun the program. Use the ONSOURCE and ONCHAR built-in
functions to identify the error, and the ONSOURCE and ONCHAR pseudovariables to assign
a valid value so the program can continue processing.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM013

IBM0036S ONCODE=616. The CONVERSION condition was raised because a conver-
sion error occurred when converting character to bit on input or output.

Explanation: A character other than 0 or 1 appeared in one of the following:

� A bit constant in a list-directed or data-directed item

� A character constant being converted to bit form in a list-directed or data-directed item

� An A-format input field being converted to bit form

� A B-format input field (excluding any leading or trailing blanks)

The ONCODE associated with this message is 616.

Programmer Response: Refer to the steps for message IBM0035.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM014

IBM0037S ONCODE=617. The CONVERSION condition was raised because a conver-
sion error occurred when converting character to bit on input after the
TRANSMIT condition was detected.

Explanation: A character other than 0 or 1 appeared in one of the following:

� A bit constant in a list-directed or data-directed input item

� A character constant being converted to bit form in a list-directed or data-directed input
item

� An A-format input field being converted to bit form

� A B-format input field (excluding any leading or trailing blanks)

A transmission error also occurred and may have caused the conversion error. The
ONCODE associated with this message is 617.

Programmer Response: Correct the transmission error. If the conversion error recurs after
correcting the transmission error, refer to the steps for message IBM0024.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM015

652 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0038S N IBM0042S

IBM0038S ONCODE=618. The CONVERSION condition was raised because a conver-
sion error occurred when converting to a PICTURE character string.

Explanation: A character that did not match the picture specification was detected in a
conversion to a PICTURE character string. The ONCODE associated with this message is
618.

Programmer Response: Ensure the character string to be converted to a PICTURE char-
acter string matches the picture string specification. If necessary, use the ONSOURCE and
ONCHAR built-in functions to identify the error and the ONSOURCE and ONCHAR
pseudovariables to replace an erroneous character with a valid conversion character.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM016

IBM0039S ONCODE=619. The CONVERSION condition was raised because a conver-
sion error occurred when converting to a PICTURE character string on
input or output.

Explanation: A character that did not match the picture specification was detected in a
STREAM-oriented item that required conversion to a PICTURE character string. The
ONCODE associated with this message is 619.

Programmer Response: Either ensure all input data to the program is in the correct format
or refer to the steps for message IBM0038. These steps ensure the program has adequate
error recovery facilities to process any invalid data found in its input and continue proc-
essing.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM017

IBM0040S ONCODE=620. The CONVERSION condition was raised because a conver-
sion error occurred when converting to a PICTURE character string on
input after the TRANSMIT condition was detected.

Explanation: A character that did not match the picture specification was detected in a
STREAM-oriented input item that required conversion to a PICTURE character string. A
transmission error also occurred and may be the source of the conversion error. The
ONCODE associated with this message is 620.

Programmer Response: Correct the transmission error. If the conversion error recurs after
correcting the transmission error, refer to the steps for message IBM0039.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM018

IBM0042S ONCODE=oncode-value The CONVERSION condition was raised because a
conversion error occurred when converting from PICTURE format on input.

Explanation: An edit-directed PICTURE format input item contained a character that did
not match the picture specification. The ONCODEs associated with this message are:

� 621 - GET STRING statement

� 622 - GET FILE statement

Programmer Response: Either ensure all input data to the program is in the correct format
before running the program or use the program to check the data. If necessary, use the
ONSOURCE and ONCHAR built-in functions to identify the error and the ONSOURCE and
ONCHAR pseudovariables to replace an erroneous character with a character valid for con-
version.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM01A

 Chapter 14. PL/I Run-Time Messages 653

 IBM0043S N IBM0047S

IBM0043S ONCODE=623. The CONVERSION condition was raised because a conver-
sion error occurred when converting from a PICTURE format on input after
the TRANSMIT condition was detected.

Explanation: An invalid character was detected in a PICTURE format input field. A trans-
mission error also occurred and may be the cause of conversion error. The ONCODE asso-
ciated with this message is 623.

Programmer Response: Correct the transmission error.

Programmer Response: If the conversion error recurs after correcting the transmission
error, refer to the steps for message IBM0042.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM01B

IBM0045S ONCODE=625. The CONVERSION condition was raised because a conver-
sion error occurred when converting from PICTURE format on input.

Explanation: An invalid character was detected in a PICTURE format input item. The
ONCODE associated with this message is 625.

Programmer Response: Either ensure all input data to the program is in the correct format
before running the program or use the program to check the data. If necessary, use the
ONSOURCE and ONCHAR built-in functions to identify the error and the ONSOURCE and
ONCHAR pseudovariables to replace an erroneous character with a valid conversion char-
acter.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM01D

IBM0046S ONCODE=626. The CONVERSION condition was raised because a conver-
sion error occurred when converting from PICTURE format on input after
the TRANSMIT condition was detected.

Explanation: An invalid character was detected in a PICTURE format input item. A trans-
mission error also occurred and may be the cause of the conversion error. The ONCODE
associated with this message is 626.

Programmer Response: Correct the transmission error. If the conversion error recurs after
correcting the transmission error, refer to the steps for message IBM0045.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM01E

IBM0047S ONCODE=627. The CONVERSION condition was raised because a graphic
or mixed character string was encountered in a non-graphic environment.

Explanation: A graphic ('G') or mixed ('M') string was used as a data value in the
expression for the STRING option of a GET statement. The ONCODE associated with this
message is 627.

Programmer Response: Remove the graphic or mixed string from the expression.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM01F

654 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0048S N IBM0054S

IBM0048S ONCODE=628. The CONVERSION condition was raised because a graphic
or mixed character string was encountered in a non-graphic environment
on input.

Explanation: A graphic ('G') or mixed ('M') string was detected in an input file that was
not declared with the GRAPHIC option in the ENVIRONMENT attribute. The ONCODE asso-
ciated with this message is 628.

Programmer Response: Specify the GRAPHIC option for a file that contains graphic or
mixed character strings.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM01G

IBM0049S ONCODE=629. The CONVERSION condition was raised because a graphic
or mixed character string was encountered in a non-graphic environment
on input after the TRANSMIT condition was detected.

Explanation: The CONVERSION condition was raised after an error caused the
TRANSMIT condition to be raised. For an example of the conversion error, refer to the
explanation for message IBM0048. The ONCODE associated with this message is 629.

Programmer Response: Correct the transmission error. If the conversion error recurs after
correcting the transmission error, refer to the steps for message IBM0048.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM01H

IBM0053S ONCODE=633 The CONVERSION condition was raised because an invalid
character was detected in an X, BX, or GX string constant.

Explanation: A character other than a hexadecimal character was detected. Only
hexadecimal characters (0-9,a-f,A-F) are allowed in X, BX, and GX string constants. The
ONCODE associated with this message is 633.

Programmer Response: Include a suitable ON-unit in the program to monitor errors in the
input data that are revealed by the CONVERSION condition. Use the ONSOURCE and
ONCHAR built-in functions to identify the error and the ONSOURCE and ONCHAR
pseudovariables to assign a valid hexadecimal character so the program can continue proc-
essing. Also ensure all input is in the correct format before executing the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM01L

IBM0054S ONCODE=634 The CONVERSION condition was raised because an invalid
character was detected in an X, BX, or GX string constant on input.

Explanation: A character other than a hexadecimal character was detected. Only
hexadecimal characters (0-9,a-f,A-F) are allowed in X, BX, and GX string constants. The
ONCODE associated with this message is 634.

Programmer Response: Include a suitable ON-unit in the program to monitor errors in the
input data that are revealed by the CONVERSION condition. Use the ONSOURCE and
ONCHAR built-in functions to identify the error and the ONSOURCE and ONCHAR
pseudovariables to assign a valid hexadecimal character so the program can continue proc-
essing. Also, ensure all input is in the correct format before executing the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM01M

 Chapter 14. PL/I Run-Time Messages 655

 IBM0055S N IBM0060S

IBM0055S ONCODE=635 The CONVERSION condition was raised because an invalid
character was detected in an X, BX, or GX string constant on input after
the TRANSMIT condition was detected.

Explanation: A character other than a hexadecimal character was detected. Only
hexadecimal characters (0-9,a-f,A-F) are allowed in X, BX, and GX string constants. A trans-
mission error also occurred and may be the source of the conversion error.

Programmer Response: Correct the transmission error. If the conversion error recurs after
correcting the transmission error, refer to the steps for message IBM0054.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM01N

IBM0056S ONCODE=636 The CONVERSION condition was raised because a graphic
string contained an invalid character.

Explanation: This condition was raised by the GRAPHIC built-in function. The source was
a graphic (DBCS) string and a shift character was detected in it.

Programmer Response: Remove the shift characters from the graphic (DBCS) string.
ONSOURCE and ONCHAR pseudovariables cannot be used to assign a new value to the
string. ERROR is raised if retry is attempted.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM01O

IBM0059S ONCODE=639 The CONVERSION condition was raised because a mixed
character string contained an invalid character.

Explanation: This condition was raised by the GRAPHIC built-in function. One of the fol-
lowing rules for mixed constants was broken:

� SBCS portions of the constant cannot contain a shift-in.

� Neither byte of a DBCS character can contain a shift code.

Note: In mixed character strings, a shift-in following a DBCS character or following a shift-out
causes a transition to single-byte mode. It is impossible for the first byte of a DBCS char-
acter in a mixed character string to contain a shift-in.

Programmer Response: Ensure mixed character strings contain balanced, unnested shift-
out/shift-in pairs. The MPSTR built-in function can be used to check shift-out/shift-in pairs.
ONSOURCE and ONCHAR pseudovariables cannot be used to assign a new value to the
string. ERROR is raised if retry is attempted.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM01R

IBM0060S ONCODE=667. The CONVERSION condition was raised because there was
no SBCS equivalent in the GRAPHIC conversion to character.

Explanation: This condition is raised during an attempt to convert a GRAPHIC string, con-
taining ASCII DBCS characters, that represents a character value. The string contained a
DBCS character for which there is no equivalent SBCS character. The ONCODE associated
with this message is 667.

Programmer Response: Modify your program to ensure such strings contain only valid
ASCII DBCS characters. Use the ONSOURCE pseudovariable to assign a valid GRAPHIC
string to the ONSOURCE built-in function to allow the conversion to be retried.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM01S

656 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0061S N IBM0101W

IBM0061S ONCODE=668. The CONVERSION condition was raised because there was
no SBCS equivalent in the GRAPHIC conversion to character on input.

Explanation: This condition is raised during an attempt to convert a GRAPHIC string in an
input file, containing ASCII DBCS character, that represents a character value. The string
contained a DBCS character for which there is no equivalent SBCS character. The ONCODE
associated with this message is 668.

Programmer Response: Modify your program to ensure such strings contain only valid
ASCII DBCS characters. Use the ONSOURCE pseudovariable to assign a valid GRAPHIC
string to the ONSOURCE built-in function to allow the conversion to be retried.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM01T

IBM0062S ONCODE=669. The CONVERSION condition was raised because there was
no SBCS equivalent in the GRAPHIC conversion to character on input after
the TRANSMIT condition was detected.

Explanation: The CONVERSION condition was raised after an error caused the
TRANSMIT condition to be raised. For an example of the conversion error, see the explana-
tion given for message IBM0061. The ONCODE associated with this message is 669.

Programmer Response: If the conversion error recurs after eliminating the transmission
error, take the steps given for message IBM0061.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM01U

IBM0092I PL/I PLIDUMP was called with Traceback (T) option.

Explanation: PLIDUMP was called with the T option.

Programmer Response: No programmer response is necessary.

System Action: No system action is performed.

Symbolic Feedback Code: IBM02S

IBM0100W ONCODE=oncode-value The NAME condition was raised by a SIGNAL state-
ment (FILE= or ONFILE= file-name).

Explanation: The program contained a SIGNAL statement to raise the NAME condition for
which there was no associated ON-unit. The ONCODE associated with this message is 10.

Programmer Response: Either remove the SIGNAL statement or include an ON-unit for
the NAME condition in the program.

System Action: Execution continues with the next sequential statement.

Symbolic Feedback Code: IBM034

IBM0101W ONCODE=oncode-value The NAME condition was raised because an invalid
element-variable in a STREAM item was encountered during a GET FILE
DATA statement (FILE= or ONFILE= file-name).

Explanation: One of the following conditions was detected:

� An identifier in the input stream had no counterpart in the data list of the GET statement,
or the GET statement had no data list and an unknown identifier was encountered in the
stream.

� Invalid blank characters were found within an identifier in the input stream.

� The name field or part of a qualified name was omitted.

� There were more than 256 characters in a fully-qualified name.

 Chapter 14. PL/I Run-Time Messages 657

 IBM0120S N IBM0121S

� Blanks were found within an array subscript other than between the optional sign and the
decimal digits.

� An array subscript was missing or indicated too many dimensions.

� A value in a subscript was not a decimal digit.

� The subscript was beyond the declared range of subscripts for a particular array.

� The left-parenthesis was missing after the name of an array.

� A character other than “=” or a blank was found after a right-parenthesis that delimits an
array subscript in the input stream.

� The end-of-file or a nonblank delimiter was found before “=” in an item in the input
stream.

Programmer Response: Use the DATAFIELD built-in function in a NAME ON-unit to
obtain the invalid data item.

System Action: The incorrect data field is ignored and execution of the GET statement
continues.

Symbolic Feedback Code: IBM035

IBM0120S ONCODE=oncode-value The RECORD condition was raised by a SIGNAL
statement. (FILE= or ONFILE= file-name).

Explanation: The program contained a SIGNAL statement to raise the RECORD condition
for which there was no associated ON-unit.

Programmer Response: Supply an ON-unit for the RECORD condition or remove the
SIGNAL statement.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM03O

IBM0121S ONCODE=oncode-value The RECORD condition was raised because the
length of the record variable was less than the record length (FILE= or
ONFILE= file-name).

Explanation: This message was produced for records that were longer than the associated
PL/I variable.

1. For a READ statement, the record was truncated to the length of the variable in the
INTO option.

2. For a LOCATE statement (F-format records only), a buffer was not allocated.

3. For a WRITE statement (F-format records only), the record was transmitted with the
appropriate number of padding bytes added to equal the length of the record on the data
set. The contents of the padding bytes were undefined.

4. For a REWRITE statement, the record was replaced by the shorter record with the
appropriate number of padding bytes added to equal the length of the record on the data
set. The contents of the padding bytes were undefined.

Programmer Response: Either supply an ON-unit for the RECORD condition so the
program can continue running, or modify the program to make the length of the record vari-
able the same as the length of the records on the data set. Refer to the language reference
manual for this compiler for details of how such records are handled when the RECORD
condition is raised.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM03P

658 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0122S N IBM0125S

IBM0122S ONCODE= oncode-value The RECORD condition was raised because the
length of the record variable was greater than the record length (FILE= or
ONFILE= file-name).

Explanation: This message was produced for records that were shorter than the associ-
ated PL/I variable.

1. For the READ statement using F-format records and a fixed-length variable in the INTO
option, the excess bytes in the variable were undefined.

2. For a LOCATE statement, where the maximum length of the records was less than the
length of the PL/I variable, the buffer was not allocated.

3. For a WRITE statement, the variable in the FROM option was longer than the maximum
length of the records, and was truncated to the maximum record length.

4. For a REWRITE statement, the variable in the FROM option was longer than the record
it was to replace, and was truncated to the length of this record.

Programmer Response: Either supply an ON-unit for the RECORD condition so the
program can continue running, or modify the program to make the length of the record vari-
able the same as the length of the records on the data set. Refer to the language reference
manual for this compiler for details of how such records are handled when the RECORD
condition is raised.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM03Q

IBM0123S ONCODE=oncode-value The RECORD condition was raised because the
WRITE or LOCATE variable had a zero length (FILE= or ONFILE= file-name).

Explanation: A WRITE or REWRITE statement attempted to transmit a record variable of
zero length, or a LOCATE statement attempted to obtain buffer space for a zero length
record variable.

Programmer Response: Ensure the varying-length string used as a record variable is not
a null string when the WRITE, REWRITE or LOCATE statement is run.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM03R

IBM0124S ONCODE=24 The RECORD condition was raised because a zero length
record was read from a Regional data set (FILE= or ONFILE= file-name).

Explanation: A record of zero length was read from a REGIONAL data set associated with
a DIRECT file. A zero-length record on a direct-access device indicates the end of the data
set. However, this message is generated only if the data set was created incorrectly. The
ONCODE associated with this message is 24.

Programmer Response: Ensure the data set is created correctly as a regional data set. If
necessary, recreate the data set and ensure the record is accessed with a valid key.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM03S

IBM0125S ONCODE=oncode-value The RECORD condition was raised because a
WRITE or LOCATE area was too short to contain the embedded string
(FILE= or ONFILE=file-name).

Explanation: A record variable was too short to contain the data set embedded key. Either
a WRITE or REWRITE statement attempted to transmit the record variable or a LOCATE
statement attempted to allocate buffer space for the record variable. For a WRITE or
REWRITE statement, no transmission takes place. For a LOCATE statement, a buffer is not
allocated.

 Chapter 14. PL/I Run-Time Messages 659

 IBM0140S N IBM0142S

Programmer Response: Ensure the record variable is long enough to contain the data set
embedded key and the key is valid.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM03T

IBM0140S ONCODE=40. The TRANSMIT condition was raised by a SIGNAL statement
(FILE= or ONFILE= file-name).

Explanation: The program contained a SIGNAL statement to raise the TRANSMIT condi-
tion for which there was no associated ON-unit. The ONCODE associated with this message
is 40.

Programmer Response: Either remove the SIGNAL statement or include an ON-unit for
the TRANSMIT condition in the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM04C

IBM0141S ONCODE=oncode-value The TRANSMIT condition was raised because of an
uncorrectable error in output (FILE= or ONFILE=file-name).

Explanation: Data management routines detected an uncorrectable error while transmitting
output data between main storage and an external storage device. The condition was raised
on the completion of a WRITE, REWRITE or LOCATE statement. For BUFFERED files, this
condition can be raised only after executing several I/O statements following the processing
of an OUTPUT file. The outfile can not be associated with a unit record device. Processing
of an UPDATE file can continue. For INDEXED data sets, the condition can occur while
searching through the indexes or tracing an overflow record. The ONCODEs associated with
this message are:

� 41 output data set

� 42 input data set

Programmer Response: If the error recurs, obtain a dump of the input/output buffer areas
by using PLIDUMP in a TRANSMIT ON-unit. Refer to OS/390 Language Environment Pro-
gramming Guide for details of PLIDUMP. The resultant output, together with all relevant
listings and data sets, should be preserved for later study by IBM.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM04D

IBM0142S ONCODE=42. The TRANSMIT condition was raised because of an uncorrec-
table error in input (FILE= or ONFILE= file-name).

Explanation: Data management routines detected an uncorrectable error while transmitting
input data between main storage and an external storage device. If the block contains
VS-format records, the error is raised once only for the block. Otherwise, the condition is
raised on the completion of a READ or REWRITE statement for each record in the block that
contains the error and for every item transmitted by GET statements from a block that con-
tains the error. The contents of the record or data item are undefined. However, processing
of subsequent records in the input file can be continued. For INDEXED data sets, the condi-
tion can be raised while searching the indexes or tracing an overflow record. The ONCODE
associated with this message is 42.

Programmer Response: If the error recurs, obtain a dump of the input/output buffers by
using PLIDUMP in a TRANSMIT ON-unit. Refer to OS/390 Language Environment Program-
ming Guide for details of PLIDUMP. Save the PLIDUMP output and all relevant listings and
data sets for later study by IBM.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM04E

660 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0143S N IBM0146S

IBM0143S ONCODE=oncode-value The TRANSMIT condition was raised because of
unreadable OMR data (FILE= or ONFILE= file-name).

Explanation: One or more OMR columns contained a marginal mark, weak mark or poor
erasure that could not be read. The condition is raised on completion of the READ operation
for the document. An X'3F' character is substituted for unreadable characters, and also put
in the last byte of the record. The ONCODE associated with this message is 42.

Programmer Response: Replace the document that caused the TRANSMIT condition to
be raised. Ensure the data on the document is readable by the OMR.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM04F

IBM0144S ONCODE=oncode-value The TRANSMIT condition was raised because of a
write error in the index set (FILE= or ONFILE=file-name).

Explanation: Data management detected a physical error while attempting to write on the
index set of a VSAM KSDS. The condition is raised on the completion of a WRITE,
REWRITE, LOCATE or DELETE statement. No further processing of an OUTPUT file can
occur. Processing of an UPDATE file can continue. The ONCODE associated with this
message is 43.

Programmer Response: Check the DASD on which the data set is being written for errors.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM04G

IBM0145S ONCODE=oncode-value The TRANSMIT condition was raised because of a
read error in the index set (FILE= or ONFILE=file-name).

Explanation: Data management detected a physical error while attempting to read from the
index set of a VSAM KSDS. The condition is raised on the completion of a READ, WRITE,
REWRITE, LOCATE or DELETE statement. No further processing of an OUTPUT file can
occur. Processing of an UPDATE file can continue. If the error occurs on a READ statement,
no data is transferred to the record variable. For sequential access, data set positioning can
be lost, causing a subsequent READ without KEY to raise ERROR. Refer to message
IBM0831 for information on sequential access errors. The ONCODE associated with this
message is 44.

Programmer Response: Check the DASD on which the data set resides for errors. If more
research is required, consult with the system programmer.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM04H

IBM0146S ONCODE=oncode-value The TRANSMIT condition was raised because of a
write error in the sequence set (FILE= or ONFILE= file-name).

Explanation: Data management detected a physical error while attempting to write on the
sequence set of a VSAM KSDS. The condition is raised on the completion of a WRITE,
REWRITE, LOCATE or DELETE statement. No further processing of an OUTPUT file can
occur. Processing of an UPDATE file can continue. The ONCODE associated with this
message is 45.

Programmer Response: Check the DASD on which the data set is being written for error.
Also, consult with the system programmer.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM04I

 Chapter 14. PL/I Run-Time Messages 661

 IBM0147S N IBM0162S

IBM0147S ONCODE=oncode-value The TRANSMIT condition was raised because of a
read error in the sequence set (FILE= or ONFILE= file-name).

Explanation: Data management detected a physical error while attempting to read from the
sequence set of a VSAM KSDS. The condition is raised on the completion of a READ,
WRITE, REWRITE, LOCATE or DELETE statement. No further processing of an OUTPUT
file can occur. Processing of an UPDATE file can continue. If the error occurs on a READ
statement, no data is transferred to the record variable. For sequential access, data set posi-
tioning can be lost, causing a subsequent READ without KEY to raise ERROR. Refer to
message IBM0831 for sequential access errors. The ONCODE associated with this message
is 46.

Programmer Response: Check the DASD on which the data set resides for errors. Also,
consult with the system programmer.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM04J

IBM0160S ONCODE=oncode-value The KEY condition was raised by a SIGNAL state-
ment (FILE= or ONFILE= file-name).

Explanation: The program contained a SIGNAL statement to raise the KEY condition for
which there was no associated ON-unit. The ONCODE associated with this message is 50.

Programmer Response: Either remove the SIGNAL statement or include an ON-unit for
the KEY condition in the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM050

IBM0161S ONCODE=oncode-value The KEY condition was raised because the speci-
fied key could not be found (FILE= or ONFILE= file-name).

Explanation: A READ, REWRITE or DELETE statement specified a recorded key which
could not be found on the data set. In the case of an INDEXED data set, the key in error
was either higher than the highest level index or the record was not in the prime area or the
overflow areas of the data set. In the case of a DIRECT file associated with a data set with
REGIONAL organization, the key in error was not in the specified region or within the search
limit defined by the LIMCT subparameter of the DCB parameter. The ONCODE associated
with this message is 51.

Programmer Response: Determine why the key was incorrect and modify the program or
the data set to correct the error. Use of the ONKEY built-in function in a KEY ON-unit will aid
in determining the value of the erroneous key.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM051

IBM0162S ONCODE=oncode-value The KEY condition was raised because the speci-
fied key was already in use in data set (FILE= or ONFILE= file-name).

Explanation: In the case of data set with INDEXED organization, an attempt was made to
transmit a keyed record to a data set that already held a record with the same key. In the
case of a data set with REGIONAL(1) or REGIONAL(2) organization that was being created
sequentially, an attempt was made to transmit a record to a region that already contains a
record. The ONCODE associated with this message is 52.

Programmer Response: Either check the validity of the data that is being processed
before running the program or use the program to check the data. Use of the ONKEY built-in
function in a KEY ON-unit can aid in identifying an erroneous key, correcting it, and allowing
processing to continue normally.

System Action: The ERROR condition is raised.

662 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0163S N IBM0166S

Symbolic Feedback Code: IBM052

IBM0163S ONCODE=oncode-value The KEY condition was raised because the speci-
fied key was less than the value of the previous key (FILE= or ONFILE= file-
name).

Explanation: A key with a value that was less than the value of the preceding key was
detected during the creation or extension of an INDEXED or REGIONAL SEQUENTIAL data
set. The ONCODE associated with this message is 53.

Programmer Response: Ensure the records written onto an INDEXED or REGIONAL data
set that is being created or extended are in the correct ascending key sequence order. Also,
use a KEY ON-unit to comment on the error and, where possible, allow processing to con-
tinue normally.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM053

IBM0164S ONCODE=oncode-value The KEY condition was raised because the speci-
fied key could not be converted to valid data (FILE= or ONFILE= file-name).

Explanation: A WRITE, READ, REWRITE, DELETE or LOCATE statement for a
REGIONAL data set specified a key with a invalid character-string value. Invalid values
consist entirely of blanks, contain characters other than 0-9, or a have blank as part of the
region number. The ONCODE associated with this message is 54.

Programmer Response: Ensure the key is in the correct format. If necessary, use the
ONKEY built-in function in a KEY ON-unit to identify the erroneous key. The ON-unit can be
used to report any such errors and allow processing to continue. Records associated with
the erroneous keys can be transmitted in a subsequent run if the keys have been corrected.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM054

IBM0165S ONCODE=oncode-value The KEY condition was raised because the speci-
fied key was invalid (FILE= or ONFILE= file-name).

Explanation: For an INDEXED data set, either the KEY or the KEYFROM expression was
a null string or an attempt was made to rewrite a record with the embedded key of the
replacement record not equal to the record to be overwritten. For a REGIONAL data set, the
key specified was a null string or a string commencing with '11111111'B. The ONCODE
associated with this message is 55.

Programmer Response: Refer to the steps for message IBM0165.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM055

IBM0166S ONCODE=oncode-value The KEY condition was raised because the key
specifies a position outside the Regional data set (FILE= or ONFILE= file-
name).

Explanation: A WRITE, READ, REWRITE or DELETE statement specified a key whose
relative record or track value exceeded the number of records or tracks respectively for the
REGIONAL data set. The ONCODE associated with this message is 56.

Programmer Response: Refer to the steps for message IBM0164.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM056

 Chapter 14. PL/I Run-Time Messages 663

 IBM0167S N IBM0181S

IBM0167S ONCODE=oncode-value The KEY condition was raised because space was
not available to add a keyed record (FILE= or ONFILE= file-name).

Explanation: For a SEQUENTIAL file associated with an INDEXED data set, an attempt
was made to write or locate a record during the creation or extension of such a data set
when the space allocated to the data set was full. For a DIRECT file associated with an
INDEXED data set, space in overflow areas was unable to accept the overflow record. This
was caused by the insertion of a new record by a WRITE statement. For a DIRECT file
associated with a REGIONAL data set, space was unavailable to add the record in the spec-
ified limit of search as specified in the LIMCT subparameter of the DCB parameter. Note that
the data set is not necessarily full. The ONCODE associated with this message is 57.

Programmer Response: Use the ONKEY built-in function to identify the key value that
caused the error. If the key is in error, correct it and continue the job from the point reached
when the error occurred. If the key is correct, organize the data set so the rejected record
can be accessed.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM057

IBM0168S ONCODE=oncode-value The KEY condition was raised because the
KEYFROM value was outside the KEYRANGE(s) defined for the data set
(FILE= or ONFILE= file-name).

Explanation: A WRITE or LOCATE statement specified a key with a value outside the key
ranges defined for the data set (VSAM KSDS). The ONCODE associated with this message
is 58.

Programmer Response: Use the ONKEY built-in function to identify the key value that
caused the error and correct the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM058

IBM0180S ONCODE=oncode-value The ENDFILE condition was raised by a SIGNAL
statement (FILE= or ONFILE= file-name).

Explanation: The program contained a SIGNAL statement to raise the ENDFILE condition
for which there was no associated ON-unit. The ONCODE associated with this message is
70.

Programmer Response: Either remove the SIGNAL statement or include an ON-unit for
the ENDFILE condition in the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM05K

IBM0181S ONCODE=oncode-value The ENDFILE condition was raised (FILE= or
ONFILE= file-name).

Explanation: The end of an input file was detected. The ONCODE associated with this
message is 70.

Programmer Response: Include an ON-unit for the ENDFILE condition for each input file
in the program to handle the end-of-file processing.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM05L

664 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0182S N IBM0196W

IBM0182S ONCODE=oncode-value The ENDFILE condition was raised because an end-
of-file was previously encountered in STREAM input (FILE= or ONFILE= file-
name).

Explanation: The ENDFILE condition was raised when the file mark was encountered but
an attempt was made to read beyond the end of the file. Either an ENDFILE ON-unit was
run and an attempt was made to read the file or the end-of-file mark was encountered
between items in the data list of the current GET statement. The ONCODE associated with
this message is 70.

Programmer Response: If the program contains an ENDFILE ON-unit, ensure the program
does not attempt to read the file after the ENDFILE condition is raised. If the error occurred
while a GET statement with two or more items in the data list is running, ensure the GET
statement can complete by providing sufficient data items before the end-of-file mark is
encountered.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM05M

IBM0190W The ENDPAGE condition was raised by a SIGNAL statement.

Explanation: The program contained a SIGNAL statement to raise the ENDPAGE condi-
tion. The message for this condition is never issued by PL/I.

Programmer Response: None.

System Action: None.

Symbolic Feedback Code: IBM05U

IBM0191W The ENDPAGE condition was raised.

Explanation: A PUT statement resulted in an attempt to start a new line beyond the limit
specified for the current page. The message for this condition is never issued by PL/I.

Programmer Response: None.

System Action: None.

Symbolic Feedback Code: IBM05V

IBM0195W The PENDING condition was raised by a SIGNAL statement.

Explanation: The program contained a SIGNAL statement to raise the PENDING condition.
The message for this condition is never issued by PL/I.

Programmer Response: None.

System Action: None.

Symbolic Feedback Code: IBM063

IBM0196W The PENDING condition was raised.

Explanation: An attempt was made to read a record for a TRANSIENT INPUT file that was
temporarily unavailable. The message for this condition is never issued by PL/I.

Programmer Response: None.

System Action: None.

Symbolic Feedback Code: IBM064

 Chapter 14. PL/I Run-Time Messages 665

 IBM0200S N IBM0201S

IBM0200S ONCODE=oncode-value The UNDEFINEDFILE condition was raised by a
SIGNAL statement (FILE= or ONFILE= file-name).

Explanation: The program contained a SIGNAL statement to raise the UNDEFINEDFILE
condition for which there was no associated ON-unit. The ONCODE associated with this
message is 80.

Programmer Response: Either remove the SIGNAL statement or include an ON-unit for
the UNDEFINEDFILE condition in the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM068

IBM0201S ONCODE=81 The UNDEFINEDFILE condition was raised because of con-
flicting DECLARE and OPEN attributes (FILE= or ONFILE= file-name).

Explanation: An attribute in an OPEN statement conflicted with an attribute in a DECLARE
statement. The attributes may have been written explicitly or implied by other attributes. For
example, DIRECT implies KEYED. Also, some RECORD input/output statements imply file
attributes in an implicit OPEN statement. For example, LOCATE implies RECORD OUTPUT
BUFFERED SEQUENTIAL. Conflicting attributes are:

BACKWARDS STREAM, OUTPUT/UPDATE, DIRECT, KEYED, EXCLUSIVE, PRINT,
TRANSIENT

BUFFERED STREAM, UNBUFFERED, PRINT

DIRECT STREAM, SEQUENTIAL, BACKWARDS, PRINT, TRANSIENT

EXCLUSIVE STREAM, INPUT/OUTPUT, SEQUENTIAL, BACKWARDS, PRINT, TRAN-
SIENT

INPUT OUTPUT/UPDATE, EXCLUSIVE, PRINT

KEYED STREAM, BACKWARDS, PRINT

OUTPUT INPUT/UPDATE, EXCLUSIVE, BACKWARDS

PRINT RECORD, INPUT/UPDATE, DIRECT/SEQUENTIAL,
BUFFERED/UNBUFFERED, KEYED, EXCLUSIVE, BACKWARDS, TRAN-
SIENT

RECORD STREAM, PRINT

SEQUENTIAL STREAM, DIRECT, EXCLUSIVE, PRINT, TRANSIENT

STREAM RECORD, UPDATE, DIRECT/SEQUENTIAL, BUFFERED/UNBUFFERED,
KEYED, EXCLUSIVE, BACKWARDS, TRANSIENT

TRANSIENT STREAM, UPDATE, DIRECT/SEQUENTIAL, EXCLUSIVE, BACKWARDS,
PRINT

UNBUFFERED STREAM, BUFFERED, PRINT

UPDATE STREAM, INPUT/OUTPUT, BACKWARDS, PRINT, TRANSIENT

Programmer Response: Ensure the attributes specified on the DECLARE statement are
compatible with the attributes specified on the OPEN statement.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM069

666 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0202S N IBM0205S

IBM0202S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
the device type conflicted with file attributes (FILE= or ONFILE= file-name).

Explanation: A conflict between the device type and the file attributes was detected. For
example, a file with the UPDATE attribute cannot be associated with a paper tape reader, a
printer, or a magnetic-tape device. The ONCODE associated with this message is 82.

Programmer Response: Ensure the device type and the file attributes are compatible.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM06A

IBM0203S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
the BLOCKSIZE was not specified (FILE= or ONFILE= file-name).

Explanation: The blocksize for an output file was not specified. For an output file, the
blocksize must be specified in either the ENVIRONMENT attribute or in the DCB parameter
of the DD statement or CMS FILEDEF. The ONCODE associated with this message is 83.

Programmer Response: For output files, ensure the block size is specified. For input files,
ensure the block size is valid.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM06B

IBM0204S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
a DD statement or CMS FILEDEF was not used in (FILE= or ONFILE=file-
name).

Explanation: The job stream for a file did not contain either a DD statement or a CMS
FILEDEF. The job stream must contain a DD statement or a CMS FILEDEF with a ddname
that is either the name of the file (if the TITLE option is not specified) or the name provided
by the TITLE option. The ONCODE associated with this message is 84.

Programmer Response: Specify a DD statement or CMS FILEDEF to associate the file
with a physical data set.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM06C

IBM0205S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
of an I/O error - the Regional data set could not be formatted (FILE= or
ONFILE=file-name).

Explanation: An I/O error prevented the data set from being formatted correctly. When a
REGIONAL data set is opened for direct output, data management routines format the data
set into specified regions by writing dummy or control records into the data set.

Example:

TF: PROC;
OPEN FILE(F) DIRECT OUTPUT;
END;

The ONCODE associated with this message is 85.

Programmer Response: If the problem recurs, have the direct access device or storage
medium checked by a customer engineer.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM06D

 Chapter 14. PL/I Run-Time Messages 667

 IBM0206S N IBM0208S

IBM0206S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
a LINESIZE or PAGESIZE argument was outside the defined limits (FILE= or
ONFILE= file-name).

Explanation: The implementation-defined maximum or minimum for the LINESIZE option of
the ENVIRONMENT attribute was exceeded. For F-format and U-format records, the
maximum is 32,759. For V-format records, the maximum is 32,751. The minimum for V- and
F-format records is 1. The minimum for V- format PRINT files is 9. The minimum for
V-format non-PRINT files is 10. The ONCODE associated with this message is 86.

Programmer Response: Ensure the argument to the LINESIZE option is within the pre-
scribed limits. If the argument is a variable, verfiy it is a FIXED BINARY (31,0) STATIC vari-
able that was correctly initialized before the file was opened.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM06E

IBM0207S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
the key length was not specified (FILE= or ONFILE= file-name).

Explanation: A key length was not specified in either the ENVIRONMENT attribute or the
DCB parameter of the associated DD statement.

Programmer Response: Specify the key length and rerun the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM06F

IBM0208S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
the wrong BLOCKSIZE or record length was specified (FILE= or ONFILE=
file-name).

Explanation: One of the following conditions was detected:

1. Block size was less than record length.

2. For FB-format records, block size was not a multiple of record length.

3. For VS-format and VBS-format consecutive files:

� LRECL=X was specified but RECSIZE was not specified or was invalid in the ENVI-
RONMENT attribute.

� The file was opened for update with a specified logical record size exceeding
32,756.

4. For VS-format REGIONAL(3) files, logical record size was greater than block size minus
four.

5. FUNC=EO was specified with a record length not equal to 80 or FUNC=CO was speci-
fied with a record size not equal to 160.

6. Column binary was specified with a record length not equal to 160 on an output file.

7. FUNC=I (punch interpret) was specified with a record length not equal to 80 (or 81 if
control characters are in use).

The ONCODE associated with this message is 87.

Programmer Response: The numbered responses below apply to the correspondingly
numbered explanations above:

1. Check the block size and record length specified in the BLKSIZE and RECSIZE options
of the ENVIRONMENT attribute. If LINESIZE was specified, ensure it is compatible with
BLKSIZE.

2. If the argument of either option is a variable, ensure it is FIXED BINARY(31,0) STATIC
and has been initialized.

668 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0209S N IBM0210S

3. To correct this error:

a. Specify a record size in the ENVIRONMENT attribute or correct its value.

b. Specify a record size less than 32,757.

4. Specify a record size less than or equal to the block size minus four.

5. If FUNC=EO is specified, ensure the record length is 80. If FUNC=CO is specified,
ensure the record length is 160.

6. Ensure the record length is 160 when column binary is specified.

7. If FUNC=I is specified, ensure the record length is 80.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM06G

IBM0209S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
of conflicting attributes and file organization specifications (FILE= or
ONFILE= file-name).

Explanation: The file organization conflicted with one or more explicit or implicit file attri-
butes. Refer to Table 10 for a list of possible conflicts.

The ONCODE associated with this message is 82.

Programmer Response: Ensure the file attributes are compatible with the file organization.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM06H

IBM0210S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
the record format was invalid for this file organization (FILE= or ONFILE=
file-name).

Explanation: The following combinations of file organization and record format are valid:

Organization Record Format

CONSECUTIVE BUFFERED
All

CONSECUTIVE UNBUFFERED
F, FS, V, D, U

INDEXED F, FB, V, VB

REGIONAL(1) F

REGIONAL(2) F

Table 10. File Organization and Conflicting Attributes

Organization Conflicting Attributes

CONSECUTIVE DIRECT, EXCLUSIVE, KEYED, TRANSIENT

INDEXED STREAM, TRANSIENT, DIRECT OUTPUT,
OUTPUT without KEYED

REGIONAL STREAM, TRANSIENT, OUTPUT without KEYED

TP Non-TRANSIENT

VSAM STREAM, TRANSIENT, BACKWARDS, DIRECT
OUTPUT, OUTPUT without KEYED(KSDS),
KEYED(ESDS), DIRECT(ESDS), REUSE for
other than OUTPUT file, DIRECT with
NON-UNIQUE INDEXES

None KEYED, TRANSIENT

 Chapter 14. PL/I Run-Time Messages 669

 IBM0211S N IBM0213S

REGIONAL(3) F, V, VS, U

TP(M), TP(R) None

The ONCODE associated with this message is 87.

Programmer Response: Change the file declaration so the record format is compatible
with the file organization.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM06I

IBM0211S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
the record format was not specified (FILE= or ONFILE= file-name).

Explanation: The record format was not specified. A record format must be supplied for a
file with the RECORD attribute in either the ENVIRONMENT attribute or in the data set label.
The ONCODE associated with this message is 83.

Programmer Response: Modify the program to include the record format for the file.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM06J

IBM0212S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
the KEYLENGTH was negative or greater than 255 (FILE= or ONFILE= file-
name).

Explanation: The KEYLENGTH option of the ENVIRONMENT attribute for this file had an
invalid key length greater than 255 or less than zero.

Programmer Response: Check the argument of the KEYLENGTH option to ensure it is
either a constant or a variable with the attributes FIXED BINARY (31,0) STATIC and value
between zero and 255 when the file is opened. If the argument is a variable, ensure it is
correctly initialized.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM06K

IBM0213S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
an invalid KEYLOC value was detected (FILE= or ONFILE=file-name).

Explanation: One of the following conditions was detected:

1. The offset of the key within a record was invalid. The sum of the KEYLOC value and the
key length was greater than the record length.

2. For blocked ISAM files, either KEYLOC was not specified or KEYLOC(0) was specified.
Both are invalid.

Programmer Response: The two numbered responses below apply to the numbered
explanations above.

1. Check the value of the argument to the KEYLOC option. If the argument is a variable,
check that it is FIXED BINARY (31,0) STATIC and that it has been correctly initialized.

2. Specify a KEYLOC value that is greater than zero.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM06L

670 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0214S N IBM0221S

IBM0214S ONCODE=oncode-value. The UNDEFINEDFILE condition was raised because
of conflicting or invalid environment options FILE= or ONFILE=file-name).

Explanation: There were conflicting environment options.

Programmer Response: Ensure all environment options for the file are compatible. If there
are invalid environment options specified, remove or correct them.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM06M

IBM0215S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
an invalid BUFOFF value was detected (FILE= or ONFILE= file-name). ASCII
input data set are in the range 0 thru 99.

Programmer Response: Ensure the value specified in the BUFOFF option is within the
range of valid values. If the argument is a variable, also ensure if is correctly initialized.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM06N

IBM0219S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
the MODE or FUNC option conflicts with the file attribute (FILE= or ONFILE=
file-name).

Explanation: The MODE or FUNC DCB subparameter conflicted with a file attribute. Refer
to OS/390 Language Environment Programming Guide for details of possible conflicts.

Programmer Response: Remove the conflicting file attribute, or replace it with one that is
compatible with the MODE or FUNC option values. For more information on the MODE and
FUNC subparameters of the DCB parameter, refer to OS/390 MVS JCL User's Guide.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM06R

IBM0220S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
the MODE or FUNC option conflicted with the record format (FILE= or
ONFILE= file-name).

Explanation: OMR or RCE files, IBM 3525 print files, and IBM 3525 associated files can be
F-format only. The ONCODE associated with this message is 88.

Programmer Response: Ensure the MODE or FUNC option value is compatible with the
record format of the file. For more information on the MODE and FUNC subparameters of
the DCB parameter, refer to the Job Control Language (JCL) User’s Guide.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM06S

IBM0221S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
the device type conflicted with the MODE option (FILE= or ONFILE= file-
name).

Explanation: OMR can be used only on an IBM 3505 and RCE on an IBM 3525 device.
The ONCODE associated with this message is 88.

Programmer Response: Ensure the device type and the MODE option value is compat-
ible.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM06T

 Chapter 14. PL/I Run-Time Messages 671

 IBM0222S N IBM0226S

IBM0222S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
the TOTAL option is invalid with an OMR or associated file (FILE= or
ONFILE= file-name).

Explanation: Either the OMR (MODE=EO or MODE=CO) was specified on a file with the
TOTAL option, or a device association was specified on a file with the TOTAL option. The
ONCODE associated with this message is 88.

Programmer Response: Either remove the TOTAL option or modify the MODE option so it
is compatible with a file with the TOTAL option.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM06U

IBM0223S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
of a conflict between the MODE and FUNC options (FILE= or ONFILE= file-
name).

Explanation: Refer to OS/390 Language Environment Programming Guide for details of
possible conflicts. The ONCODE associated with this message is 88.

Programmer Response: Ensure the values specified for the MODE and FUNC options are
compatible. For more information, refer to OS/390 MVS JCL User's Guide.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM06V

IBM0225S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
the value of the ENV option conflicted with the actual data set value (FILE=
or ONFILE= file-name).

Explanation: For VSAM data sets, the values of KEYLOC, KEYLENGTH and RECSIZE are
specified when the data set is defined. If values are specified on any file declarations, they
must match the defined values. The ONCODE associated with this message is 91.

Programmer Response: Ensure the values of KEYLOC, KEYLENGTH and RECSIZE
specified in the program match the defined values.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM071

IBM0226S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
the NCP or STRNO value was not 1 (FILE= or ONFILE= file-name).

Explanation: Either an NCP value greater than one was specified in the ENV attribute or a
STRNO value greater than one was specified in the AMP parameter in the DD statement.
For VSAM files, only one outstanding operation is allowed. An operation with the EVENT
option must be processed before another operation is started.

Programmer Response: Ensure the NCP or STRNO value for a VSAM file is one if the
EVENT option is involved, or modify the program to use operations without the EVENT
option to allow concurrent operations on the data set.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM072

672 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0227S N IBM0230S

IBM0227S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
the TOTAL option is invalid for ESDS (FILE= or ONFILE= file-name).

Explanation: The specification of TOTAL can cause the compiler to generate in-line code
for I/O statements for CONSECUTIVE files. If the data set to be accessed is a VSAM Entry
Sequenced Data set (ESDS) this code is invalid. The ONCODE associated with this
message is 91.

Programmer Response: Remove the TOTAL option from the file declaration.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM073

IBM0228S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
the password was invalid or was not specified (FILE= or ONFILE= file-name).

Explanation: For VSAM data sets defined with a password, ENV (PASSWORD) and the
password must be specified in the file declaration. If the password is incorrect or is not spec-
ified, a number of attempts will be given to specify the correct password. The number of
retries allowed is specified when the data set is defined. If these attempts fail,
UNDEFINEDFILE is raised.

Note: If the Authorized Program Facility (APF) is being used, the load module must be
authorized.

The ONCODE associated with this message is 89.

Programmer Response: Modify the program to include the ENV (PASSWORD) option and
the correct password in the file declaration.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM074

IBM0229S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
an entry was not in the VSAM catalog for data set (FILE= or ONFILE= file-
name).

Explanation: The ENV(VSAM) was specified for a file, but the data set was not converted
from ISAM to VSAM. Before using a VSAM data set, a catalog entry must be created and
space allocated for the data set using the access method services DEFINE command. The
catalog containing the data set must be specified in a JOBCAT or STEPCAT DD statement
(unless it is the master catalog). The ONCODE associated with this message is 92.

Programmer Response: Ensure the data set is catalogued and the right catalog is
accessed. Also, ensure the data set is a valid VSAM data set.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM075

IBM0230S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
of an I/O error reading the catalog or the volume label (FILE= or ONFILE=
file-name).

Explanation: An I/O error prevented the reading of a VSAM catalog or a volume label. The
ONCODE associated with this message is 92.

Programmer Response: Consult with the system programmer.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM076

 Chapter 14. PL/I Run-Time Messages 673

 IBM0231S N IBM0234S

IBM0231S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
a timestamp mismatch was detected (FILE= or ONFILE= file-name).

Explanation: For VSAM data sets, the index and data can be updated separately and the
time of the latest update of each is recorded. If these times do not match, the integrity of the
data is uncertain and an OPEN error will occur. Similarly, the timestamp in the data set
catalog record might not match the timestamp on the volume containing the data set. This
indicates the extent information in the catalog record might not agree with the extents indi-
cated in the VTOC for the volume. Message IEC161 is displayed on the operator's console
and will provide more detail. The ONCODE associated with this message is 92.

Programmer Response: Resubmit the job. If the error recurs after resubmitting the job,
use PLIDUMP to obtain a storage dump and save all the relevant documentation for study
by IBM.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM077

IBM0232S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
the requested data set was not available (FILE= or ONFILE= file-name).

Explanation: The data set to be accessed was already being used by another program and
could not be shared. Refer to OS/390 Language Environment Programming Guide for further
information.

Programmer Response: Refer to OS/390 Language Environment Programming Guide for
more information on sharing data sets.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM078

IBM0233S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
the data set was not properly closed (FILE= or ONFILE= file-name).

Explanation: The last time the data set was opened the close operation failed, leaving the
data set in an unusable state. The ONCODE associated with this message is 92.

Programmer Response: Use the access method services VERIFY command to restore the
data set to a usable state. Refer to the MVS/DFP Access Method Services manual for
details.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM079

IBM0234S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
the data set was never loaded (FILE= or ONFILE= file-name).

Explanation: A file can not be opened for INPUT or UPDATE to access a VSAM data set
until one or more records have been loaded into the data set using a SEQUENTIAL
OUTPUT file. Once records are loaded into the data set, records can be added using a
DIRECT UPDATE file even after all records have been deleted from the data set. The
ONCODE associated with this message is 82.

Programmer Response: Load the empty data set first. Then proceed with further
update/input/delete activity.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM07A

674 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0235S N IBM0241S

IBM0235S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
of an unidentified error during VSAM open (FILE= or ONFILE= file-name).
Subcode1=sc1 Subcode2=sc2

Explanation: The VSAM routines detected an error during the open process which PL/I did
not recognize. Subcode1 and Subcode2 provide detailed VSAM diagnostic information. See
message IBM0811S for an explanation of these fields. VSAM message IEC161 will also be
displayed on the operator's console and will provide more detail.

Programmer Response: Use the VSAM diagnostic messages to correct the cause of the
error and resubmit the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM07B

IBM0236S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
the operating system was unable to OPEN the file Subcode1= sc1
Subcode2=sc2 (FILE= or ONFILE= file-name).

Explanation: The operating system or access method encountered an error during the
open process. Subcode1 indicates why the file could not be opened. Subcode2, if not zero,
indicates the return code (in hexadecimal) given by the operating system or access
method. Subcode2 information is mainly used by IBM support when diagnosing problems.
The meaning of the Subcode1 values are as follows:

1. 50 - A non-existent ISAM file is being opened for input.

2. 51 - An unexpected error occurred when opening an ISAM file. Subcode2 gives the
return code from ISAM.

3. 52, 53 - An unexpected error occurred when opening a native or REGIONAL(1) file.

4. 54 - A non-existent BTRIEVE file is being opened for input.

5. 55 - An unexpected error occurred when opening a BTRIEVE file. Subcode2 gives the
return code from BTRIEVE.

6. 56 - An unexpected error occurred when opening a DDM file.

7. 57,58 - An unexpected error occurred when opening a DDM sequential, DDM relative or
DDM indexed file. Subcode2 gives the return code from DDM.

| 8. 60 - A file of invalid type is being opened. An example of this is opening a VSAM file
| under UNIX System Services. VSAM files are not supported under UNIX System Ser-
| vices.

The ONCODE associated with this message is 93.

Programmer Response: For Subcodes 50 and 54, ensure the input file exists. For
Subcode 60, ensure the file being opened has a file type that is supported by the operating
system under which the program is being run. For all the other subcodes, call IBM Support
for assistance.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM07C

IBM0241S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
the REUSE option was specified for a non-reusable data set (FILE= or
ONFILE= file-name).

Explanation: The ENVIRONMENT option REUSE can only be specified with VSAM data
sets which have been defined as reusable during their creation by access method services.
The ONCODE associated with this message is 94.

Programmer Response: Remove the REUSE option.

System Action: The ERROR condition is raised.

 Chapter 14. PL/I Run-Time Messages 675

 IBM0242S N IBM0265S

Symbolic Feedback Code: IBM07H

IBM0242S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
the alternate index path was empty (FILE= or ONFILE= file-name).

Explanation: An alternate index can be emptied by having all of its pointers deleted. An
empty alternate index cannot be opened. The ONCODE associated with this message is 95.

Programmer Response: Ensure the index is defined before it is built and the right alter-
nate index is used.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM07I

IBM0243S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
an attempt to position the file at the last record failed (FILE= or ONFILE=
file-name). Subcode1= sc1 Subcode2= sc2

Explanation: When the ENVIRONMENT option BKWD is specified for a file open, the file
must be positioned at the last record. If an attempt to position at the last record fails, the file
is closed and the UNDEFINEDFILE condition is raised with this message. Subcode1 and
Subcode2 provide detailed VSAM diagnostic information. See message IBM0811S for an
explanation of these fields. This message is also issued if the data set only consists of
deleted records. For this case, the subcodes are zero.

Programmer Response: Use the VSAM diagnostic information to correct the cause of the
error and resubmit the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM07J

IBM0260S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
of an incorrect environment variable (FILE= or ONFILE= file-name).

Explanation: The DD environment variable defining charactericstics of the data set either
was entered incorrectly or contained an invalid option. The ONCODE associated with this
message is 96.

| Programmer Response: Re-issue the SET DD command (OS/2 and Windows) or the
| export DD command (AIX and UNIX System Services) and rerun your program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM084

IBM0265S ONCODE=oncode-value. The UNDEFINEDFILE condition was raised because
the file could not be opened Subcode1= sc1 Subcode2=sc2 (FILE= or
ONFILE= file-name).

Explanation: The file could not be opened. Subcode1 indicates why the file could not be
opened and Subcode2, if not zero, indicates the return code (in hexadecimal) given by the
operating system or DDM. Subcode2 information is mainly used by IBM support when diag-
nosing problems. The meaning of the Subcode1 values are as follows:

� 1, 2 - no RECCOUNT or RECSIZE values were given via the ENVIRONMENT option or
the set DD or export DD enviornment variable.

� 3 - A positioning error occurred for a sequential output file.

� 4 - TYPE(FIXED) was specified for a native file, but the file size was not a multiple of
RECSIZE.

� 5, 13 - A positioning error occurred for a regional(1) file.

� 6 to 12 - A positioning error occurred for an output file.

676 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0269S N IBM0269S

� 21 to 23 - AMTHD(DDM) was specified on the DD environment variable but the DDM
loadable component (DUBRUN and DUBLDM on OS/2, or PLI_DDM on AIX) could not
be found or could not be accessed on the system.

� 24 - Incorrect extended attribute existed on a DDM file.

� 25 - The ORGANIZATION option of the ENVIRONMENT attribute conflicted with the type
of data set (DDM or native).

� 26 - Conflicts exist with the way the file is being used.

� 27 - A composite key was detected with a keyed-opening. Composite keys are accept-
able only for non-keyed openings.

� 28 to 30 - A new DDM file could not be created.

� 31 - A positioning error occurred for a DDM file.

� 35 - AMTHD(BTRIEVE) was specified on the DD environment variable but the BTRIEVE
loadable component (BTRCALLS) could not be found or could not be accessed on the
system.

� 36 - Unexpected error occurred when opening a BTRIEVE file.

� 37 - A new BTRIEVE file could not be created.

� 38 - A positioning error occurred for a BTRIEVE file.

� 40 - AMTHD(ISAM) was specified on the DD environment variable but the ISAM non-
multithreading loadable components(IBMOS20F and IBMOS20G on OS/2, or IBMWS20F
and IBMWS20G on Windows) or the ISAM mulithreading loadable
components(IBMOM20F and IBMOM20G on OS/2, or IBMWM20F and IBMWM20G on
Windows) could not be found or could not be accessed on the system.

� 41 - Unexpected error occurred when opening an ISAM file.

� 42 - A new ISAM file could not be created.

� 43 - A positioning error occurred for an ISAM file.

The ONCODE associated with this message is 99.

Programmer Response: Re-issue the DD environment variable and use the information to
correct the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM089

IBM0269S ONCODE=oncode-value. The UNDEFINEDFILE condition was raied because
the file function conflicted with the DDM data set definition (FILE= or
ONFILE= file_name).

Explanation: A conflict existed between the I/O functions intended for the file and the func-
tions allowed on the data set. One of the following was detected when attempting to open a
file to be accessed by the DDM access method:

� The file was being opened for INPUT but the data set was not get capable

� The file was being opened for UPDATE, but the data set was not insert capable, get
capable, modify capable, or delete capable

� The file was being opened for OUTPUT, but the data set was not insert capable

Programmer Response: Ensure the correct data set is being referenced and the data set
is re-created with an appropriate set of capabilities.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM08D

 Chapter 14. PL/I Run-Time Messages 677

 IBM0280S N IBM0291S

IBM0280S The ERROR condition was raised by a SIGNAL statement.

Explanation: The program contained a SIGNAL statement to raise the ERROR condition.

Programmer Response: Either remove the SIGNAL statement or include an ON-unit for
the ERROR condition in the program that transfers control out of the ON-unit with a GO TO
statement.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM08O

IBM0281S A prior condition was promoted to the ERROR condition.

Explanation: This condition was raised by PL/I because the implicit action occurred for a
PL/I condition that includes raising the ERROR condition as part of its implicit action.

The message for this condition is never issued, but it can appear in a dump. Note that the
message for the prior condition was issued.

Programmer Response: Investigate the prior condition that led to the ERROR condition.
Remove the cause of that condition, or include an ON-unit for that condition or an ON-unit
for the ERROR condition.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM08P

IBM0290S ONCODE= oncode-value. The CONVERSION condition was raised because a
conversion from PICTURE format contained an invalid character.

Explanation: An invalid character was detected in a picture string that was being converted
to an arithmetic data type.

Programmer Response: If the error is in the conversion of a PL/I source program constant
or in the conversion of a picture character string while the program is running, correct the
source program, recompile it, and rerun the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM092

IBM0291S ONCODE= oncode-value. The CONVERSION condition was raised because a
conversion from PICTURE format contained an invalid character on input
or output.

Explanation: A picture character which was invalid for conversion to an arithmetic form
was detected in one of the following:

� An arithmetic constant in a list-directed or data-directed item

� A picture character constant being converted to an arithmetic form in a list-directed or
data-directed item

� A PICTURE format input field being converted to an arithmetic form

Programmer Response: Include a suitable ON-unit in the program to nomitor errors in the
input data that are revealed by the CONVERSION condition. Use the ONSOURCE and
ONCHAR built-in functions to identify the error, and the ONSOURCE and ONCHAR
pseudovariables to assign a valid numeric value so the program can continue running
normally. Otherwise, ensure all input is in the correct format before running the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM093

678 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0292S N IBM0320W

IBM0292S ONCODE= oncode-value. The CONVERSION condition was raised because a
conversion from PICTURE format contained an invalid character on input
or output after the TRANSMIT condition was detected.

Explanation: A picture character which was invalid for conversion to an arithmetic form
was detected in one of the following:

� An arithmetic constant in a list-directed or data-directed item

� A picture character constant being converted to an arithmetic form in a list-directed or
data-directed item

� A PICTURE format input field being converted to an arithmetic form

A transmission error also occurred and may have caused the conversion error.

Programmer Response: Correct the transmission error. If the conversion error recurs after
the transmission error is corrected, refer to the steps for message IBM0291.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM094

IBM0300S ONCODE=320 The ZERODIVIDE condition was raised by a SIGNAL state-
ment.

Explanation: The program contained a SIGNAL statement to raise the ZERODIVIDE condi-
tion for which there was no associated ON-unit.

Programmer Response: Either remove the SIGNAL statement or include an ON-unit for
the ZERODIVIDE condition in the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM09C

IBM0301S ONCODE=oncode-value The ZERODIVIDE condition was raised.

Explanation: The program attempted to execute a statement in which a value of zero was
used as the divisor in a division operation. Alternatively, an overflow occurred during a
convert to binary operation.

Programmer Response: Either check the data that could produce a zero divisor (or over-
flow, if doing a convert to binary operation) before running the program or include an ON-unit
for the ZERODIVIDE condition in the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM09D

IBM0320W ONCODE=oncode-value The UNDERFLOW condition was raised by a
SIGNAL statement.

Explanation: The program contained a SIGNAL statement to raise the UNDERFLOW con-
dition for which there was no associated ON-unit. The ONCODE associated with this
message is 330.

Programmer Response: Either remove the SIGNAL statement or include an ON-unit for
the UNDERFLOW condition in the program.

System Action: Execution continues with the next sequential statement.

Symbolic Feedback Code: IBM0A0

 Chapter 14. PL/I Run-Time Messages 679

 IBM0321W N IBM0342S

IBM0321W ONCODE=oncode-value The UNDERFLOW condition was raised.

Explanation: The magnitude of a floating-point number was smaller than the allowed
minimum.

Programmer Response: Either modify the program so that the magnitude of the floating-
point number is higher than the minimum allowed, or include an ON-unit for the UNDER-
FLOW condition in the program.

System Action: Execution continues from the point at which the condition was raised.

Symbolic Feedback Code: IBM0A1

IBM0330W The ATTENTION condition was raised by a SIGNAL statement.

Explanation: The program contained a SIGNAL statement to raise the ATTENTION condi-
tion. The message for this condition is never issued by PL/I.

Programmer Response: None.

System Action: None.

Symbolic Feedback Code: IBM0AA

IBM0340S ONCODE=oncode-value The SIZE condition was raised by a SIGNAL state-
ment.

Explanation: The program contained a SIGNAL statement to raise the SIZE condition for
which there was no associated ON-unit. The ONCODE associated with this message is 340.

Programmer Response: Either remove the SIGNAL statement or include an ON-unit for
the SIZE condition in the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0AK

IBM0341S ONCODE=oncode-value The SIZE condition was raised in an I/O statement.

Explanation: The high-order (leftmost) significant binary or decimal digits were lost in an
input/output operation where the size of the value being transmitted exceeded the declared
(or default) size of the data item. The ONCODE associated with this message is 341.

Programmer Response: Either modify the program so that the data item is large enough
for the value being transmitted or include an ON-unit for the SIZE condition in the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0AL

IBM0342S ONCODE=oncode-value The SIZE condition was raised.

Explanation: The high-order (leftmost) significant binary or decimal digits were lost in an
assignment to a variable or temporary variable where the size of the value being assigned
exceeded the declared (or default) size of the data item. The ONCODE associated with this
message is 341.

Programmer Response: Either modify the program so that the data item is large enough
for the value being assigned to it or include an ON-unit for the SIZE condition to allow proc-
essing to continue when the SIZE condition is raised.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0AM

680 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0360W N IBM0367S

IBM0360W ONCODE=oncode-value The STRINGRANGE condition was raised by a
SIGNAL statement.

Explanation: The program contained a SIGNAL statement to raise the STRINGRANGE
condition for which there was no associated ON-unit. The ONCODE associated with this
message is 350.

Programmer Response: Either remove the SIGNAL statement or include an ON-unit for
the STRINGRANGE condition in the program.

System Action: Execution continues with the next sequential statement.

Symbolic Feedback Code: IBM0B8

IBM0361W ONCODE=oncode-value The STRINGRANGE condition was raised.

Explanation: In the expression SUBSTR(S,I,J), the substring represented by starting posi-
tion I for a length of J does not lie wholly within the string S.

Programmer Response: Ensure that the values used for I and J are neither less than nor
greater than the length of S.

System Action: Execution continues with a revised SUBSTR reference. Refer to the Lan-
guage Reference Manual for details regarding the value of the revised SUBSTR reference.

Symbolic Feedback Code: IBM0B9

IBM0365W The FINISH condition was raised by a SIGNAL statement.

Explanation: The program contained a SIGNAL statement to raise the FINISH condition.
The message for this condition is never issued by PL/I.

Programmer Response: None.

System Action: None.

Symbolic Feedback Code: IBM0BD

IBM0366S The FINISH condition was raised during a STOP statement.

Explanation: The program contained a STOP statement which caused the FINISH condi-
tion to be raised. The message for this condition is never issued by PL/I.

Programmer Response: None.

System Action: None.

Symbolic Feedback Code: IBM0BE

IBM0367S The FINISH condition was raised by a SIGNAL statement.

Explanation: The program contained a SIGNAL statement to raise during an EXIT state-
ment which caused the FINISH condition to be raised. The message for this condition is
never issued by PL/I.

Programmer Response: None.

System Action: None.

Symbolic Feedback Code: IBM0BF

 Chapter 14. PL/I Run-Time Messages 681

 IBM0368W N IBM0382S

IBM0368W The FINISH condition was raised due to a RETURN or END statement in the
main procedure.

Explanation: The program completed normally, and as a result the FINISH condition was
raised. The message for this condition is never issued by PL/I.

Programmer Response: None.

System Action: None.

Symbolic Feedback Code: IBM0BG

IBM0369S The FINISH condition was raised after the ERROR condition.

Explanation: The FINISH condition was raised as the normal return action or implicit action
for the ERROR condition. The message for this condition is never issued by PL/I.

Programmer Response: None.

System Action: None.

Symbolic Feedback Code: IBM0BH

IBM0380S ONCODE=oncode-value The AREA condition was raised by a SIGNAL state-
ment.

Explanation: The program contained a SIGNAL statement to raise the AREA condition for
which there was no associated ON-unit. The ONCODE associated with this message is 362.

Programmer Response: Either remove the SIGNAL statement or include an ON-unit for
the AREA condition in the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0BS

IBM0381S ONCODE=oncode-value The AREA condition was raised because the target
area was too small for the AREA assignment.

Explanation: In an assignment of an area variable, the current extent of the area on the
right-hand side of the assignment statement was greater than the size of the area to which it
was to be assigned. The ONCODE associated with this message is 361.

Programmer Response: Modify the program to ensure that the target area is large enough
to contain the source area.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0BT

IBM0382S ONCODE=oncode-value The AREA condition was raised because of insuffi-
cient contiguous space in the area for allocation.

Explanation: Insufficient space was available in the specified area for the allocation. The
ONCODE associated with this message is 360.

Programmer Response: Provide an ON-unit to allow the allocation to be tried again. If
necessary, change the value of the pointer qualifying the reference to the inadequate area
so that it points to another area in which the allocation can be tried again.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0BU

682 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0400W N IBM0441W

IBM0400W ONCODE=oncode-value The CONDITION condition was raised by a SIGNAL
statement and the condition condition-name was signaled.

Explanation: The program contained a SIGNAL statement to raise the CONDITION condi-
tion for which there was no associated ON-unit. The ONCODE associated with this message
is 500.

Programmer Response: Either remove the SIGNAL statement or include an ON-unit for
the CONDITION condition in the program.

System Action: Execution continues with the next sequential statement.

Symbolic Feedback Code: IBM0CG

IBM0420S ONCODE=oncode-value The SUBSCRIPTRANGE condition was raised by a
SIGNAL statement.

Explanation: The program contained a SIGNAL statement to raise the
SUBSCRIPTRANGE condition for which there was no associated ON-unit. The ONCODE
associated with this message is 520.

Programmer Response: Either remove the SIGNAL statement or include an ON-unit for
the SUBSCRIPTRANGE condition in the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0D4

IBM0421S ONCODE=oncode-value. The SUBSCRIPTRANGE condition was raised.

Explanation: An array subscript exceeded the declared bound for the array.

Programmer Response: In order to ensure that the program can continue processing after
encountering a subscript range error, include an ON-unit for this condition which runs a
GOTO statement to the appropriate place in the program. Also, recompile the program.
Normal return from a SUBSCRIPTRANGE ON-unit will produce this message and raise the
error condition. Note that array handling operations are made slower when
SUBSCRIPTRANGE is enabled.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0D5

IBM0440W ONCODE=oncode-value The STRINGSIZE condition was raised by a SIGNAL
statement.

Explanation: The program contained a SIGNAL statement to raise the STRINGSIZE condi-
tion for which there was no associated ON-unit. The ONCODE associated with this message
is 150.

Programmer Response: Either remove the SIGNAL statement or include an ON-unit for
the STRINGSIZE condition in the program.

System Action: Execution continues with the next sequential statement.

Symbolic Feedback Code: IBM0DO

IBM0441W ONCODE=oncode-value The STRINGSIZE condition was raised.

Explanation: A string was assigned to a shorter string, causing right-hand characters or
bits in the source string to be truncated.

Programmer Response: Determine whether or not truncation of the right-hand characters
or bits in the source string is correct. Use an ON-unit to record the relevant data or modify
the program as required. Note that string-handling operations are made slower when
STRINGSIZE is enabled.

System Action: Execution continues from the point at which the condition was raised.

 Chapter 14. PL/I Run-Time Messages 683

 IBM0442W N IBM0460S

Symbolic Feedback Code: IBM0DP

IBM0442W ONCODE=151 The STRINGSIZE condition was raised. The condition was
detected during a mixed character string assignment.

Explanation: This condition was raised by one of the CHAR, GRAPHIC, or MPSTR built-in
functions. The target was not long enough to contain the result. This target can be the actual
target or a temporary target that is created by the program. This condition may have
occurred also due to a mixed character assignment with STRINGSIZE enabled and
CHARGRAPHIC in effect for the procedure or block. An MPSTR call is generated in this
case.

Programmer Response: Determine whether or not truncation of right-hand characters in
the result is correct. Use an ON-unit to record the relevant data or modify the program as
required.

System Action: Execution continues from the point at which the condition was raised.

Symbolic Feedback Code: IBM0DQ

IBM0450S ONCODE=oncode-value The STORAGE condition was raised by a SIGNAL
statement.

Explanation: The program contained a SIGNAL statement to raise the STORAGE condition
for which there was no associated ON-unit.

Programmer Response: Either remove the SIGNAL statement or include an ON-unit for
the STORAGE condition in the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0E2

IBM0451S ONCODE=oncode-value The STORAGE condition was raised.

Explanation: There was insufficient storage available to satisfy a request for additional
storage. For a storage allocation for a BASED variable, the variable was not allocated and its
associated pointer will be undefined. For a storage allocation for a CONTROLLED variable,
the controlled variable's generation was not allocated. A reference to the controlled variable
will result in the access of a previous generation of the controlled variable (if any).

Programmer Response: Attempt to free the allocated storage through a FREE statement
or within an ON-unit, or provide necessary steps in the ON-unit to terminate the program
without losing pertinent information.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0E3

IBM0460S ONCODE=oncode-value. The OVERFLOW was raised by a SIGNAL state-
ment.

Explanation: The OVERFLOW condition was raised by a SIGNAL statement. :xpl.The
program contained a SIGNAL statement to raise the OVERFLOW condition for which there
was no associated ON-unit. The ONCODE associated with this message is 300.

Programmer Response: Either remove the SIGNAL statement or include an ON-unit for
the OVERFLOW condition in the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0EC

684 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0461S N IBM0480S

IBM0461S ONCODE=oncode-value The OVERFLOW condition was raised.

Explanation: The magnitude of a floating-point number exceeded the allowed maximum.

Programmer Response: Modify the program to ensure that the condition does not recur or
provide an ON-unit to handle the condition.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0ED

IBM0470S ONCODE=oncode-value The INVALIDOP condition was raised by a SIGNAL
statement.

Explanation: The program contained a SIGNAL statement to raise the INVALIDOP condi-
tion for which there was no associated ON-unit.

Programmer Response: Either remove the SIGNAL statement or include an ON-unit for
the INVALIDOP condition in the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0EM

IBM0472S ONCODE=oncode-value. The INVALIDOP condition was raised.

Explanation: One of the following types of floating point processor exceptions occurred:

� Invalid floating point operation exceptions, including the following:

– Subtraction of two infinities

– Multiplication of infinity by 0

– Division of two infinities

– Division of zero by zero

� Floating point processor stack overflow exception

� Floating point processor stack underflow exception

� Denormalized operand exception

 � Precision exception

� Other nonspecific floating point processor exceptions

Continuing execution after an INVALIDOP condition, with or without an INVALIDOP ON-unit,
can result in further conditions being raised and termination of the program. Generally, the
program should be fixed to prevent INVALIDOP conditions from occurring because the
occurrence of the INVALIDOP condition indicates the program has fatal or near-fatal errors.

Programmer Response: Either check the data or sequence of floating point instructions
which could cause the INVALIDOP condition before running the program or insert an
INVALIDOP ON-unit to handle the condition whenever it arises.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0EO

IBM0480S ONCODE=oncode-value The FIXEDOVERFLOW condition was raised by a
SIGNAL statement.

Explanation: The program contained a SIGNAL statement to raise the FIXEDOVERFLOW
condition for which there was no associated ON-unit. The ONCODE associated with this
message is 310.

Programmer Response: Either remove the SIGNAL statement or include an ON-unit for
the FIXEDOVERFLOW condition in the program.

System Action: The ERROR condition is raised.

 Chapter 14. PL/I Run-Time Messages 685

 IBM0482S N IBM0504S

Symbolic Feedback Code: IBM0F0

IBM0482S ONCODE=oncode-value The FIXEDOVERFLOW condition was raised.

Explanation: The length of the result of a fixed-point arithmetic operation exceeded the
allowed maximum.

Programmer Response: Modify the program to ensure that the condition does not recur or
provide an ON-unit to handle the condition.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0F2

IBM0501S ONCODE= oncode-value. Greenwich Mean Time was not available for the
RANDOM built-in function.

Explanation: Greenwich Mean Time was not set on the system. The ONCODE associated
with this message is 2101.

Programmer Response: Greenwich Mean Time needs to be set on the system. Use the
OS/2 API DosSetDateTime service to set the time. Refer to the OS/2 Control Programming
Reference for details.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0FL

IBM0502S ONCODE= oncode-value. An invalid seed value was detected in the
RANDOM built-in function.

Explanation: The input seed value was not within the valid range of 0 to 2,147,483,646.
The random number was set to —1. The ONCODE associated with this message is 2102.

Programmer Response: Correct the seed value to be within the supported range.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0FM

IBM0503S ONCODE= oncode-value. Local time was unavailable.

Explanation: The system clock was not set. The ONCODE associated with this message is
2103.

Programmer Response: Set the system clock using the appropriate OS/2 commands or
use a program that uses the OS/2 API DosSetDateTime service. Refer to the OS/2 Control
Programming Reference for details.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0FN

IBM0504S ONCODE= oncode-value The value of Y in SECSTODATE(X,Y), DAYS(X,Y),
DAYSTODATE(X,Y), or DATETIME(Y) contained an invalid PICTURE.

Explanation: The character string representing the desired format for the output datetime
stamp contained an invalid picture string. The ONCODE associated with this message is
2104.

Programmer Response: Correct the format.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0FO

686 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0505S N IBM0509S

IBM0505S ONCODE= oncode-value X in DAYS(X,(Y)) contained an invalid day value.

Explanation: The supplied value for the day parameter was not within the valid range of 15
October 1582 to 31 December 9999. The ONCODE associated with this message is 2105.

Programmer Response: Correct the value for the day parameter to be within the sup-
ported range.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0FP

IBM0506S ONCODE= oncode-value X in DAYS(X,(Y)) contained an invalid month value.

Explanation: The supplied value for the month parameter was not within the valid range of
October 1582 to December 9999. The ONCODE associated with this message is 2106.

Programmer Response: Correct the value for the month parameter to be within the sup-
ported range.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBMOFQ

IBM0507S ONCODE= oncode-value X in DAYS(X,(Y)) contained an invalid year value.

Explanation: The supplied value for the year parameter was not within the valid range of
1582 to 9999. The ONCODE associated with this message is 2107.

Programmer Response: Correct the value for the year parameter to be within the sup-
ported range.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBMOFR

IBM0508S ONCODE= oncode-value X in DAYSTODATE(X,(Y)) was outside the sup-
ported range.

Explanation: X represents the number of days since 15 October 1582. The valid range is
from 1 to 3,074,324. The ONCODE associated with this message is 2108.

Programmer Response: Correct the value for X to be within the supported range.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBMOFS

IBM0509S ONCODE= oncode-value. X in SECSTODATE(X,(Y)) was outside the sup-
ported range.

Explanation: X represents the number of seconds elapsed since 00:00:00 on 14 October
1582, with 00:00:00.000 15 October 1582 being the first supported date/time, and
23:59:59.999 31 December 9999 being the last supported date/time. The valid range is from
86,400 to 265,621,679,999.999. The ONCODE associated with this message is 2109.

Programmer Response: Correct the value for X to be within the supported range.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0FT

 Chapter 14. PL/I Run-Time Messages 687

 IBM0510S N IBM0514S

IBM0510S ONCODE= oncode-value. X in DAYSTODATE(X,Y) could not be converted to
a valid Era.

Explanation: The picture string indicated that X was to be converted to a Japanese or
Republic of China Era, but X was outside the range of supported Eras. The ONCODE asso-
ciated with this message is 2110.

Programmer Response: Ensure X contains a valid Lilian day number within the range of
supported Eras.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0FU

IBM0511S ONCODE= oncode-value. The offset from Greenwich Mean Time was una-
vailable.

Explanation: The difference between the current local time and the Greenwich Mean Time
was not available from the system. The ONCODE associated with this message is 2111.

Programmer Response: Ensure that both the Greenwich Mean Time and the local time
are set on the system. Use the OS/2 API DosSetDateTime service to set the time. Refer to
the OS/2 Control Programming Reference for details.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0FV

IBM0512S ONCODE= oncode-value X in SECS(X,Y) or DAYS(X,Y) was outside the sup-
ported range.

Explanation: The input date supplied was earlier than 15 October 1582 or later than 31
December 9999. The ONCODE associated with this message is 2112.

Programmer Response: Correct the input date to be within the supported range.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0G0

IBM0513S ONCODE= oncode-value X in SECS(X,Y) contained an invalid seconds value.

Explanation: The supplied value for the seconds parameter was not within the valid range
of 0 to 59. The ONCODE associated with this message is 2113.

Programmer Response: Correct the value for the seconds parameter to be within the sup-
ported range.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0G1

IBM0514S ONCODE= oncode-value X in SECS(X,Y) contained an inalid minutes value.

Explanation: The supplied value for the minutes parameter was not within the valid range
of 0 to 59. The ONCODE associated with this message is 2114.

Programmer Response: Correct the value for the minutes parameter to be within the sup-
ported range.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0G2

688 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0515S N IBM0519S

IBM0515S ONCODE= oncode-value X in SECS(X,Y) contained an inalid hour value.

Explanation: The valuid range for the hour parameter is 0 to 23. If the "AP" field is present,
the valid range is 0 to 12. The ONCODE associated with this message is 2115.

Programmer Response: Correct the value for the hour parameter to be within the sup-
ported range.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0G3

IBM0516S ONCODE= oncode-value X in DAYS(X,Y)did not match the picture specifica-
tion.

Explanation: The value of X did not match the format described by the picture specifica-
tion. For example, non-numeric characters appear where only numeric characters are
expected. The ONCODE associated with this message is 2116.

Programmer Response: Verify the format of the input data matches the picture string
specification.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBMOG4

IBM0517S ONCODE= oncode-value X in SECS(X,Y) did not match the picture specifica-
tion.

Explanation: The value of X did not match the format described by the picture specifica-
tion. For example, non-numeric characters appear where only numeric characters are
expected. The ONCODE associated with this message is 2117.

Programmer Response: Verify the format of the input data matches the picture string
specification.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0G5

IBM0518S ONCODE= oncode-value The date string returned by DAYSTODATE(X,Y) was
truncated.

Explanation: The output string was not large enough to contain the formatted date value.
The ONCODE associated with this message is 2118.

Programmer Response: Ensure the output string is large enough to contain the entire for-
matted date.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBMOG6

IBM0519S ONCODE= oncode-value The timestamp string returned by DATETIME(X) or
SECSTODATE(X,Y) was truncated.

Explanation: The output string was not large enough to contain the formatted data value.
The ONCODE associated with this message is 2119.

Programmer Response: Ensure the output string is large enough to contain the entire for-
matted date.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0G7

 Chapter 14. PL/I Run-Time Messages 689

 IBM0520S N IBM0532S

IBM0520S ONCODE= oncode-value X in SECSTODATE(X,Y) or DATETIME(X) contained
an invalid number-of-seconds value.

Explanation: The picture string indicated that X was to be converted to a Japanese or
Republic of China Era, but X lies outside the range of supported Eras. The ONCODE associ-
ated with this message is 2120.

Programmer Response: Ensure X contains a valid number-of-seconds value within the
range of supported Eras.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0G8

IBM0521S ONCODE= oncode-value Insufficient data was passed to the DAYS or SECS
built-in function.

Explanation: The picture string passed to the DAYS or SECS built-in function did not
contain enough information. The minimum information required is either month, day, and
year, or year and Julian day. The ONCODE associated with this message is 2121.

Programmer Response: Ensure the input data contains, as a minimum, the year, month,
and day, or the year and Julian day.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0G9

IBM0522S ONCODE= oncode-value X in SECS(X,Y) or DAYS(X,Y) contained an invalid
Era name.

Explanation: X did not contain a supported Japanese or Republic of China Era name. The
ONCODE associated with this message is 2122.

Programmer Response: Ensure X is a valid DBCS string.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0GA

IBM0531S ONCODE= oncode-value Operation exception.

Explanation: A programmer-related hardware error was detected. The ONCODE associ-
ated with this message is 8091.

Programmer Response: It is possible that an error in the program has caused part of the
instructions that can be run to be overwritten by data. Other possible causes of an operation
exception might be an attempt to invoke an external procedure or other routine that was not
incorporated into the running program by the linkage editor, or running a branch instruction
that is incorrect because a control block had previously been overwritten. Consequently, it is
advisable to check the linkage editor diagnostics to ensure that all requested external proce-
dures and subroutines have in fact been incorporated into the running program, and that any
overlay phases do not oeverwrite any phases that are still active.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0GJ

IBM0532S ONCODE= oncode-value Privileged operation exception

Explanation: A programmer-related hardware error was detected. The ONCODE associ-
ated with this message is 8092.

Programmer Response: If the error is not in a non-PL/I routine included in the running
program, the PL/I program should be checked for an error that could cause the instructions
that run to be overwritten by data that matches a privileged operation.

System Action: The ERROR condition is raised.

690 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0533S N IBM0537S

Symbolic Feedback Code: IBM0GK

IBM0533S ONCODE= oncode-value EXECUTE exception

Explanation: A programmer-related hardware error was detected. The ONCODE associ-
ated with this message is 8093.

Programmer Response: If the error is not in a non-PL/I routine included in the running
program, the PL/I program should be checked for an error that could cause the running
instruction to be overwritten by data that matches the operation code for the EXECUTE
instruction on.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0GL

IBM0534S ONCODE= oncode-value Protection exception

Explanation: A programmer-related hardware error was detected. The ONCODE associ-
ated with this message is 8094.

Programmer Response: If the error is not in a non-PL/I routine included in the running
program, the PL/I program should be checked for an error that could cause the address
used by the store instruction to be corrupted.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0GM

IBM0535S ONCODE= oncode-value Addressing exception

Explanation: A programmer-related hardware error was detected. The ONCODE associ-
ated with this message is 8095.

Programmer Response: If the error is not in a non-PL/I routine included in the running
program, the PL/I program should be checked for an error that could cause the address to
be corrupted.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0GN

IBM0536S ONCODE= oncode-value Specification exception

Explanation: A programmer-related hardware error was detected. The ONCODE associ-
ated with this message is 8096.

Programmer Response: If the error is not in a non-PL/I routine included in the running
program, the PL/I program should be checked for an error that could cause the operand to
be corrupted by overwriting control blocks or sections of running code.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0GO

IBM0537S ONCODE= oncode-value Data exception

Explanation: A programmer-related hardware error was detected. The ONCODE associ-
ated with this message is 8097.

Programmer Response: The PL/I program should be checked for an error such as an
operation on a FIXED DECIMAL data item before it has been initialized, or an error which
could cause the data item to be overwritten.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0GP

 Chapter 14. PL/I Run-Time Messages 691

 IBM0541S N IBM0543S

IBM0541S ONCODE= oncode-value X in ASIN(X) or ACOS(X) was invalid

Explanation: One of the following conditions was detected:

� ABS(X) was greater than one.

The ONCODEs associated with this message are:

� For real short floating-point arguments:

1518 Argument greater than one

� For real long floating-point arguments:

1519 Argument greater than one

� For real extended floating-point arguments:

1520 Argument greater than one

Programmer Response: Ensure X is a real expression where ABS(X) is less than or equal
to one.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0GT

IBM0542S ONCODE= oncode-value X in ATAN(X) or ATAND(X) was invalid.

Explanation: One of the following conditions was detected:

� The real and imaginary parts of X were equal to (0, +1i) or (0, –1i).

The ONCODEs associated with this message are:

� For complex short floating-point arguments:

1558 Argument equal to (0,+1i) or (0,-1i)

� For complex long floating-point arguments:

1559 Argument equal to (0,+1i) or (0,-1i)

� For complex extended floating-point arguments:

1564 Argument equal to (0,+1i) or (0,-1i)

Programmer Response: If X is complex, ensure X is not equal to +1i or –1i.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0GU

IBM0543S ONCODE= oncode-value X in ATANH(X) was invalid

Explanation: One of the following conditions occurred::

� ABS(X) was greater than one.

The ONCODEs associated with this message are:

� For real short floating-point arguments:

1514 Argument greater than one

� For real long floating-point arguments:

1515 Argument greater than one

� For real extended floating-point arguments:

1516 Argument greater than one

Programmer Response: If X is real, ensure ABS(X) is less than one. If X is complex,
ensure X is not equal to +1i or —1i.

System Action: The ERROR condition is raised.

692 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0544S N IBM0544S

Symbolic Feedback Code: IBM0GV

IBM0544S ONCODE= oncode-value X in SIN(X), COS(X), SIND(X) or COSD(X) was
invalid.

Explanation: One of the following conditions occurred:

� ABS(X) was greater than or equal to K, where K=2**63 for short and long floating-point
values, and K=2**64 for extended floating-point values.

� The absolute value of the real part of X was greater than or equal to K, where K=2**63
for complex short and long floating-point values, and K=2**64 for complex extended
floating-point values.

� An overflow occurred because the absolute value of the imaginary part of X was greater
than K, where K is as follows:

– 89.76 for complex short floating-point arguments

– 710.82 for complex long floating-point arguments

– 11357.56 for complex extended floating-point arguments

� An overflow occurred because the absolute value of the imaginary part of X was greater
than I but less than J, and the absolute value of the real part was out of range. The
values for I and J are as follows:

– I = 89.41 and J = 89.76 for complex short floating-point arguments

– I = 710.47 and J = 710.82 for complex long floating-point arguments

– I = 11357.21 and J = 11357.56 for complex extended floating-point arguments

The ONCODEs associated with this message are:

� For real short floating-point arguments:

1506 Argument greater than or equal to limit

2425 Argument equal to plus or minus limit

� For complex short floating-point arguments:

1529 Absolute value of the real part of argument greater than or equal to limit

� For real long floating-point arguments:

1507 Argument greater than or equal to limit

2426 Argument equal to plus or minus limit

� For complex long floating-point arguments:

1530 Absolute value of the real part of argument greater than or equal to limit

� For real extended floating-point arguments:

1517 Argument greater than or equal to limit

� For complex extended floating-point arguments:

1531 Absolute value of the real part of argument greater than or equal to limit

Programmer Response: Ensure X is valid.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0H0

 Chapter 14. PL/I Run-Time Messages 693

 IBM0545S N IBM0547S

IBM0545S ONCODE= oncode-value X in SINH(X) or COSH(X) was invalid.

Explanation: One of the following conditions occurred:

� The absolute value of the imaginary part of X was greater than or equal to K, where
K=2**63 for complex short and long floating-point values, and K=2**64 for complex
extended floating-point values.

� ABS(X) was greater than 89.41 for X represented as a short floating-point value.

� ABS(X) was greater than or equal to K, where K=710.47 for long floating-point values
and K=11357.22 for extended floating-point values.

� An overflow occurred because the absolute value of the real part of X was greater than
K, where K is as follows:

– 89.76 for complex short floating-point arguments

– 710.82 for complex long floating-point arguments

– 11357.56 for complex extended floating-point arguments

� An overflow occurred because the absolute value of the real part of X was greater than I
but less than J, and the absolute value of the imaginary part was out of range. The
values for I and J are as follows:

– I = 89.41 and J = 89.76 for complex short floating-point arguments

– I = 710.47 and J = 710.82 for complex long floating-point arguments

– I = 11357.21 and J = 11357.56 for complex extended floating-point arguments

The ONCODEs associated with this message are:

� For real short floating-point arguments:

1523 Absolute value of argument greater than limit

� For complex short floating-point arguments:

1914 Absolute value of the imaginary part of argument greater than or equal to limit

� For real long floating-point arguments:

1524 Absolute value of argument greater than or equal to limit

� For complex long floating-point arguments:

1915 Absolute value of the imaginary part of argument greater than or equal to limit

� For real extended floating-point arguments:

1525 Absolute value of argument greater than or equal to limit

� For complex extended floating-point arguments:

1916 Absolute value of the imaginary part of argument greater than or equal to limit

Programmer Response: Ensure X is valid.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0H1

IBM0547S ONCODE= oncode-value X in TAN(X) or TAND(X) was invalid.

Explanation: One of the following conditions occurred:

� ABS(X) was greater than or equal to K, where K=2**63 for short and long floating-point
values, and K=2**64 for extended floating-point values.

� The absolute value of the real part of X was greater than or equal to K, where K=2**63
for complex short and long floating-point values, and K=2**64 for complex extended
floating-point values.

The ONCODEs associated with this message are:

694 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0548S N IBM0549S

� For real short floating-point arguments:

1508 Absolute value of argument greater than or equal to limit

� For complex short floating-point arguments:

1853 Absolute value of the real part of argument greater than or equal to limit

� For real long floating-point arguments:

1509 Absolute value of argument greater than or equal to limit

� For complex long floating-point arguments:

1854 Absolute value of the real part of argument greater than or equal to limit

� For real extended floating-point arguments:

1522 Absolute value of argument greater than or equal to limit

� For complex extended floating-point arguments:

1855 Absolute value of the real part of argument greater than or equal to limit

Programmer Response: Ensure X is valid.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0H3

IBM0548S ONCODE= oncode-value X in TANH(X) was invalid.

Explanation: One of the following conditions occurred:

� The absolute value of the imaginary part of X was greater than or equal to K, where
K=2**63 for complex short and long floating-point values, and K=2**64 for complex
extended floating-point values.

� An overflow occurred because the absolute value of the real part of X was greater than
11357.56.

� An overflow occurred because the absolute value of the real part of X was greater than
11357.21 but less than 11357.56, and the absolute value of the imaginary part was out
of range.

The ONCODEs associated with this message are:

� For complex short floating-point arguments:

1574 Absolute value of the imaginary part of argument greater than or equal to limit

� For complex long floating-point arguments:

1575 Absolute value of the imaginary part of argument greater than or equal to limit

� For complex extended floating-point arguments:

1576 Absolute value of the imaginary part of argument greater than or equal to limit

Programmer Response: Ensure X is valid.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0H4

IBM0549S ONCODE= oncode-value X in ERF(X) was invalid.

Explanation: X was not a valid number.

The ONCODEs associated with this message are:

2177 Real short floating-point arguments

2178 Real long floating-point arguments

2179 Real extended floating-point arguments

Programmer Response: Ensure X is valid.

 Chapter 14. PL/I Run-Time Messages 695

 IBM0550S N IBM0550S

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0H5

IBM0550S ONCODE= oncode-value X in EXP(X) was invalid.

Explanation: One of the following conditions occurred:

� X was less than K, where K is as follows:

– –87.33 for short floating-point arguments

– –708.39 for long floating-point arguments

– –11355.13 for extended floating-point arguments

� The absolute value of the imaginary part of X was greater than or equal to K, where
K=2**63 for complex short and long floating-point values, and K=2**64 for complex
extended floating-point values. :li.An overflow occurred because the real part of X was
greater than K, where K is as follows:

– 89.06 for complex short floating-point arguments

– 710.12 for complex long floating-point arguments

– 11356.87 for complex extended floating-point arguments

� An overflow occurred because the real part of X was greater than I but less than J, and
the imaginary part was out of range. The values for I and J are as follows:

– I = 88.73 and J = 89.06 for complex short floating-point arguments

– I = 709.79 and J = 710.12 for complex long floating-point arguments

– I = 11357.53 and J = 11356.87 for complex extended floating-point arguments

� X was greater than or equal to K, where K is as follows:

– 88.73 for short floating-point arguments

– 709.79 for long floating-point arguments

– 11356.53 for extended floating-point arguments

The ONCODEs associated with this message are:

� For real short floating-point arguments:

1565 Argument less than limit

1611 Argument greater than or equal to limit

� For complex short floating-point arguments:

1568 Absolute value of the imaginary part of argument greater than or equal to limit

� For real long floating-point arguments:

1566 Argument less than limit

1612 Argument greater than or equal to limit

� For complex long floating-point arguments:

1569 Absolute value of the imaginary part of argument greater than or equal to limit

� For real extended floating-point arguments:

1567 Argument less than limit

1613 Argument greater than or equal to limit

� For complex extended floating-point arguments:

1570 Absolute value of the imaginary part of argument greater than or equal to limit

Programmer Response: Ensure X is valid.

System Action: The ERROR condition is raised.

696 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0551S N IBM0552S

Symbolic Feedback Code: IBM0H6

IBM0551S ONCODE= oncode-value X in GAMMA(X) or LOGGAMMA(X) was invalid.

Explanation: One of the following conditions occurred:

� X was less than K, where K is as follows:

– for the built-in function GAMMA:

– 35.04 for short floating-point arguments

– 171.62 for long floating-point arguments

– 1755.54 for extended floating-point arguments

– for the built-in function LOGGAMMA:

– 4.085E+36 for short floating-point arguments

– 2.559E+305 for long floating-point arguments

– 1.048E+4928 for extended floating-point arguments

� For GAMMA(X), X was less than or equal to zero.

� For LOGGAMMA(X), X was less than zero.

� For GAMMA(X), the calculated result was greater in magnitude than the largest finite
number representable in the result data type.

The ONCODEs associated with this message are:

� For real short floating-point arguments:

1571 Argument greater than limit

2165 Argument less than or equal to zero

� For real long floating-point arguments:

1572 Argument greater than limit

2166 Argument less than or equal to zero

� For real extended floating-point arguments:

1573 Argument greater than limit

2164 Argument less than zero

2167 Argument equal to zero

2403 Argument less than or equal to minus zero

2404 Argument equal to zero

Programmer Response: If X is numeric, ensure X is greater than zero.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0H7

IBM0552S ONCODE=oncode-value X in LOG(X), LOG10(X) or LOG2(X) was invalid.

Explanation: One of the following conditions occurred:

� X was less than or equal to zero.

� A floating point division by zero occurred because X was equal to (0,0i).

The ONCODEs associated with this message are:

� For real short floating-point arguments:

1504 Argument less than zero

1577 Argument equal to plur or minus zero

 Chapter 14. PL/I Run-Time Messages 697

 IBM0553S N IBM0554S

� For complex short floating-point arguments:

2413 X equal to (0,0i)

� For real long floating-point arguments:

1505 Argument less than zero

1578 Argument equal to plus or minus zero

� For complex long floating-point arguments:

2414 X equal to (0,0i)

Programmer Response: If X is real, ensure X is greater than zero. If X is complex, ensure
X is not equal to 0 + 0i.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0H8

IBM0553S ONCODE=oncode-value The ERFC(X) was invalid.

Explanation: One of the following conditions occurred:

� X was greater than K, where K is as follows:

– 9.19 for short floating-point arguments

– 26.54 for long floating-point arguments

– 106.53 for extended floating-point arguments

The ONCODEs associated with this message are:

� For real short floating-point arguments:

2171 Argument greater than limit

� For real long floating-point arguments:

2172 Argument greater than limit

� For real extended floating-point arguments:

2173 Argument greater than limit

Programmer Response: Ensure X is greater than zero.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0H9

IBM0554S ONCODE=oncode-value X in SQRT(X) was invalid.

Explanation: One of the following conditions occurred:

� X was less than zero

� X was equal to minus zero.

The ONCODEs associated with this message are:

� For real short floating-point arguments:

1500 Argument less than zero

1960 Argument equal to limit

� For real long floating-point arguments:

1501 Argument less than zero

1962 Argument equal to limit

Programmer Response: Ensure X is greater than zero.

System Action: The ERROR condition is raised.

698 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0555S N IBM0563S

Symbolic Feedback Code: IBM0HA

IBM0555S ONCODE=oncode-value X in ABS(X) was invalid.

Explanation: The calculated result was greater in magnitude than the largest finite number
representable in the result data type.

Programmer Response: Ensure X is valid.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0HB

IBM0560S ONCODE=oncode-value The EVENT variable, as argument to the COM-
PLETION pseudovariable, was already in use with file file-name.

Explanation: The event variable used in this statement was already active and associated
with an input/output operation on the named file. The ONCODE associated with this
message is 3904.

Programmer Response: Modify the program so that the COMPLETION pseudovariable
refers to the event variable when it is inactive.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0HG

IBM0561S ONCODE=oncode-value The TASK variable was already in use with entry
entry-name.

Explanation: The task variable specified in a CALL statement is already associated with an
active task. The named entry denotes the entry point of the task with which the variable is
associated. The ONCODE associated with this message is 3901.

Programmer Response: Modify the program so that the task variable is uniquely associ-
ated with each task in the application.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0HH

IBM0562S ONCODE= oncode-value The EVENT variable, as argument to the COM-
PLETION pseudovariable, was already in use with a DISPLAY statement.

Explanation: The event variable used in this statement was already active and associated
with a DISPLAY statement.

Programmer Response: Modify the program so that the COMPLETION pseudovariable
refers to the event variable when it is inactive.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0HI

IBM0563S ONCODE=oncode-value The EVENT variable was already in use with file file-
name.

Explanation: The event variable used in this statement was already active and associated
with another input/output operation on the named file. The ONCODE associated with this
message is 3907.

Programmer Response: Modify the program so that the input/output operation refers to
another event variable, or include a WAIT statement to prevent the statement from running
until the active event is complete.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0HJ

 Chapter 14. PL/I Run-Time Messages 699

 IBM0564S N IBM0567S

IBM0564S ONCODE=oncode-value The EVENT variable being assigned was already in
use with file file-name.

Explanation: An attempt was made to assign a value to an event variable while it was still
associated with an input/output operation.

Example:

DCL X FILE RECORD INPUT UNBUFFERED
ENV(BLKSIZE(8#) RECSIZE(8#) F);
DCL Y CHAR(8#);
DCL (Z,Z1) EVENT;
READ FILE(X) INTO(Y) EVENT(Z);
Z = Z1;

The ONCODE associated with this message is 3906.

Programmer Response: Modify the program so that the event variable used as the target
in the assignment, or as the argument of the COMPLETION pseudovariable, is not the same
event variable associated with an input/output operation. Alternatively, include a WAIT state-
ment to prevent this statement from running until the active event is complete.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0HK

IBM0566S ONCODE= oncode-value The task was not created because the total number
of active tasks would exceed the allowable limit.

Explanation: The request to create a task was not honored because otherwise the total
number of concurrently active tasks would exceed the limit set either by the
PLITASKCOUNT run-time option or the underlying OpenEdition MVS installation default for
the maximum number of threads.

Programmer Response: Increase the number of tasks allowed to be active concurrently or
modify the program so that the existing number of tasks is not exceeded.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0HM

IBM0567S ONCODE= oncode-value A WAIT occurred in the ON-unit for the I/O event
required for the current task.

Explanation: A WAIT statement specified an event variable. The completion of the event
caused entry to an ON-unit for an I/O condition which contained another WAIT statement for
the same event variable as in the original WAIT statement.

Example:

DCL F FILE RECORD OUTPUT UNBUFFERED
ENV(BLKSIZE(8#) RECSIZE(8#) F);
ON RECORD(F) BEGIN;
WAIT(E);
END;
WRITE FILE(F) FROM (X) EVENT(E);
WAIT(E); (this statement raises the
record condition)

The ONCODE associated with this message is 3911.

Programmer Response: Remove the WAIT statement from the ON-unit for the input/output
condition.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0HN

700 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0568S N IBM0570S

IBM0568S ONCODE= oncode-value The assigned EVENT variable was already in use
with a DISPLAY statement.

Explanation: The event variable specified as the argument of the COMPLETION built-in
function, or used as the target in an assignment, was still associated with a DISPLAY state-
ment.

Example:

DCL A CHAR, COMPLETION BUILTIN;
DISPLAY('MESSAGE TO OPERATOR')
REPLY(A) EVENT(E);
COMPLETION(E)='1'B;

ONCODEs associated with this message are:

� 3904—event variable as argument to the COMPLETION built-in function

� 3907—event variable is active

Programmer Response: Modify the program so that the event variable used as the target
in the assignment or as the argument of the COMPLETION pseudovariable is not the same
event variable associated with the DISPLAY statement. Or include a WAIT statement to
prevent this statement from running until the active event is complete.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0HO

IBM0569S ONCODE= oncode-value The assigned EVENT variable was already active
and was used with entry entry-name.

Explanation: An active event variable was specified as the target of an event variable
assignment.

Example:

DCL (E,E1) EVENT;
CALL P EVENT(E);
E=E1;
P: PROC;
END;

ONCODEs associated with this message are:

3906 event assignment
3907 event variable is active

Programmer Response: Either use another inactive event variable, or include a WAIT
statement to ensure that this statement is not run until the active event is complete.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0HP

IBM0570S ONCODE= oncode-value The EVENT variable was active and was used with
entry entry-name.

Explanation: An active event variable was specified in the EVENT option of an input/output
statement.

Programmer Response: Either insert a WAIT statement to ensure the event in question is
inactive when this statement is run, or if the statement can be run correctly before the cur-
rently active event is complete, use another inactive event variable.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0HQ

 Chapter 14. PL/I Run-Time Messages 701

 IBM0571S N IBM0575S

IBM0571S ONCODE= oncode-value The EVENT variable was already used with a
DISPLAY statement.

Explanation: The event variable specified in the statement was already associated with a
DISPLAY statement. The ONCODE associated with this message is 3907.

Programmer Response: Either use a different event variable or insert a WAIT statement
so that the DISPLAY statement is complete before this statement is run.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0HR

IBM0572S ONCODE= oncode-value A CALL statement with the TASK, EVENT, or PRI-
ORITY option was found in a PUT FILE (SYSPRINT) statement.

Explanation: A tasking CALL statement is not allowed from a PUT FILE (SYSPRINT)
statement because no programs in the attempted new task via the tasking CALL statement
can produce output on SYSPRINT while a PUT statement is running, and task interlock is
likely to occur.

Example:

DCL X FIXED BIN(15);
PUT LIST(F(X));
F: PROC(X);
CALL E TASK;
X=5;
RETURN (X);
END F;
E: PROC;
END E;

The ONCODE associated with this message is 3912.

Programmer Response: Remove the tasking CALL statement from the PUT FILE
(SYSPRINT) statement.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0HS

IBM0573S ONCODE= oncode-value The EVENT variable, as argument to the COM-
PLETION pseudovariable, was already used with entry entry-name.

Explanation: An active event variable was used as the argument to the COMPLETION
pseudovariable. Event variables used as arguments to the COMPLETION pseudovariable
must be inactive.

Programmer Response: Either use a different event variable for the COMPLETION
pseudovariable, or modify the program so that the COMPLETION pseudovariable refers to
the event variable when it is inactive.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0HT

IBM0575S ONCODE= oncode-value An attempt was made to invoke a Fortran or
COBOL program while another active task had invoked a program of the
same language.

Explanation: If a Fortran or COBOL program has been invoked in a task, a program of the
same language can not execute in any other task until the task used to invoke the Fortran or
COBOL program terminates. The ONCODE associated with this message is 3914.

Programmer Response: Make sure all Fortran or COBOL programs are invoked in one
task or control the invocation sequence in such a way that the second Fortran or COBOL
program invoked from a task waits until another task which has already invoked a program
of the same language terminates.

702 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0576S N IBM0580S

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0HV

IBM0576S ONCODE= oncode-value An attempt to use a CALL statement with the
TASK, EVENT, or PRIORITY option was found in a non-tasking environ-
ment.

Explanation: An attempt was made to create a task when the application was not linked
with the multitasking library. The ONCODE associated with this message is 3915.

Programmer Response: Remove the tasking option from the CALL statement, or if this is
a multitasking application, relink it with the multitasking library.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0I0

IBM0577I A PL/I multitasking application was found under CICS, IMS, DB2, CMS, pre-
initialized environment, or a nested enclave.

Explanation: PL/I Multitasking Facility is not supported under CICS, IMS, DB2, CMS, pre-
initialized environment (both LE-defined and PL/I-defined pre-initialized environment), and a
nested enclave.

| Programmer Response: Do not use the PL/I Multitasking Facility in the above environ-
| ment, or run the multitasking application under OS/390.

System Action: The application is terminated with the 4093-12 Abend.

Symbolic Feedback Code: IBM0I1

| IBM0579I ONCODE=oncode-value The callable service BPX1SYC for the installation
| default of the maximum number of threads was unsuccessful. The system
| return code was return_code; the reason code was reason_code.

| Explanation: The callable service BPX1SYC used to query the installation default of the
| maximum number of threads failed. The system return code and reason code were returned.

| Programmer Response: Look up the return code and reason code in OS/390 UNIX
| System Services Programming: Assembler Callable Services Reference, and take the appro-
| priate action. Consult with your system support personnel if necessary.

System Action: The application is abnormally terminated with 4093-152 Abend.

Symbolic Feedback Code: IBM0I3

IBM0580S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
an attempt was made to OPEN the MSGFILE(SYSPRINT) file after a subtask
had been created.

Explanation: When the MSGFILE(SYSPRINT) run-time option is specified, you must
ensure that the standard SYSPRINT file is opened in the major PL/I task before any subtask
is ever created.

Programmer Response: Ensure that the above rule has not been violated. One method is
to add an OPEN statement for the SYSPRINT file at the start of the major PL/I task before
an subtasks are created.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0I4

 Chapter 14. PL/I Run-Time Messages 703

 IBM0581I N IBM0585S

IBM0581I The POSIX(ON) run-time option was in effect for a PL/I multitasking appli-
cation.

Explanation: The POSIX(ON) run-time option is not supported for a PL/I multitasking appli-
cation.

Programmer Response: Specify the POSIX(OFF) run-time option for a PL/I multitasking
environment.

System Action: The application is terminated with the 4093-52 Abend.

Symbolic Feedback Code: IBM0I5

| IBM0583S ONCODE=oncode-value The callable service BPX1MPI (mvspauseinit) was
| unsuccessful. The return code was return_code and the reason code was
| reason_code.

| Explanation: The callable service BPX1MPI (mvspauseinit) was called to initialize a wait
| for a PL/I WAIT or DISPLAY statement for a PL/I multi-tasking program. This service failed
| with the return code and reason code shown in the message text.

| Programmer Response: Look up the return code and reason code in OS/390 UNIX
| System Services Programming: Assembler Callable Services Reference, and take the appro-
| priate action. Consult with your system support personnel if necessary.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0I7

| IBM0584S ONCODE=oncode-value The callable service BPX1MP (mvspause) was
| unsuccessful. The return code was return_code and the reason code was
| reason_code.

| Explanation: The callable service BPX1MP (mvspause) was called to perform a wait for a
| PL/I WAIT or DISPLAY statement for a PL/I multi-tasking program. This service failed with
| the return code and reason code shown in the message text.

| Programmer Response: Look up the return code and reason code in the OS/390 UNIX
| System Services Programming: Assembler Callable Services Reference and take the appro-
| priate action. Consult with your system support personnel if necessary.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0I8

| IBM0585S ONCODE=oncode-value The callable service BPX1PTB for cancelling a PL/I
| subtask was unsuccessful. The system return code was return_code, the
| reason code was reason_code.

| Explanation: The callable service BPX1PTB used to cancel a PL/I subtask during
| abnormal termination failed. The system return code and reason code were returned.

| Programmer Response: Look up the return code and reason code in OS/390 UNIX
| System Services Programming: Assembler Callable Services Reference, and take the appro-
| priate action. Consult with your system support personnel if necessary.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0I9

704 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0586S N IBM0593W

| IBM0586S ONCODE= oncode-value The callable service BPX1ENV for supporting PL/I
| EXCLUSIVE files was unsuccessful. The system return code was
| return_code, the reason code was reason_code.

| Explanation: The callable service BPX1ENV used to support the PL/I EXCLUSIVE files
| failed. The system return code and reason code were returned.

| Programmer Response: Look up the return code and reason code in OS/390 UNIX
| System Services Programming: Assembler Callable Services Reference, and take the appro-
| priate action. Consult with your system support personnel if necessary.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0IA

IBM0590S ONCODE= oncode-value The fetchable procedure with entry entry-name
could not be found.

Explanation: The libraries available when the program was run did not contain a member
with a name or alias matching that used in the FETCH statement. The ONCODE associated
with this message is 9250.

Programmer Response: Ensure that the load module that is to be fetched is accessible at
run-time, and that it is stored with the same name or alias as that used in the FETCH state-
ment.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0IE

IBM0591S ONCODE=oncode-value There was a permanent I/O error while fetching pro-
cedure with entry entry-name.

Explanation: A permanent I/O error occurred while trying to load the module named in the
FETCH statement. The ONCODE associated with this message is 9251.

Programmer Response: Ensure that the required load module has been incorporated into
the appropriate library with proper data set/file attributes, and then rerun the job. If the
problem recurs, inform your installation system programmer, who will take the appropriate
action.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0IF

IBM0592S ONCODE= oncode-value FETCH/RELEASE is not supported in CMS.

Explanation: An attempt was made to FETCH or RELEASE another program from a PL/I
module that was linked with PL/I Version 2 Release 3 or earlier. The FETCH/RELEASE
facility under CMS is only available with LE/370 PL/I. The ERROR condition has been
raised. The ONCODE associated with this message is 9252.

Programmer Response: Remove the FETCH or RELEASE statement from the application
and use the CALL statement instead. Or relink the program with LE/370 PL/I.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0IG

IBM0593W ONCODE= oncode-value The CALL PLITEST statement failed because the
NOTEST compiler option was in effect.

Explanation: An attempt was made to execute a CALL PLITEST statement in a program
that was compiled with the NOTEST option. The debugger can not be invoked when the
NOTEST compiler option is in effect.

Programmer Response: Re-compile the program with the TEST option, or remove the
CALL PLITEST statement(s) from the program.

 Chapter 14. PL/I Run-Time Messages 705

 IBM0594S N IBM0597S

System Action: Processing continues with the next sequential statement. The debugger is
not invoked.

Symbolic Feedback Code: IBM0IH

IBM0594S ONCODE= oncode-value Under CICS, an attempt was made to FETCH a
main procedure from a PL/I routine.

Explanation: Under CICS, using FETCH to dynamically load a PL/I main procedure from a
PL/I routine is not supported. The ONCODE associated with this message is 9254.

Programmer Response: Remove the FETCH statement and use the EXEC CICS LINK
command to create a nested enclave.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0II

IBM0595S ONCODE=9255 An attempt was made to release a load module containing
non-PL/I high level language programs.

Explanation: A load module containing non-PL/I high level language programs, such as C,
COBOL, or FORTRAN, could not be released by a PL/I RELEASE statement. The load
module will be released automatically during the enclave termination. A load module con-
taining PL/I programs and/or Assembler programs only can be released by a PL/I RELEASE
statement. The associated ONCODE is 9255.

Programmer Response: Remove the RELEASE statement from the program as the load
module will be released automatically during the enclave termination.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0IJ

IBM0596S ONCODE=9256 The fetchable procedure could not be released.

Explanation: Either the routine was not previously fetched, or the fetched part containing
the routine was no longer in use but could not be released. The ONCODE associated with
this message is 9256.

Programmer Response: Ensure the name used in the RELEASE statement is correct, and
that the routine has been previously fetched. Also, ensure the fetched part containing the
routine to be released is accessible at run-time.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0IK

IBM0597S ONCODE= oncode-value A subroutine load module using the PLICALLA
entry point was fetched.

Explanation: The PLICALLA entry point can only be used for a load module with a PL/I
main routine. The ONCODE associated with this message is 9257.

Programmer Response: Either Specify OPTIONS(MAIN) and recompile or don't use the
PLICALLA entry point.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0IL

706 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0600S N IBM0612S

IBM0600S ONCODE= oncode-value An E-format specification contained incorrect
values in fields W, D, and S.

Explanation: An edit-directed input/output operation for an E-format item was specified
incorrectly. The ONCODE associated with this message is 3000.

Programmer Response: Correct the E-format item according to the language rules.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0IO

IBM0601S ONCODE= oncode-value The value of a W field in an F-format specification
was too small.

Explanation: An edit-directed input/output operation for an F-format item was specified with
a W-specification that was too small to allow room for the decimal-point when the number of
fractional digits was specified as zero. The ONCODE associated with this message is 3001.

Programmer Response: Correct the F-format item according to the language rules.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0IP

IBM0604S ONCODE= oncode-value An invalid assignment was made to a pictured
character string.

Explanation: An attempt was made to assign an invalid data item to a pictured string. A
data item which is not a character string cannot be assigned to a pictured character string
because it does not match the declared characteristics of the pictured target variable. The
ONCODE associated with this message is 3006.

Programmer Response: Alter the characteristics either of the source variable or of the
target variable so the data item assignment is possible.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0IS

IBM0611S ONCODE= oncode-value The F-factor in the PICTURE specification was
outside the range of -128 to 127.

Explanation: The picture character F specifies a picture scaling factor for fixed-point
decimal numbers. The number of digits following the V picture character minus the integer
specified with F was required to be between -128 and 127.

Programmer Response: Correct the integer specified with the picture scaling factor F.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0J3

IBM0612S ONCODE= oncode-value The PICTURE specification contained an invalid
character.

Explanation: The PICTURE specification can contain only A X 9 for character data and
only 9 V Z * , . / B S + - $ CR DB Y K E F < > for numeric data. The characters between the
insertion characters < > are not affected by this rule.

Programmer Response: Ensure the PICTURE specification contains valid data.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0J4

 Chapter 14. PL/I Run-Time Messages 707

 IBM0613S N IBM0617S

IBM0613S ONCODE= oncode-value An invalid character(s) appeared in the F scaling
factor.

Explanation: .The picture character F specifies a picture scaling factor for fixed-point
decimal numbers. The format is F(#) where # can be any signed integer between -128 and
127 inclusively.

Programmer Response: Ensure the value specified for the scaling factor is a valid fixed-
point decimal number that is within the supported range.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0J5

IBM0614S ONCODE= oncode-value An invalid character PICTURE specification was
used.

Explanation: The PICTURE specification can contain only A X 9 for character data. Other
characters are not permitted.

Programmer Response: Ensure the PICTURE specification contains valid data.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0J6

IBM0615S ONCODE= oncode-value An invalid precision value was specified. The
length was corrected automatically.

Explanation: The number of digits for the precision field within a numeric data PICTURE
specification must be between one and fifteen digits. The invalid precision specification is
corrected automatically.

Programmer Response: Ensure the value specified for the precision is within the sup-
ported range.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0J7

IBM0616S ONCODE= oncode-value The characters T, I or R appeared too often in the
PICTURE specification.

Explanation: T, I, R are the overpunch characters in a PICTURE specification. Only one
overpunch character can appear in the specification for a fixed point number. A floating-
point specification can contain two overpunch characters, one in the mantissa field and one
in the exponent field.

Programmer Response: Ensure the above restrictions are followed.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0J8

IBM0617S ONCODE= oncode-value The precision in the numeric PICTURE specifica-
tion was less than 1.

Explanation: The number of digits for the precision field within a numeric data PICTURE
specification must be between one and fifteen digits.

Programmer Response: Check the precision and modify the program accordingly.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0J9

708 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0618S N IBM0622S

IBM0618S ONCODE= oncode-value The precision in the fixed decimal PICTURE specifi-
cation exceeded the limit.

Explanation: The precision in the fixed decimal PICTURE specification must not exceed
the specified value in the LIMITS compiler option. The default maximum is 15.

Programmer Response: Use the LIMITS compiler option to specify a maximum value of
29 or 31.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0JA

IBM0619S ONCODE= oncode-value The value specified for the precision in the float
decimal PICTURE specification exceeded the limit.

Explanation: The precision in the float decimal PICTURE specification is limited by the
hardware to 18 digits.

Programmer Response: Check and correct the precision.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0JB

IBM0620S ONCODE= oncode-value The PICTURE specification did not contain picture
characters for character or numeric data.

Explanation: The PICTURE specification must contain picture characters for either char-
acter or numeric data.

Programmer Response: Check the PICTURE specification string.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0JC

IBM0621S ONCODE= oncode-value The exponent in the float PICTURE specification
exceeded the 4-digit limit.

Explanation: The number of digits in the exponent of the float decimal PICTURE specifica-
tion is limited to 4 digits.

Programmer Response: Ensure that the exponent does not exceed 4 digits.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0JD

IBM0622S ONCODE= oncode-value The exponent in the float PICTURE specification
was missing.

Explanation: The exponent in the float decimal PICTURE specification was missing. A
value must be entered, even if it is zero.

Programmer Response: Enter the missing exponent value.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0JE

 Chapter 14. PL/I Run-Time Messages 709

 IBM0623S N IBM0626S

IBM0623S ONCODE= oncode-value The exponent in the PICTURE specification con-
tained a V character.

Explanation: The character V was specified in the PICTURE specification. The character V
specifies an implicit decimal point and is not permitted in the exponent field.

Programmer Response: Remove the character V from the exponent field.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0JF

IBM0624S ONCODE= oncode-value The float PICTURE specification contained invalid
characters CR, DB or F.

Explanation: The float PICTURE specification contained invalid characters CR, DB or F.
Credit (CR), Debit (DB), and Scale Factor (F) are only allowed in the fixed PICTURE specifi-
cation.

Programmer Response: Remove the invalid characters from the float PICTURE specifica-
tion.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0JG

IBM0625S ONCODE= oncode-valueThe PICTURE specification exceeded the limit.
Excessive characters were truncated on the right.

Explanation: The compiler restricts the length of the PICTURE specification to:

� Fixed Decimal: 254

� Float Decimal: 253

� Character Data: 511

Programmer Response: Correct the PICTURE specification length.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0JH

IBM0626S ONCODE= oncode-value The PICTURE specification contained an invalid
delimiter.

Explanation: The floating insertion string is delimited by < > characters. The string can
contain any character with the exception of the delimiters themselves. In order to include the
characters < and > in the floating insertion string, angle brackets must be used in an
"escaped" format. << denotes character < in the floating insertion string. <> denotes char-
acter > in the floating insertion string. The leading < and ending > characters are delimiters.

Example

<aaa<<bbb<>ccc> denotes the FIS aaa<bbb>ccc

Programmer Response: Correct the floating insertion string.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0JI

710 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0630S N IBM0634S

IBM0630S ONCODE=3009 A mixed character string ended incorrectly.

Explanation: A mixed character string contained a shift-out character but did not contain a
matching shift-in character.

Programmer Response: Ensure that mixed character strings contain unnested pairs of
shift-out/shift-in characters.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0JM

IBM0631S ONCODE=3010 A mixed character string contained an invalid character.

Explanation: One of the following rules for mixed constants was broken:

� SBCS portions of the constant cannot contain a shift-in

� DBCS portions of the constant cannot contain a shift-out (Either byte of a DBCS char-
acter cannot contain a shift-out.)

� The second byte of a DBCS character cannot contain a shift-in

Programmer Response: Ensure the mixed character string contains balanced, unnested
pairs of shift-out/shift-in characters.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0JN

IBM0632S ONCODE=3011 An invalid function string was specified for the MPSTR
built-in function.

Explanation: For the MPSTR built-in function, a function string is invalid if it is null, con-
tains only blanks, or contains characters other than 'V', 'v', 'S', 's', or a blank.

Programmer Response: Ensure the function string is valid.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0JO

IBM0633S ONCODE=3012 A retry was attempted after a graphic conversion error.

Explanation: The use of the ONSOURCE or ONCHAR pseudovariable to attempt a con-
version retry for a graphic (DBCS) conversion error is not allowed.

Programmer Response: Remove the retry attempt from your program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0JP

IBM0634S ONCODE=3013 An invalid graphic variable assignment was attempted.

Explanation: A graphic (DBCS) target of length greater than 16,383 was encountered. This
target could have been an actual target or a temporary target created by the program. This
condition was raised by the GRAPHIC built-in function. The maximum length of a graphic
(DBCS) string is 16,383 characters (32,766 bytes).

Programmer Response: Ensure that graphic (DBCS) strings are less than the maximum
allowed length of 16,383.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0JQ

 Chapter 14. PL/I Run-Time Messages 711

 IBM0635S N IBM0648S

IBM0635S ONCODE=3014 An invalid use of a shift code occurred.

Explanation: There are two possible errors:

� The STREAM input record could not be scanned due to an unmatched or nested shift
code.

� A graphic (DBCS) constant in STREAM input contained a shift code or used shift codes
improperly.

Programmer Response: Verify that shift code pairs are matched and unnested, continua-
tion rules are followed, and graphic (DBCS) constants are in one of the allowable forms.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0JR

IBM0636S ONCODE=3015 An invalid number of digits was used in a X or GX con-
stant.

Explanation: X constants must be specified in pairs. GX constants must be specified in
groups of four.

Programmer Response: Change the STREAM input data so that all X constants are speci-
fied in pairs and all GX constants are specified in groups of four.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0JS

IBM0637S ONCODE=3016 A double-byte character was used incorrectly.

Explanation: A non-EBCDIC double-byte character was used incorrectly. These characters
are only valid in DBCS names, graphic (DBCS) constants, and mixed character constants.

Programmer Response: Verify that a bit, character or hexadecimal constant does not
contain a non-EBCDIC double-byte character, or that such a character is not present outside
a constant unless it is part of a name for a GET DATA statement.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0JT

IBM0638S ONCODE= oncode-value A STREAM output record could not be written cor-
rectly.

Explanation: A record could not be written out because there was not enough room for a
valid DBCS continuation sequence. As a consequence, the record cannot be read correctly
as STREAM input. The ONCODE associated with this message is 3017.

Programmer Response: Define the STREAM I/O data set to contain V- or U-type record
formats.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0JU

IBM0648S ONCODE=3797 The assignment of a graphic character string caused an
error.

Explanation: STREAM I/O issued this message because LIST, DATA, or EDIT input/output
was attempted for a graphic (DBCS) string and the corresponding source or target string or
file did not have the necessary graphic attribute. This error could also be issued when a null
graphic constant appears as an element in the data list of a PUT for LIST or EDIT. Null
graphic constants are restricted as elements in the data list of a PUT for LIST or EDIT.

Programmer Response: Ensure that the source or target string in the data list is a valid
graphic (DBCS) string and that it has been declared with the GRAPHIC attribute. If a null

712 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0650S N IBM0672S

graphic constant caused the error, remove the null graphic constant from the data list of the
PUT statement.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0K8

IBM0650S ONCODE=3799 The source was not modified in the CONVERSION ON-unit.
Retry was not attempted.

Explanation: The CONVERSION condition was raised by the presence of an invalid char-
acter in the string to be converted. The character was not corrected in an ON-unit using the
ONCHAR or ONSOURCE pseudovariable.

Programmer Response: Use either the ONCHAR or the ONSOURCE pseudovariable in
the CONVERSION ON-unit to assign a valid character to replace the invalid character in the
source string.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0KA

IBM0670S ONCODE= oncode-value X was less than 0 in SQRT(X).

Explanation: The built-in function SQRT was invoked with an argument that is less than
zero. ONCODEs associated with this message are:

� 1500 Short floating-point argument
� 1501 Long floating-point argument
� 1502 Extended floating-point argument

Programmer Response: Modify the program so that the argument of the SQRT built-in
function is never less than zero.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0KU

IBM0671S ONCODE= oncode-value X was less than or equal to 0 in LOG(X), LOG2(X)
or LOG10(X).

Explanation: One of the built-in functions LOG, LOG2, or LOG10 was invoked with an
argument less than or equal to zero. The invocation may have been direct or as part of the
evaluation of an exponentiation calculation. ONCODEs associated with this message are:

� 1503 Extended floating-point argument
� 1504 Short floating-point argument
� 1505 Long floating-point argument

Programmer Response: If the invocation is direct, modify the program so that the argu-
ment of the LOG, LOG2, or LOG10 built-in function is greater than zero. If the invocation is
part of an exponentiation calculation, ensure that the argument is greater than zero.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0KV

IBM0672S ONCODE= oncode-value ABS(X) was too large in SIN(X), COS(X), SIND(X),
COSD(X), TAN(X) or TAND(X).

Explanation: The error occurred during one of the following:

� The evaluation of SIN, SIND, COS, COSD, TAN, or TAND when invoked implicitly

� The evaluation of TAN, when invoked during the evaluation of TAN or TANH with a
complex argument

� The evaluation of SIN or COS, when invoked during the evaluation of EXP, SIN, SINH,
COS, COSH, TAN, or TANH with a complex argument

 Chapter 14. PL/I Run-Time Messages 713

 IBM0674S N IBM0675S

� The evaluation of a general exponentiation function with complex arguments

The argument passed to TAN, TAND, SIN, SIND, COS, or COSD exceeded the limit speci-
fied below.

ONCODEs associated with this message are:

� 1506 Short floating-point argument involving SIN, COS, SIND or COSD

� 1507 Long floating-point argument involving SIN, COS, SIND or COSD

� 1508 Short floating-point argument involving TAN or TAND

� 1509 Long floating-point argument involving TAN or TAND

� 1517 Extended floating-point argument involving SIN, COS, SIND or COSD

� 1522 Extended floating-point argument involving TAN or TAND

Programmer Response: Ensure that X does not violate the limits as described above. If X
is an expression, simplify X for easier problem diagnosis.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0L0

IBM0674S ONCODE= oncode-value Both X and Y were 0 in ATAN(Y,X) or ATAND(Y,X).

Explanation: Two arguments, both of value zero, were given for the ATAN or ATAND
built-in function. ATAN or ATAND was invoked either directly with a real argument or indi-
rectly in the evaluation of the LOG built-in function with a complex argument. ONCODEs
associated with this message are:

� 1510 Short floating-point arguments

� 1511 Long floating-point arguments

� 1521 Extended floating-point arguments

Programmer Response: Change the arguments of ATAN or ATAND to nonzero values.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0L2

IBM0675S ONCODE= oncode-value ABS(X) was greater than or equal to 1 in
ATANH(X).

Explanation: The ATANH built-in function had a floating-point argument with an absolute
value that equaled or exceeded 1. ONCODEs associated with this message are:

� 1514 Short floating-point argument

� 1515 Long floating-point argument

� 1516 Extended floating-point argument

Programmer Response: Modify the ATANH built-in function so that the absolute value of a
floating-point assignment does not equal or exceed 1.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0L3

Floating-Point Precision Limit

Binary p ≤ 21
Decimal p ≤ 6

x<(2**18)*K where K = pi for x in radians
(SIN, COS, or TAN)

Binary 21 < p ≤ 53
Decimal 6 < p ≤ 16

x<(2**50)*K where K = 180 for x in degrees
(SIND, COSD, TAND)

Binary 53 < p ≤ 109
Decimal 6 < p ≤ 33

x<(2**100)*K/pi

714 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0676S N IBM0682S

IBM0676S ONCODE= oncode-value ABS(X) was greater than 1 in ASIN(X) or ACOS(X).

Explanation: The absolute value of the floating-point argument of the ASIN or ACOS
built-in function exceeded 1. ONCODEs associated with this message are:

� 1518 Short floating-point argument

� 1519 Long floating-point argument

� 1520 Extended floating-point argument

Programmer Response: Modify the program so that the ASIN or ACOS built-in function is
never invoked with a floating-point argument whose absolute value exceeds 1.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0L4

IBM0682S ONCODE= oncode-value X in EXPONENT(X) was invalid.

Explanation: One of the following conditions occurred:

� For X**Y where X and Y are integers, X was equal to zero and Y was less than or equal
to zero.

� For X**Y where X is a real value and Y is an integer, X was equal to zero and Y was
less than or equal to zero.

� For X**Y where X and Y are integers, X was not equal to plus or minus one and Y was
less than zero.

� For X**Y where X and Y are complex values, X was (0,0i) and Y was less than or equal
to zero.

� For X**Y where X and Y are complex values, X exceeded the limit K, where K=2**63 for
complex short and long arguments, and K=2**55 for complex extended arguments.

� For X**Y where X and Y are complex values, X was equal to (0,0i).

� For X**Y where X and Y are real values, X was equal to zero and Y was not an integer-
float greater than zero.

� For X**Y where X and Y are real values, X was less than zero and Y was not an integer-
float.

The ONCODEs associated with this message are:

� For integer base and integer exponent

1673 X equal to zero and Y less than or equal to zero

1674 X not equal to plus or minus one and less than zero

� For real short floating-point base with integer exponent

1550 X equal to zero and Y less than or equal to zero

� For real long floating-point base with integer exponent

1551 X equal to zero and Y less than or equal to zero

� For real extended floating-point base with integer exponent

1560 X equal to zero and Y less than or equal to zero

� For complex short floating-point base with integer exponent

1554 X equal to (0,0i) and Y less than or equal to zero

� For complex long floating-point base with integer exponent

1555 X equal to (0,0i) and Y less than or equal to zero

� For complex extended floating-point base with integer exponent

1562 X equal to (0,0i) and Y less than or equal to zero

 Chapter 14. PL/I Run-Time Messages 715

 IBM0683S N IBM0700S

� For real short floating-point base with real short floating-point exponent

1552 X equal to zero and Y not a positive integer-float, or X less than zero and Y
not an integer-float

1729 X equal to (0,0i) and Y less than or equal to zero

� For real long floating-point base with real long floating-point exponent

1553 X equal to zero and Y not a positive integer-float, or X less than zero and Y
not an integer-float

1730 X equal to (0,0i) and Y less than or equal to zero

� For real extended floating-point base with real extended floating-point exponent

1561 X equal to zero and Y not a positive integer-float, or X less than zero and Y
not an integer-float

� For complex short floating-point base with complex short floating-point exponent

1556 Argument equal to (0,0i)

1754 Argument exceeded limit

� For complex long floating-point base with complex long floating-point exponent

1557 Argument equal to (0,0i)

1755 Argument exceeded limit

� For complex extended floating-point base with complex extended floating-point exponent

1563 Argument equal to (0,0i)

1756 Argument exceeded limit

Programmer Response: Ensure X is a valid floating-point number.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0LA

IBM0683S ONCODE= oncode-value X or Y in ATAN(X,Y) or ATAND(X,Y) was invalid.

Explanation: One of the following conditions occurred:

� X and Y were invalid.

The ONCODEs associated with this message are:

� For real short floating-point arguments:

1510 Both arguments were invalid

� For real long floating-point arguments:

1511 Both arguments were invalid

� For real extended floating-point arguments:

1521 Both arguments were invalid

Programmer Response: Ensure X and Y are both real values and that Y is not equal to
zero.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0LB

IBM0700S ONCODE= oncode-value An attempt to assign data to an unallocated CON-
TROLLED variable occurred during GET DATA for file file-name.

Explanation: A CONTROLLED variable in the stream was accessed by a GET FILE DATA
statement, but there was no current allocation for the variable.

Example:

716 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0701S N IBM0703S

DCL X CONTROLLED FIXED BIN;
GET DATA(X);

(Input stream contains
X=5,.....)

The ONCODE associated with this message is 4001.

Programmer Response: Either remove the data item from the input stream or insert an
ALLOCATE statement for the variable before the GET FILE DATA statement.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0LS

IBM0701S ONCODE= oncode-value An attempt to assign data to an unallocated CON-
TROLLED variable occurred on a GET DATA statement.

Explanation: A CONTROLLED variable in the stream was accessed by a GET FILE DATA
statement, but there was no current allocation for the variable.

Example:

DCL STR CHAR(4) INIT('X=5'),
X CONTROLLED FIXED BIN;
GET STRING(STR) DATA(X);

The ONCODE associated with this message is 4001.

Programmer Response: Either remove the data item from the string or insert an ALLO-
CATE statement for the variable before the GET STRING DATA statement.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0LT

IBM0702S ONCODE= oncode-value An attempt to to output an unallocated CON-
TROLLED variable occurred on a PUT DATA statement.

Explanation: A CONTROLLED variable was being output to a file by a PUT FILE DATA
statement, but there was no current allocation for the variable. The ONCODE associated
with this message is 4002.

Programmer Response: Insert an ALLOCATE statement for the variable before the PUT
FILE DATA statement.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0LU

IBM0703S ONCODE= oncode-valueAn attempt to assign from an unallocated CON-
TROLLED variable occurred on a PUT DATA statement with the STRING
option.

Explanation: A CONTROLLED variable was being accessed by a PUT STRING DATA
statement, but there was no current allocation for the variable. The ONCODE associated
with this message is 4003.

Programmer Response: Ensure the CONTROLLED variable is allocated and initialized
before the PUT DATA statement.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0LV

 Chapter 14. PL/I Run-Time Messages 717

 IBM0722S N IBM0750S

IBM0722S ONCODE= oncode-value X was assigned a value of 0 and Y was not
assigned the value of a positive real number in X**Y.

Explanation: In an exponentiation operation the floating-point base was zero and the expo-
nent was not a positive real number. ONCODEs associated with this message are:

� 1550 Real short floating-point base with an integer exponent

� 1551 Real long floating-point base with an integer exponent

� 1552 Real short floating-point base with a floating-point or non-integer exponent

� 1553 Real long floating-point base with a floating-point or non-integer exponent

� 1554 Complex short floating-point base with an integer exponent

� 1555 Complex long floating-point base with an integer exponent

� 1556 Complex short floating-point base with a floating-point or non-integer exponent

� 1557 Complex long floating-point base with a floating-point or non-integer exponent

� 1560 Real extended floating-point base with an integer exponent

� 1561 Real extended floating-point base with a floating-point or non-integer exponent

� 1562 Complex extended floating-point base with an integer exponent

� 1563 Complex extended floating-point base with a floating-point or non-integer exponent

Programmer Response: Modify the program so that the exponentiation operation involves
a nonzero floating-point base or a positive real exponent.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0MI

IBM0724S ONCODE= oncode-value Z=+1i or Z=-1i in ATAN(Z) or Z=+1 or Z=-1 in
ATANH(Z).

Explanation: Either the complex floating-point argument of the ATAN built-in function had
the value of +1i or -1i, or the complex floating-point argument of the ATANH built-in function
has the value +1 or -1. ONCODEs associated with this message are:

� 1558 Complex short floating-point argument

� 1559 Complex long floating-point argument

� 1564 Complex extended floating-point argument

Programmer Response: Modify the program so the complex floating-point argument of
ATAN never has the value of +1i or -1i, or the complex floating-point argument of the
ATANH built-in function never has the value +1 or -1.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0MK

IBM0750S ONCODE= oncode-value A GOTO to an invalid block was attempted.

Explanation: A GOTO statement that transfers control to a label variable was invalid. The
possible causes are:

� The generation of the block that was active when the label variable was assigned was
no longer active when the GOTO statement was run.

� The label variable was uninitialized.

� The element of the label array, to which control is to be transferred, does not exist in the
program.

� An attempt has been made to transfer control to a block that is not within the scope of
this task.

718 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0751S N IBM0752S

Example:

DCL L LABEL;
BEGIN;
A: L = A;
END;
GOTO L;

The ONCODE associated with this message is 9002.

Programmer Response: Modify the program so that the GOTO statement transfers control
to a label in an active block.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0NE

IBM0751S ONCODE= oncode-value A GOTO was attempted to an element of a label
constant array, but the subscripts for the element were not those of any
label in that array.

Explanation: The subscripts of an element in a GOTO statement must match the label in
the specified array. This error occurs in the following code if n is 1, 3, 5 or 7:

Example:

dcl n fixed bin;
...
goto x(n);
...
x(#):
...
x(2):
...
x(4):
...
x(6):
...
x(8):

Note: This error will not occur if n is less than the lower bound for x or greater than the
upper bound.

Programmer Response: Correct your program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0NF

IBM0752S ONCODE= oncode-value A RETURN without an expression was attempted
from a procedure that had been entered at an ENTRY that specified the
RETURNS attribute.

Explanation: A procedure can contain ENTRYs some of which have the RETURNS attri-
bute and some of which do not, but if it is entered at an ENTRY that has the RETURNS
attribute, it must be exited with a RETURN statement that specifies a return value.

Programmer Response: Correct your program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0NG

 Chapter 14. PL/I Run-Time Messages 719

 IBM0753S N IBM0804S

IBM0753S ONCODE= oncode-value A RETURN without an expression was attempted
from a procedure that had been entered at an ENTRY that does not specify
the RETURNS attribute.

Explanation: A procedure can contain ENTRYs some of which have the RETURNS attri-
bute and some of which do not, but if it is entered at an ENTRY that has the RETURNS
attribute, it must be exited with a RETURN statement that does not specify a return value.

Programmer Response: Correct your program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0NH

IBM0780S ONCODE= oncode-value No WHEN clauses were satisfied and no OTHER-
WISE clause was available.

Explanation: No WHEN clauses of a SELECT statement were selected and no OTHER-
WISE clause was present. The ONCODE associated with this message is 3.

Programmer Response: Add an OTHERWISE clause to the SELECT group.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0OC

IBM0802S ONCODE= oncode-value The GET/PUT STRING exceeded the source string
size.

Explanation: For input, a GET statement attempted to access data that exceeded the
length of the source string. For output, a PUT statement attempted to assign data that
exceeded the target string. The ONCODE associated with this message is 1002.

Programmer Response: For input, either extend the length attribute of the source string,
or correct the data so that the length does not exceed the declared length of the source
string. For output, either extend the length attribute of the target string, or correct the data so
that the length does not exceed the declared length of the target string.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0P2

IBM0803S ONCODE= oncode-value A prior condition on file file-name prevented further
output.

Explanation: A PL/I WRITE, LOCATE, or PUT statement was issued for a file to which a
previous attempt to transmit a record caused the TRANSMIT condition to be raised imme-
diately. If the EVENT option was specified to be stacked until the event was waited on, the
data set was not a unit-record device and no further processing of the file was possible. The
ONCODE associated with this message is 1003.

Programmer Response: Correct the error that caused the TRANSMIT condition to be
raised and rerun the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0P3

IBM0804S ONCODE=oncode-value The PRINT option/format item was used with
non-PRINT file file-name.

Explanation: An attempt was made to use one of the options PAGE or LINE for a file that
was not a print file. The ONCODE associated with this message is 1004.

Programmer Response: Either remove the PRINT option/format item from the non-print
file, or specify the PRINT option for the print file.

System Action: The ERROR condition is raised.

720 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0805S N IBM0809S

Symbolic Feedback Code: IBM0P4

IBM0805S ONCODE= oncode-value A DISPLAY with REPLY option had a zero-length
string.

Explanation: The current length of the character string to be displayed, or the maximum
length of the character string to which the reply was assigned, was zero. The ONCODE
associated with this message is 1005.

Programmer Response: Change length of the character string to be displayed, or to which
the reply is to be assigned, to greater than zero.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0P5

IBM0807S ONCODE= oncode-value The REWRITE or DELETE on file file-name occurred
without a preceding READ SET or READ INTO statement.

Explanation: A REWRITE or DELETE statement without the KEY option was run. The last
input/output operation on the file was not a READ statement with the SET or INTO option or
was a READ statement with the IGNORE option. The ONCODE associated with this
message is 1007.

Programmer Response: Modify the program so that the REWRITE or DELETE statement
is either preceded by a READ statement or, in the case of a REWRITE statement, replaced
by a WRITE statement, according to the requirements of the program. A preceding READ
statement with the IGNORE option will also cause the message to be issued.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0P7

IBM0808S ONCODE= oncode-value An invalid element was present in the string for a
GET STRING DATA statement.

Explanation: The identifier in the string named in the STRING option of a GET STRING
DATA statement did not match the identifier in the data specification. Note that the
DATAFIELD built-in function does not return a value in this case. The ONCODE associated
with this message is 1008.

Programmer Response: Modify the program so that the string contains the identifier in the
data specification.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0P8

IBM0809S ONCODE=oncode-value An invalid file operation was attempted on file file-
name.

Explanation: An attempt was made to perform an invalid operation on a file. For example,
it is not possible to run a REWRITE statement on a STREAM file, read an output file, or
write an input file. Refer to Table 11 on page 722 for a list of operations and conflicting file
organizations.

 Chapter 14. PL/I Run-Time Messages 721

 IBM0810S N IBM0810S

The ONCODE associated with this message is 1009.

Programmer Response: Ensure the file declaration and the input/output statements for the
named file are compatible.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0P9

IBM0810S ONCODE= oncode-value A built-in function or pseudovariable referenced an
unopened file or referenced a file with a contradicting attribute.

Explanation: An I/O built-in function or pseudovariable referenced a file that was not
opened or referenced a file with an attribute that contradicted the function or pseudovariable.
The functions/pseudovariables are :

� PAGENO - file not open or does not have the PRINT attribute

� SAMEKEY - file does not have the RECORD attribute

� ENDFILE - file not open

� FILEREAD - file not open or is not a TYPE(U) file

� FILEWRITE - file not open or is not a TYPE(U) file

� FILESEEK - file not open or is not a TYPE(U) file

� FILETELL - file not open or is not a TYPE(U) file

� FILEDDTEST - file not open or:

Table 11. Operations and Conflicting File Organizations

Statement/Option File Organization

Any record I/O statement STREAM

Any stream I/O statement RECORD

READ OUTPUT

READ SET UNBUFFERED

READ EVENT UNBUFFERED

READ KEY REGIONAL SEQUENTIAL or CONSECUTIVE

READ IGNORE DIRECT

READ NOLOCK SEQUENTIAL or INPUT

WRITE INPUT SEQUENTIAL UPDATE, INDEXED
DIRECT NOWRITE, REGIONAL (not KEYED)

WRITE EVENT BUFFERED

REWRITE INPUT or OUTPUT

REWRITE (without FROM) UNBUFFERED or DIRECT

REWRITE KEY SEQUENTIAL

REWRITE EVENT BUFFERED

LOCATE INPUT or UPDATE, UNBUFFERED, DIRECT

LOCATE KEYFROM INDEXED or REGIONAL (without KEYED)

DELETE INPUT or OUTPUT, CONSECUTIVE, REGIONAL
SEQUENTIAL, RKP=0 (blocked records),
OPTCD=L not specified

DELETE KEY SEQUENTIAL

UNLOCK INPUT or OUTPUT, SEQUENTIAL

GET OUTPUT

PUT INPUT

722 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0811S N IBM0811S

– AMTHD - file not a native file

– BKWD - file not a record file

– DESCENDKEY - file not a record file

– GENKEY - file not a record file

– PRINT - file not a stream output file

� FILEDDINT - file not open or:

– BUFSIZE - file not a native file

– DELAY - file not a DDM, BTRIEVE or ISAM file

– RETRY - file not a DDM, BTRIEVE or ISAM file

– FILESIZE - file not a native file

– KEYLEN - file not an indexed or a relative keyed file

– KEYLOC - file not an indexed or a relative keyed file

� FILEDDWORD - file not open or:

– TYPEF - file not a native file

Programmer Response: Correct your program to use the built-in function or
pseudovariable correctly.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0PA

IBM0811S ONCODE= oncode-value An I/O error occurred. Subcode1= sc1 Subcode2=
sc2

Explanation: The data management routines detected an error during an input/output oper-
ation, which PL/I did not recognize. Subcode1 and Subcode2 provide VSAM diagnostic infor-
mation; otherwise, they contain zeros. See the VSAM Macro Instruction manual for a
description of the errors. Subcode1 indicates the I/O function involved:

� 0 - I/O function not identified

� 1 - GET

� 2 - PUT

� 3 - CHECK

� 4 - POINT

� 5 - ENDREQ

� 6 - ERASE

� 64 - OPEN

� 130 - GENCB of ACB

� 131 - GENCB of RPL

� 138 - SHOWCB of ACB

� 142 - TESTCB of ACB

� 146 - SHOWCB of block lengths

Subcode2 consists of 8 hexadecimal digits (xxxxyyyy). The meaning of Subcode2 varies
depending on the PL/I product used.

For MVS and VM, the value of subcode1 determines the type of VSAM return code informa-
tion provided.

� Subcode1 0: VSAM return code information is not provided.

 Chapter 14. PL/I Run-Time Messages 723

 IBM0812S N IBM0813S

� Subcode1 1-63: VSAM Request Parameter List Feedback Word (RPLFDBWD) =
xxxxyyyy.

� Subcode1 64: Open register 15 = xxxx. Open reason code = yyyy.

� Subcode1 128-192: Register 15 = xxxx. Register 0 = yyyy.

For VisualAge PL/I, Subcode2 gives the following information:

� Register 15 = xxxx. Reason code = yyyy.

Note that PL/I terminology translates to VSAM terms as follows:

� PL/I UPDATE OPEN is equivalent to VSAM IN and OUT OPEN.

� PL/I OUTPUT OPEN is equivalent to VSAM OUT OPEN, but only inserts or additions are
allowed.

� PL/I READ results in VSAM POINT to key, if specified, followed by VSAM GET.

� PL/I WRITE or LOCATE results in VSAM PUT NUP. For PL/I LOCATE, the associated
VSAM PUT NUP occurs on the next PL/I I/O request.

� PL/I REWRITE results in implied read, if needed, followed by VSAM PUT UPD.

� PL/I DELETE results in implied read, if needed, followed by VSAM ERASE.

� PL/I WAIT EVENT I/O results in VSAM CHECK.

Programmer Response: Use the VSAM diagnostic information to correct the cause of the
error and resubmit the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0PB

IBM0812S ONCODE= oncode-value A READ SET or READ INTO statement did not
precede a REWRITE request.

Explanation: A REWRITE statement with the INTO or SET option ran without a preceding
READ statement. The ONCODE associated with this message is 1012.

Programmer Response: Modify the program so that the REWRITE statement is either pre-
ceded by a READ statement or replaced by a WRITE statement.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0PC

IBM0813S ONCODE= oncode-value The last READ statement before the last REWRITE
or DELETE was incomplete.

Explanation: An attempt was made to run a REWRITE or DELETE statement before a
preceding READ statement (with the EVENT option) for a file that had completed. The
ONCODE associated with this message is 1013.

Programmer Response: Insert a WAIT statement for the given event variable into the flow
of control between the REWRITE or DELETE and READ statements. The REWRITE or
DELETE statement should run after completion of the READ statement.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0PD

724 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0814S N IBM0819S

IBM0814S ONCODE=oncode-value Excessive incomplete I/O operations occurred for
file file-name.

Explanation: An attempt was made to initiate an input/output operation beyond the limit
imposed by the NCP (number of channel programs) subparameter of the DCB parameter or
option of the ENVIRONMENT attribute. For a file with the attributes SEQUENTIAL and
UNBUFFERED, the default for NCP is one. The limit, for VSAM files, is specified either by
the NCP option of the ENVIRONMENT attribute or by the STRNC sub-parameter of the AMP
parameter in the DD statement. The limit is one for both SEQUENTIAL and DIRECT
UNBUFFERED files except when using the ISAM compatibility interface. The ONCODE
associated with this message is 1014.

Programmer Response: Modify the program so that the input/output operation is not initi-
ated until an incomplete input/output operation completes.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0PE

IBM0816S ONCODE=oncode-value The implicit OPEN was unsuccessful for file file-
name.

Explanation: An error occurred during the implicit opening of a file. The UNDEFINEDFILE
condition was raised and a normal return was made from the associated ON-unit, but the file
was still unopened. The ONCODE associated with this message is 1016.

Programmer Response: Ensure that the file has been completely and correctly declared,
and that the input/output statement that implicitly opens the file is not in conflict with the file
declaration.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0PG

IBM0818S ONCODE= oncode-value An unexpected end of file/string was detected in
the STREAM input.

Explanation: The end of the file was detected before the completion of a GET FILE state-
ment. The ONCODE associated with this message is 1018.

Programmer Response: For edit-directed input, ensure that the last item of data in the
stream has the same number of characters as specified in the associated format item. If the
error occurs while an X-format is running, ensure that the same number of characters to be
skipped are present before the last data item in the stream. For list-directed and data-
directed input, ensure the last item of data in the data set that precedes the end-of-file char-
acter is terminated by a quote character for a string or a 'B' character for a bit-string.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0PI

IBM0819S ONCODE= oncode-value An attempt was made to close a file in the wrong
task.

Explanation: A file can only be closed by the task that opened it.

Programmer Response: Change your program to insure the close is issued in the same
task that opened the file.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0PJ

 Chapter 14. PL/I Run-Time Messages 725

 IBM0820S N IBM0823S

IBM0820S ONCODE= oncode-value An attempt was made to access a locked record.

Explanation: In an exclusive environment, an attempt was made to read, rewrite, or delete
a record when either the record or the data set was locked by another file in this task. The
ONCODE associated with this message is 1021.

Programmer Response: Ensure that all files accessing the data set have the EXCLUSIVE
attribute. If a READ statement is involved, specify the NOLOCK option to suppress the
locking mechanism.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0PK

IBM0821S ONCODE= oncode-value An I/O statement occurred before a WAIT statement
completed a previous READ.

Explanation: While an indexed sequential file was open for direct updating, an input/output
statement was attempted before the completion of a previous READ statement with the
EVENT option. The ONCODE associated with this message is 1020.

Programmer Response: Include a WAIT statement so that the erroneous input/output
statement cannot be run until the completion of the previous READ statement with the
EVENT option.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0PL

IBM0822S ONCODE= oncode-value Insufficient space was available for a record in the
sequential output data set.

Explanation: The space allocated for the sequential output data set was full. The ONCODE
associated with this message is 1040.

Programmer Response: Increase the size of the data set, or check the logic of the appli-
cation for possible looping.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0PM

IBM0823S ONCODE= oncode-value An invalid control format item was detected during
a GET/PUT STRING.

Explanation: An invalid control format item (PAGE, LINE, SKIP, or COL) was detected in a
remote format list for a GET or PUT STRING statement.

Example:

DCL(A,B) CHAR(1#),
C CHAR(8#);
F: FORMAT(A(1#), SKIP,A(1#));
A='FRED'; B='HARRY';
PUT STRING(C) EDIT(A,B) (R(F));

The ONCODE associated with this message is 1004.

Programmer Response: Modify the source program so that GET or PUT STRING state-
ments do not use the control format items PAGE, LINE, SKIP or COL.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0PN

726 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0824S N IBM0828S

IBM0824S ONCODE= oncode-value Records were still locked in a subtask while
attempting to close EXCLUSIVE file file-name.

Explanation: When an EXCLUSIVE file is closed by a task, no records should be locked
by any subtasks.

Programmer Response: Change your program to insure that the subtasks free any record
locks before the file is closed.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0PO

IBM0825S ONCODE= oncode-value The EVENT variable was already used.

Explanation: An input/output statement with an EVENT option was attempted while a pre-
vious input/output statement with an EVENT option that used the same event variable was
still incomplete. The ONCODE associated with this message is 1015.

Programmer Response: Either change the event variable used in the second EVENT
option or insert a WAIT statement for the event variable between the two input/output state-
ments.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0PP

IBM0826S ONCODE= oncode-value The EVENT variable was already used with a
DISPLAY statement.

Explanation: An input/output statement with an EVENT option was attempted while a pre-
vious DISPLAY statement with an EVENT option that used the same event variable was still
incomplete.

Programmer Response: Either change the event variable used in the second EVENT
option or insert a WAIT statement for the event variable between the DISPLAY statement
and the input/output statement.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0PQ

IBM0827S ONCODE=oncode-value The EVENT variable was already active and was
used with entry entry-name.

Explanation: An event variable that was already used in the EVENT option in a CALL
statement was still active when used again in the EVENT option of an input/output state-
ment.

Programmer Response: Either use a different event variable or insert a WAIT statement
so that the input/output statement is not run until the event variable becomes inactive.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0PR

IBM0828S ONCODE= oncode-value An incorrect sequence of I/O operations was per-
formed on an associated file.

Explanation: Operations on a set of associated files were not carried out in the correct
sequence, as follows:

1. Appropriate I/O operations were not carried out in the sequence Read-Punch-Print. Only
the Print operation can be omitted or repeated.

2. An attempt was made to print more than the maximum number of lines on a card, using
a print file that was associated with a read or punch file.

The ONCODE associated with this message is 1024.

 Chapter 14. PL/I Run-Time Messages 727

 IBM0829S N IBM0832S

Programmer Response: Ensure that the above rules have not been violated.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0PS

IBM0829S ONCODE= oncode-value Insufficient virtual storage was available to VSAM.

Explanation: During an OPEN/CLOSE or any other operation on a VSAM data set, insuffi-
cient storage was available for workspace and control blocks. The ONCODE associated with
this message is 1025.

Programmer Response: Increase the REGION size for the VSAM application.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0PT

IBM0830S ONCODE= oncode-value An I/O error occurred during a CLOSE operation.

Explanation: An I/O error occurred while a VSAM close routine was either reading or
writing a catalog record, or completing an outstanding I/O request.

Programmer Response: If the problem is related to an insufficient amount of virtual
storage available to VSAM, try running the job with a larger REGION size. The access
method services VERIFY command can be used to obtain more information pertaining to the
error. Refer to the MVS/DFP Access Method Services manual for details.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0PU

IBM0831S ONCODE= oncode-value A position was not established for a sequential
READ statement.

Explanation: A READ statement without the KEY option was attempted on a VSAM data
set. This occurred after sequential positioning was lost as the result of a previous error
during sequential processing (for example, read error on index set or failure to position to
next highest key after a “key not found” condition). The ONCODE associated with this
message is 1026.

Programmer Response: Use the KEYTO option of the READ statement to obtain the keys
of records read. Use this information to reposition a file for subsequent retrieval when posi-
tioning is lost.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0PV

IBM0832S ONCODE=oncode-value Insufficient space was available for VSAM file file-
name.

Explanation: VSAM was unable to allocate additional DASD space for the data set (ESDS
or KSDS). This condition was raised during an attempt to write or locate a record during the
sequential creation or extension of a data set and the space allocated to the data set was
full. For a KSDS, the condition may have occurred when the associated PL/I file was opened
for update and an attempt was made to write new records to the file or to increase the size
of existing records using the WRITE and REWRITE statements respectively. An attempt to
increase the size of a data set while processing with SHROPT=4 and DISP=SHR may also
have raised this condition. The ONCODE associated with this message is 1022.

Programmer Response: Use the access method services ALTER command to extend a
data set provided secondary allocation was specified during data set definition. Refer to the
MVS/DFP Access Method Services manual for details.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0Q0

728 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0833S N IBM0836S

IBM0833S ONCODE= oncode-value A requested record was held in exclusive control.

Explanation: The VSAM data set control interval containing the requested record was in
the process of being updated by another file which used the same DD statement. The
ONCODE associated with this message is 1027.

Programmer Response: Retry the update after completion of the other file's data trans-
mission, or avoid having two files associated with the same data set at one time.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0Q1

IBM0834S ONCODE= oncode-value The requested record was stored on a non-
mounted volume.

Explanation: The requested record was stored on a non-mounted volume of a VSAM data
set spanning several volumes. The ONCODE associated with this message is 1028.

Programmer Response: Ensure that all volumes on which a VSAM data set resides are
accessible at the time the application is run.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0Q2

IBM0835S ONCODE= oncode-value An attempt to position the file for a sequential
READ failed. Subcode1= sc1 Subcode2= sc2

Explanation: An attempt to reposition to the next highest key for subsequent sequential
retrieval, after the 'key not found' condition, failed. If file processing is continued, the next I/O
statement should specify the KEY option to effect positioning. Otherwise message IBM0831
may result. Subcode1 and Subcode2 provide detailed VSAM diagnostic information. See
message IBM0811S for an explanation of these fields.

Programmer Response: Use the VSAM diagnostic information to correct the cause of the
error and resubmit the program. Alternatively, use the KEYTO option of the READ statement
to obtain the keys of the records read, so that you can reposition the file yourself for sequen-
tial retrieval.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0Q3

IBM0836S ONCODE= oncode-value The number of concurrent operations on a data set
exceeded STRNO.

Explanation: Several files accessed a VSAM data set by means of the same DD statement
(that is, using the same title). The STRNO subparameter of the DD statement that specified
the total number of operations on all files that can be active at the same time was less than
the number of concurrent operations. The ONCODE associated with this message is 1014.

Programmer Response: Ensure the concurrent operations are valid. Or, modify the
STRNO parameter to reflect the correct number of allowed concurrent operations. A read-
rewrite pair of operations on a sequential file counts as one operation. For example, if three
sequential files are to update the same data set at the same time, 'STRNO=3' should be
specified in the DD statement.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0Q4

 Chapter 14. PL/I Run-Time Messages 729

 IBM0837S N IBM0840S

IBM0837S ONCODE= oncode-value An error occurred during an index upgrade.
Subcode1= sc1 Subcode2= sc2

Explanation: A change to a base cluster could not be reflected in one of the indexes of the
cluster's upgrade set. Subcode1 and Subcode2 provide detailed VSAM diagnostic informa-
tion. See message IBM0811S for an explanation of these fields.

Programmer Response: Run the job with a larger REGION size. The problem might be
related to an insufficient amount of virtual storage available to VSAM.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0Q5

IBM0838S ONCODE= oncode-value The maximum number of alternate index pointers
was exceeded.

Explanation: The maximum number of alternate index pointers exceeded 32767. The
maximum number of pointers allowed in an alternate index for any given key is 32767. This
message will also be issued when the RECORDSIZE specified for a VSAM alternate index,
defined with NONUNIQUEKEY, is not large enough to hold all the base cluster key pointers
for a given non-unique alternate key.

Programmer Response: For alternate indices with non-unique keys, ensure the
RECORDSIZE specified during the creation of the alternate index is large enough. For non-
unique alternate indices, each alternate index record contains pointers to all the records that
have the associated alternate index key. As a result, the index record can be quite large. If
the number of alternate index pointers exceed the allowed maximum, then a different alter-
nate key would need to be used. Refer to OS/390 Language Environment Programming
Guide for more information regarding the use of alternate index paths.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0Q6

IBM0839S ONCODE= oncode-value An invalid alternate index pointer was used.

Explanation: A pointer in the alternate index was invalid. This may have been caused by
incorrect use of the alternate index as a Key Sequenced Data Set (KSDS).

Programmer Response: Refer to OS/390 Language Environment Programming Guide
regarding a general description on the use of alternate index. For more information, refer to
OS/390 Language Environment Programming Guide.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0Q7

IBM0840S ONCODE= oncode-value An invalid sequential WRITE was attempted.

Explanation: A WRITE statement on a file associated with a Relative Record Data Set
(RRDS) did not specify a relative record number. This resulted in an attempt to write in a slot
already containing a record. The ONCODE associated with this message is 1031.

Programmer Response: Modify the WRITE statement to include a relative record number
(or key) by specifying the KEYFROM option. If a relative record number is used, ensure the
record number is valid. For error diagnosis, the KEYTO option can be used to obtain the
number of the key for each record written if previous sequential WRITE statements did not
have the KEYFROM option specified.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0Q8

730 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0841S N IBM0851S

IBM0841S ONCODE= oncode-value A data set, open for output, used all available
space.

Explanation: No more space on the disk. The ONCODE associated with this message is
1040.

Programmer Response: Increase the size of the data set or check the logic of the
program for possible looping.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0Q9

IBM0842S ONCODE= oncode-value An attempt was made to write a record containing
record delimiter.

Explanation: An attempt was made to write a record containing a record delimiter (line
feed character or carriage control and line feed character combination) to a native data set
with the type(lf) or type(crlf) option applied.

Programmer Response: Either change your program to let PL/I write the delimiter or use
the type(fixed) option.

System Action: The record is not transmitted to the data set.

Symbolic Feedback Code: IBM0QA

IBM0843S ONCODE= oncode-value A record in the data set was not properly delimited.

Explanation: While reading a native data set with TYPE(CRLF) applied, a record delimiter
(carriage control and line feed character combination) was not found before the number of
bytes specified by RECSIZE were read.

Programmer Response: Increase the value of RECSIZE appropriately and re-run your
program.

System Action: The record is not assigned to the record variable.

Symbolic Feedback Code: IBM0QB

IBM0850S ONCODE= oncode-value The aggregate length exceeded the limit of 2**24
bytes.

Explanation: The length of the structure or array to be mapped was greater than 2jk, thus
exceeding the limits of addressability. The program was compiled with CMPAT(V1). The
ONCODE associated with this message is 3800.

Programmer Response: Reduce the size of the array or structure to a size that can be
accommodated within the main storage available. If a variable is used to specify the dimen-
sion or length, check that it has been correctly initialized before the storage is allocated to
the aggregate. Or, compile the program with the CMPAT(V2) option.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0QI

IBM0851S ONCODE= oncode-value The array structure element could not be mapped.

Explanation: The program was compiled with CMPAT(V1). Either the program contained a
structure with:

� An adjustable element and an array element with extents that cause the relative virtual
origin to exceed 2lj-1.

� A structure with an adjustable element and an array with a lower bound greater than the
upper bound.

Example:

 Chapter 14. PL/I Run-Time Messages 731

 IBM0852S N IBM0855S

DCL 1 A CTL,
2 B CHAR(N),
2 C (15###:15##1, 15###:15##1,
15###:15##1) CHAR(327##);
N=2;
ALLOCATE A;

The ONCODE associated with this message is 3801.

Programmer Response: If possible, compile the program with the CMPAT(V2) option. If
recompiling is not possible:

� Ensure aggregates with array elements remain within the limit of addressability (2lj -1),
or

� Ensure the lower bound is not greater than the upper bound.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0QJ

IBM0852S ONCODE= oncode-value The mapping of an aggregate to a COBOL form
failed.

Explanation: An attempt was made to pass to or obtain from a COBOL program a struc-
ture with more than three dimensions. The ONCODE associated with this message is 3808.

Programmer Response: Ensure PL/I aggregates that are passed to or from COBOL pro-
grams are within the limits described above.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0QK

IBM0854S ONCODE= oncode-value The maximum depth of iteration exceeded the
limits during an array initialization.

Explanation: The depth of iteration within the initial attribute on an AUTOMATIC array
exceeded 12.

Programmer Response: Change the depth of iteration to less than 12.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0QM

IBM0855S ONCODE=3809 The length of a data aggregate exceeded the maximum
limit.

Explanation: The length of the structure to be mapped was greater than the allowable limit.
Structures that do not contain any unaligned bit elements have a maximum size of 2**31-1
bytes. Structures with one or more unaligned bit elements have a maximum size of 2**28-1
bytes.

Programmer Response: Reduce the size of the structure to less than the maximum
allowed. If a variable is used to specify the dimension or length of an element, ensure the
variable is correctly initialized before the storage is allocated to the aggregate.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0QN

732 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0856S N IBM0862S

IBM0856S ONCODE=3810 An extent of an array exceeded the maximum limit.

Explanation: During structure mapping, an array with an extent greater than the allowed
maximum was encountered. The largest allowable extent (upper bound minus lower bound)
of any dimension in an array is 2**31-1.

Programmer Response: Reduce the extent of the array to less than the maximum
allowed. If a variable is used to specify a bound, ensure the variable is correctly initialized.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0QO

IBM0860S ONCODE= oncode-value The UNDEFINEDFILE condition was raised because
the VSAM server was not available to perform the OPEN (FILE= or ONFILE=
file-name).

Explanation: VSAM Record Level Sharing (RLS) is supported by a VSAM server address
space and data space. The VSAM server has failed and is unavailable for PL/I to complete
the open function.

Programmer Response: When the VSAM server becomes available, resubmit the
program. See the VSAM publications for additional information.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0QS

IBM0861S ONCODE=oncode-value The UNDEFINEDFILE condition was raised because
an attempt to position the file at the first record failed FILE= or ONFILE=
file-name). Subcode1=sc1 Subcode2=sc2

Explanation: For SEQUENTIAL INPUT or UPDATE, the file must be positioned at the first
record. If an attempt to position at the first record fails, the file is closed and the
UNDEFINEDFILE condition is raised with this message. Subcode1 and Subcode2 provide
detailed VSAM diagnostic information. See message IBM0811S for an explanation of these
fields.

Programmer Response: Use the VSAM diagnostic information to correct the cause of the
error and resubmit the program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0QT

IBM0862S ONCODE= oncode-value The VSAM server was not available to execute a
VSAM I/O request

Explanation: VSAM Record Level Sharing (RLS) is supported by a VSAM server address
space and data space. The VSAM server has failed and is unavailable to perform VSAM I/O
requests. The failing file must be CLOSEd, if an attempt is made to reopen the file and con-
tinue processing.

Programmer Response: When the VSAM server becomes available, resubmit the
program. See OS/390 Language Environment Programming Guide for additional information.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0QU

 Chapter 14. PL/I Run-Time Messages 733

 IBM0863S N IBM0880S

IBM0863S ONCODE= oncode-value A deadlock was detected while attempting to lock a
record.

Explanation: The program has attempted to lock a record using VSAM Record Level
Sharing (RLS). However, VSAM RLS processing has detected that a deadlock condition
exists within its sysplex-wide set of lock owners and lock waiters. This program has been
selected to receive the deadlock error so that the deadlock can be broken.

Programmer Response: This program was found to be in deadlock with other programs.
The system programmer will have SMSVSAM diagnostic tools and diagnostic information is
availble from CICS to determine what programs encountered the deadlock. The action for
this error is to avoid running the same mix of programs. The program may also attempt to
retry the PL/I request which encountered the deadlock error some number of times.
However, depending of the mix of programs, this may or may not be successful.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0QV

IBM0865S ONCODE= oncode-value A retained lock reject has occurred while
attempting to lock a record.

Explanation: This program has attempted to lock a record using VSAM Record Level
Sharing (RLS). However, VSAM RLS has rejected this request for the lock because of its
retained lock status. That is, the lock is held by a failed CICS and until that CICS restarts
and completes its backout of the record, the record is not available.

Programmer Response: This error can occur on a READ statement for a file opened for
INPUT when RLS=CR is used, but not if RLS=NRI is used. For sequential read, the program
may wish to proceed to read the next available record. Or, the program can be resubmitted
when the CICS restart is complete. See OS/390 Language Environment Programming Guide
for additional information about this failure.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0Q1

IBM0870S ONCODE= oncode-value The OS/VS COBOL program is not supported for
interlanguage communication in IBM SAA AD/Cycle LE/370.

Explanation: The OS/VS COBOL program is not supported for interlanguage communi-
cation in IBM SAA AD/Cycle LE/370.

Programmer Response: Compile the OS/VS COBOL program with IBM SAA AD/Cycle
COBOL/370 or don't run the application with IBM SAA AD/Cycle LE/370.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0R6

IBM0880S ONCODE= oncode-value A program check occurred in the SORT/MERGE
program.

Explanation: An error occurred while the SORT/MERGE program was running after it was
invoked from a PL/I program by use of the PL/I SORT interface facilities. As a result, the
SORT program was unable to continue and control was passed to the PL/I error-handler.
The ONCODE associated with this message is 9200.

Programmer Response: Because the problem occurred while the SORT/MERGE program
was running, refer to the appropriate SORT/MERGE program manual for an explanation of
any SORT program messages and any other information that might be necessary to correct
the error.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0RG

734 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0882S N IBM0886S

IBM0882S ONCODE= oncode-value The string RECORD TYPE was missing in the
second argument of the call PLISRTx statement.

Explanation: The RECORD TYPE string must be given in the RECORD statement for calls
to PLISRTx. It is used to specify the type of records in the file.

Programmer Response: Ensure the RECORD TYPE is coded correctly in the RECORD
statement and rerun the application.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0RI

IBM0883S ONCODE= oncode-value Incorrect record type was specified in the second
argument of the call PLISRTx statement.

Explanation: The RECORD TYPE in the RECORD statement of PLISRTx takes F for fixed
length and V for varying length EBCDIC. Characters other than F and V are invalid.

Programmer Response: Code the correct record type in the RECORD statement and
rerun the application.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0RJ

IBM0884S ONCODE= oncode-value The LENGTH= was not specified in the second
argument of the call PLISRTx statement.

Explanation: The LENGTH specifier must be given for calls to PLISRTB, and PLISRTD.
Use this specifier to indicate the length of the record to be sorted.

Programmer Response: Ensure the LENGTH specifier is coded in the RECORD state-
ment and rerun the application.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0RK

IBM0885S ONCODE= oncode-value The length specified in the LENGTH= parameter in
the second argument of the call PLISRTx statement was not numeric.

Explanation: The length coded for LENGTH= in the RECORD statement of the PLISRTx
call must be numerical.

Programmer Response: Ensure numerical data is coded for LENGTH= in the RECORD
statement and rerun the application.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0RL

IBM0886S ONCODE= oncode-value Incorrect return code rc received from user's E15
or E35 handling routine.

Explanation: The allowed return code from the E15 input handling routine are 8, 12, and
16. The allowed return code from the E35 output handling routine are 4 and 16.

Programmer Response: Ensure the return code returned by the PLIRETC built-in function
is correct and rerun the application.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0RM

 Chapter 14. PL/I Run-Time Messages 735

 IBM0887S N IBM0914S

IBM0887S ONCODE= oncode-value dfsort failed with a return code of rc.

Explanation: The sort program returns an unsuccessful return code. For the explanation of
the return code, refer to the message in the JES log.

Programmer Response: Correct the program based on the information from the return
code and the message and rerun the application.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0RN

IBM0888S ONCODE= oncode-value PLISRTx not supported in environments other than
ADMVS.

Explanation: The PL/I program calling the PLISRTx function must have the ADMVS
running.

Programmer Response: Take out the PLISRTx call and rerun the application.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0RO

IBM0900S ONCODE= oncode-value The WAIT statement would cause a permanent
wait. The program has been terminated.

Explanation: A WAIT statement that could never have been completed was encountered.

Example:

COMPLETION (E1) = '#'B;
WAIT(E1);

The event E1 is inactive and incomplete.

Programmer Response: Modify the program so that the WAIT statement can never wait
for an inactive or incomplete event.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0S4

IBM0913S ONCODE= oncode-value An error occurred on a FREE statement.

Explanation: PL/I storage management detected an error during the processing of either a
FREE statement or the PLIFREE built-in function.

Programmer Response: Ensure the variable specified on the FREE statement is a con-
trolled variable that has been allocated. Another suggestion is to acquire a storage report to
check on the program's use of storage. A PLIDUMP should be obtained for later study by
IBM.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0SH

IBM0914S ONCODE= oncode-value An abnormal termination has occurred in a linked
PL/I program while running a CICS transaction.

Explanation: A PL/I program called through EXEC LINK or EXEC XCTL terminated abnor-
mally.

Programmer Response: Examine the linked PL/I program unit and correct the error that
caused error.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0SI

736 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0915S N IBM0925W

IBM0915S ONCODE= oncode-value An internal error occurred in PL/I library.

Explanation: An error occurred within the PL/I library. The ONCODE associated with this
message is 1104.

Programmer Response: A PLIDUMP should be obtained for later study by IBM.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0SJ

IBM0916S ONCODE= oncode-value An object window was unable to be created.

Explanation: The Presentation Manager returned an error when an attempt was made to
create an object window during the execution of a DISPLAY statement or I/O to a Presenta-
tion Manager Terminal (PMT).

Programmer Response: The problem may be that too many windows have been created.
Reduce the number of windows and re-run your program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0SK

IBM0917S ONCODE= oncode-value An internal error occurred in PL/I storage manage-
ment.

Explanation: There was insufficient space available to satisfy a storage allocation request
within PL/I storage management. The ONCODE associated with this message is 1106.

Programmer Response: Acquire a storage report to check on the program's use of
storage. A PLIDUMP should be obtained for later study by IBM.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0SL

IBM0924W Closing a file in the ON-unit caused errors in this statement.

Explanation: An ON-unit for an I/O condition was entered and the file associated with the
ON-unit was closed in the ON-unit. A GOTO statement should have been used to exit from
the ON-unit. The result of a normal return from an ON-unit is undefined.

Programmer Response: Use a GOTO statement to exit from the ON-unit, or close the file
outside of the ON-unit.

System Action: No system action is performed.

Symbolic Feedback Code: IBM0SS

IBM0925W The PLIRETC value was reduced to 999.

Explanation: The value passed to the PLIRETC built-in procedure was greater than 999.
999 is the maximum allowed user value.

Programmer Response: Ensure all PLIRETC values are below 999.

System Action: Processing continues with the next sequential statement.

Symbolic Feedback Code: IBM0ST

 Chapter 14. PL/I Run-Time Messages 737

 IBM0926S N IBM0952S

IBM0926S The CHECKPOINT/RESTART facility is not supported in a CMS environ-
ment.

Explanation: An attempt was made to call the CHECKPOINT/RESTART facility from PL/I.
CHECKPOINT/RESTART is not supported under CMS. The ERROR condition was raised.

Programmer Response: Remove the call to the CHECKPOINT/RESTART facility. If this
facility needs to be used, run the application under OS/390.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0SU

IBM0930S ONCODE= oncode-value An attempt was made to call a Checkout-compiled
program in the LE/370 environment.

Explanation: Checkout-compiled programs are not supported in the LE/370 environment.

Programmer Response: Remove the call to the Checkout-compiled program.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0T2

IBM0950S ONCODE= oncode-value A system error occurred in PL/I multithreading
support for the WAIT statement.

Explanation: An uninitialized task variable may have been specified in the THREAD option.
Another reason why an error may have occurred in WAIT is that the operating system may
have run out of resources to satisfy the request or may have timed out.

Programmer Response: Ensure that the tasking variable has been initialized to a valid
value. The ATTACH statement with the THREAD option must be used to give a tasking vari-
able a starting value. Ensure that there are enough resources for the operating system to
acquire.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0TM

IBM0951S ONCODE= oncode-value A system error occurred in PL/I multithreading
support for the DETACH statement.

Explanation: An uninitialized task variable may have been specified in the THREAD option.

Programmer Response: Ensure that the tasking variable has been initialized to a valid
value. The ATTACH statement with the THREAD option must be used to give a tasking vari-
able a starting value.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0TN

IBM0952S ONCODE= oncode-value A system error occurred in PL/I multithreading
support for the ATTACH statement.

Explanation: The operating system may have run out of resources (not enough memory,
too many handles) to satisfy the request.

Programmer Response: Ensure that there are enough resources for the operating system
to acquire.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0TO

738 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IBM0953S N IBM0953S

IBM0953S ONCODE= oncode-value A system error occurred in PL/I multithreading
support for the STOP statement.

Explanation: An uninitialized task variable may have been specified in the THREAD option.

Programmer Response: Ensure that the tasking variable has been initialized to a valid
value. The ATTACH statement with the THREAD option must be used to give a tasking vari-
able a starting value.

System Action: The ERROR condition is raised.

Symbolic Feedback Code: IBM0TP

 Chapter 14. PL/I Run-Time Messages 739

740 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IGZ0002S N IGZ0002S

Chapter 15. COBOL Run-Time Messages

The following messages pertain to COBOL. Each message is followed by an expla-
nation describing the condition that caused the message, a programmer response
suggesting how you might prevent the message from occurring again, and a
system action indicating how the system responds to the condition that caused the
message.

The messages also contain a symbolic feedback code, which represents the first 8
bytes of a 12-byte condition token. You can think of the symbolic feedback code as
the nickname for a condition. As such, the symbolic feedback code can be used in
user-written condition handlers to screen for a given condition, even if it occurs at
different locations in an application.

The messages in this section contain alphabetic suffixes that have the following
meaning:

I Informational message
W Warning message
E Error message
S Severe error message
C Critical error message

IGZ0002S debugging-information

Explanation: A SYNAD error has occurred on a QSAM file. The text was supplied by the
system SYNADAF routine. Since the debugging information supplied in this message is
system specific, the message format differs between CMS and MVS environments. The
message issued under MVS consists of the following:

IGZ###2S job name, step name, unit address, device
 type, ddname, operation attempted, error
 description, actual track address and
 block number, access method.

The message issued under CMS is as follows:

IGZ###2S 12#S operation
type ERROR nnn ON ddname,

Definitions requiring further explanation for the above message formats are:

120S is the CMS message number for SYNAD errors

operation type INPUT or OUTPUT

device type UR for unit record device

TA for magnetic tape device

DA for direct access device

nnn is the associated error code

ddname is the DDNAME of the related file

operation attempted actual operation

Programmer Response: For more information regarding the CMS message number 120S
and related error codes, see VM/SP System Messages and Codes. For information on the
MVS text of this SYNADAF message, see OS/390 DFSMS Macro Instructions for Data Sets,
SC26-7337, and OS/390 DFSMS: Using Data Sets, SC26-7339.

System Action: The application was terminated.

 Copyright IBM Corp. 1991, 2000 741

 IGZ0003W N IGZ0007S

Symbolic Feedback Code: IGZ002

IGZ0003W A logic error occurred for file file-name in program program-name at relative
location relative-location.

Explanation: This error is usually caused by an I/O operation request that is not valid for
the file—for example, a WRITE into a file opened for INPUT, or a START to a VSAM ESDS.

A file status clause was specified or an error declarative statement was active for the file.

Programmer Response: Check the operation request and modify the program.

System Action: No system action was taken.

Symbolic Feedback Code: IGZ003

IGZ0005S OS/VS COBOL programs in the application were found in multiple
enclaves.

Explanation: OS/VS COBOL programs are restricted to one enclave within an application.

Programmer Response: Modify the application so that the OS/VS COBOL programs
appear in one enclave only.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ005

IGZ0006S The reference to table table-name by verb number verb-number on line line-
number addressed an area outside the region of the table.

Explanation: When the SSRANGE option is in effect, this message is issued to indicate
that a fixed-length table has been subscripted in a way that exceeds the defined size of the
table, or, for variable-length tables, the maximum size of the table.

The range check was performed on the composite of the subscripts and resulted in an
address outside the region of the table. For variable-length tables, the address is outside the
region of the table defined when all OCCURS DEPENDING ON objects are at their
maximum values; the ODO object's current value is not considered. The check was not per-
formed on individual subscripts.

Programmer Response: Ensure that the value of literal subscripts and/or the value of vari-
able subscripts as evaluated at run-time do not exceed the subscripted dimensions for sub-
scripted data in the failing statement.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ006

IGZ0007S The size of variable length group group-name exceeded the maximum
defined length of the group at the time of reference by verb number verb-
number on line line-number.

Explanation: When the SSRANGE option is in effect, this message is issued to indicate
that a variable-length group generated by OCCURS DEPENDING ON has a length that is
less than zero, or is greater than the limits defined in the OCCURS DEPENDING ON
clauses.

The range check was performed on the composite length of the group, and not on the indi-
vidual OCCURS DEPENDING ON objects.

Programmer Response: Ensure that OCCURS DEPENDING ON objects as evaluated at
run-time do not exceed the maximum number of occurrences of the dimension for tables
within the referenced group item.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ007

742 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IGZ0009C N IGZ0013S

IGZ0009C A delete of module module-name was unsuccessful.

Explanation: An attempt to delete a module failed.

Programmer Response: See your IBM service representative.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ009

IGZ0011C module-name was not a proper module for this system environment.

Explanation: A library subroutine that is system sensitive is inappropriate for the current
system environment. For example, an OS environment specific module has been loaded
under CICS. The likely causes are:

� Improper concatenation sequence of partitioned data sets that contain the subroutine
library, either during run-time or during link-edit of the COBPAC.

� An attempt to use a function unsupported on the current system (for example, ACCEPT
on CICS).

Programmer Response: Check for the conditions stated above, and modify the environ-
ment or the application as needed.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ00B

IGZ0012S There was an invalid attempt to end a sort or merge.

Explanation: A sort or merge initiated by a COBOL program was in progress and one of
the following was attempted:

1. A STOP RUN was issued.

2. A GOBACK or an EXIT PROGRAM was issued within the input procedure or the output
procedure of the COBOL program that initiated the sort or merge. Note that the
GOBACK and EXIT PROGRAM statements are allowed in a program called by an input
procedure or an output procedure.

3. A user handler associated with the program that initiated the sort or merge moved the
condition handler resume cursor and resumed the application.

Programmer Response: Change the application so that it does not use one of the above
methods to end the sort or merge.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ00C

IGZ0013S An error return code return-code came from a CICS command
CICS-command issued by library subroutine library-subroutine.

Explanation: An error was encountered when a run-time routine issued a CICS command.
The error return code is from the field EIBRESP in the CICS EIB. For more information
about the values for the field EIBRESP, see the CICS/ESA Application Programmer's Refer-
ence, SC33-0676.

Programmer Response: Modify your application as required.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ00D

 Chapter 15. COBOL Run-Time Messages 743

 IGZ0014W N IGZ0018S

IGZ0014W module-name is no longer supported. Its content was ignored.

Explanation: This message is issued when the run-time detects that IGZETUN or
IGZEOPT is linked with the application. IGZETUN and IGZEOPT are ignored when running
with LE/370. CEEUOPT may be used in place of IGZETUN and IGZEOPT.

Programmer Response: Remove the explicit INCLUDE of IGZEOPT or IGZETUN during
the link-edit step.

System Action: No system action was taken.

Symbolic Feedback Code: IGZ00E

IGZ0015S A recursive call was attempted to a program that was already active. The
program name is program-name.

Explanation: An illegal recursive entry to an active program is detected. For example,
Program A has CALLed Program B, and Program B is CALLing Program A.

Programmer Response: Remove the recursive call to program-name or specify the IS
RECURSIVE phrase on the PROGRAM-ID statement for the recursively CALLed program.
Additionally, if the recursive program is called dynamically, link-edit it with REUS.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ00F

IGZ0016W Program program-name could not be deactivated by non-return exit of a
routine. Subsequent reentry is not supported.

Explanation: A COBOL program cannot normally be recursively entered. When non-return
style procedure collapse processing is being performed for a COBOL program, an attempt is
made to reset the program to a state where it can be recursively entered. This is not sup-
ported for certain combinations of function used within the program. After this message is
issued, any attempt to reenter the program will result in message IGZ0015S and termination
of the enclave.

Programmer Response: Do not reenter the program or modify the program to allow it to
be successfully reset.

System Action: No system action was taken.

Symbolic Feedback Code: IGZ00G

IGZ0017S The open of DISPLAY or ACCEPT file with environment name environment-
name was unsuccessful.

Explanation: An error occurred while opening the DISPLAY/ACCEPT file.

Programmer Response: Check to make sure a ddname has been defined for the file.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ00H

IGZ0018S On CICS, an attempt was made to run a COBOL program which is not reen-
trant. The program name is program-name.

Explanation: COBOL programs running on CICS must be reentrant.

Programmer Response: In order to make a COBOL program reentrant, compile the
COBOL program with the RENT compile-time option.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ00I

744 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IGZ0019W N IGZ0023S

IGZ0019W A FUNCTION result used as a DELIMITED BY operand is larger than the
UNSTRING object in program program-name at displacement displacement.
The DELIMITED BY phrase is ignored.

Explanation: A FUNCTION used as a DELIMITED BY operand was larger than the
UNSTRING object.

Programmer Response: Check the FUNCTION arguments to ensure that they are not
larger than the UNSTRING object.

System Action: No system action was taken.

Symbolic Feedback Code: IGZ00J

IGZ0020S A logic error occurred. Neither FILE STATUS nor a declarative was speci-
fied for file file-name in program program-name at relative location relative-
location. The status code was status-code.

Explanation: This error is an I/O error, usually caused by an operation request that is not
valid for the file, for example, a WRITE into a file opened for INPUT, or a START to a VSAM
ESDS.

No file status clause was specified, and no error declarative was in effect.

Programmer Response: Check operation request for the file.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ00K

IGZ0021C macro-name was unsuccessful for file file-name.

Explanation: The execution of an ENDREQ, GENCB, MODCB, SHOWCB, or TESTCB
macro failed. This is the result of system or VSAM problems.

Programmer Response: See your IBM service representative.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ00L

IGZ0022W File file-name in program program-name will return the maximum record
length when read.

Explanation: A VSAM RRDS with a varying record length has been opened for input. The
maximum record length will be returned.

Programmer Response: None

System Action: No system action was taken.

Symbolic Feedback Code: IGZ00M

IGZ0023S The dynamic allocation of file file-name was unsuccessful. The return code
was return-code. The reason code was reason-code.

Explanation: An attempt to dynamically allocate a file using DYNALLOC failed, resulting in
the indicated return and reason codes.

Programmer Response: Review the job stream or filedef to see if any DDNAMES are
missing or misspelled. If you can not find any errors, resubmitt the job with the
CBLQDA(OFF) run-time option and check for any access method messages.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ00N

 Chapter 15. COBOL Run-Time Messages 745

 IGZ0024S N IGZ0027W

IGZ0024S An invalid separate sign character was detected in program-name at dis-
placement displacement.

Explanation: An operation was attempted on data defined with a separate sign. The value
in the sign position was not a plus (+) or a minus (-).

Programmer Response: This error might have occurred because of a REDEFINES clause
involving the sign position or a group move involving the sign position, or the position was
never initialized. Check for these cases. The compiler formatting option TEST(), or equiv-
alent, along with the ABTERMENC() run-time option, can be used to generate a formatted
dump of the user data. This dump can then be used to identify the unacceptable data item
contents.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ00O

IGZ0026W The SORT-RETURN special register was never referenced, but the current
content indicated the sort or merge operation in program program-name on
line number line-number was unsuccessful.

Explanation: The COBOL source does not contain any references to the sort-return reg-
ister. The compiler generates a test after each sort or merge verb. A nonzero return code
has been passed back to the program by Sort/Merge.

Programmer Response: Determine why the Sort/Merge was unsuccessful and fix the
problem. Possible reasons why the Sort/Merge was unsuccessful include:

� There was an error detected by DFSORT. See the DFSORT messages for the reason
for the error.

� The SORT-RETURN special register was set to a non-zero value by the application
program while in an input procedure or an output procedure.

System Action: No system action was taken.

Symbolic Feedback Code: IGZ00Q

IGZ0027W The sort control file could not be opened.

Explanation: An attempt to open the sort control file has failed. Possible reasons for the
open failure include:

� A ddname for the sort control file was not provided.
� The IGZSRTCD ddname was provided, but the file associated with the ddname could not

be found.

When the sort control file cannot be opened, user-supplied sort control cards will not be
passed to Sort/Merge.

The sort control file is optional. On MVS, if you did not provide a ddname for the sort control
file (the sort control file name is IGZSRTCD unless it is overridden by changing the value of
the SORT-CONTROL special register) you will also get this message: IEC130I 'IGZSRTCD
DD STATEMENT MISSING'. This message is informational only.

Programmer Response: If you want to pass in sort control cards from the sort control file,
verify that the ddname is specified and the file is available.

System Action: No system action was taken.

Symbolic Feedback Code: IGZ00R

746 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IGZ0028S N IGZ0032S

IGZ0028S An I/O error occurred in sort control file file-name.

Explanation: An I/O error was encountered while trying to read the sort control file. Some
or all of the user-supplied sort control cards will not be passed to Sort/Merge.

Programmer Response: For more information, look at the previous system message you
received relating to this I/O error.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ00S

IGZ0029S Argument-1 for function function-name in program program-name at line line-
number was less than zero.

Explanation: An illegal value for argument-1 was used.

Programmer Response: Ensure that argument-1 is greater than or equal to zero.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ00T

IGZ0030S Argument-2 for function function-name in program program at line line-
number was not a positive integer.

Explanation: An illegal value for argument-2 was used.

Programmer Response: Ensure that argument-2 is a positive integer.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ00U

IGZ0031S A restart was not possible since the checkpoint record record-name was
taken while a sort or merge was in progress.

Explanation: An attempt was made to use the restart facility of checkpoint/restart to
resume execution of a job from a checkpoint taken by a COBOL program because of a rerun
clause during a Sort/Merge operation. Only checkpoints taken by the sort product can be
used to restart from a point within the Sort/Merge operation.

The checkpoint record cannot be used for restart.

Programmer Response: Use a different checkpoint record. If no other checkpoint records
exist, the job cannot be restarted.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ00V

IGZ0032S A CANCEL was attempted on active program program-name.

Explanation: An attempt was made to cancel an active program. For example, program A
called program B; program B is trying to cancel program A.

Programmer Response: Remove the failing CANCEL statement. In order to locate the
failing CANCEL statement, rerun the application with TERMTHDACT(TRACE) or (ABEND).
Review the traceback information to identify the program that issued the CANCEL.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ010

 Chapter 15. COBOL Run-Time Messages 747

 IGZ0033S N IGZ0036W

IGZ0033S An attempt was made to pass a parameter address above 16 megabytes to
AMODE(24) program program-name.

Explanation: An attempt was made to pass a parameter located above the 16-megabyte
storage line to a program in AMODE(24). The called program will not be able to address the
parameter.

Programmer Response: If the calling program is compiled with the RENT option, the
DATA(24) option may be used in the calling program to make sure that its data is located in
storage accessible to an AMODE(24) program. If the calling program is compiled with the
NORENT option, the RMODE(24) option may be used in the calling program to make sure
that its data is located in storage accessible to an AMODE(24) program. Verify that no
linkedit, binder or genmod overrides are responsible for this error.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ011

IGZ0034W The file with system-name system-name could not be extended. Secondary
extents were not specified or were not available. The last WRITE was at
offset offset in program program-name.

Explanation: There is insufficient space available for an output file. There is no invalid key
clause, file status, or user error declarative. This corresponds to the MVS X37 ABEND.

Programmer Response: Check the file attributes and if necessary, reallocate the file. Also
check data set allocations.

System Action: No system action was taken.

Symbolic Feedback Code: IGZ012

IGZ0035S There was an unsuccessful OPEN or CLOSE of file file-name in program
program-name at relative location location. Neither FILE STATUS nor an
ERROR declarative were specified. The status code was status-code.

Explanation: An error has occurred while opening or closing the named file. No file status
or user error declarative was specified.

Programmer Response: Check to make sure there is a ddname defined for the indicated
file.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ013

IGZ0036W Truncation of high order digit positions occurred in program program-name
on line number line-number.

Explanation: The generated code has truncated an intermediate result (that is, temporary
storage used during an arithmetic calculation) to 30 digits; some of the truncated digits were
not 0.

Programmer Response: See COBOL for OS/390 & VM Programming Guide or COBOL for
MVS & VM Programming Guide for a description of intermediate results.

System Action: No system action was taken.

Symbolic Feedback Code: IGZ014

748 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IGZ0037S N IGZ0040S

IGZ0037S The flow of control in program program-name proceeded beyond the last
line of the program.

Explanation: The program did not have a terminator (STOP, GOBACK, or EXIT), and
control fell through the last instruction.

Programmer Response: Check the logic of the program. Sometimes this error occurs
because of one of the following logic errors:

� The last paragraph in the program was only supposed to receive control as the result of
a PERFORM statement, but due to a logic error it was branched to by a GO TO state-
ment.

� The last paragraph in the program was executed as the result of a “fall-through” path,
and there was no statement at the end of the paragraph to end the program.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ015

IGZ0038S A reference modification length value of reference-modification-value on line
line-number which was not equal to 1 was found in a reference to data item
data-item which was passed by value.

Explanation: The length value in a reference modification specification was not equal to 1.
The length value must be equal to 1.

Programmer Response: Check the indicated line number in the program to ensure that
any reference modified length values are (or will resolve to) 1.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ016

IGZ0039S An invalid overpunched sign was detected in program program-name on
line line-number.

Explanation: An operation was attempted on data defined with an overpunched sign. The
value in the sign was not valid.

Programmer Response: This error might have occurred because of a REDEFINES clause
involving the sign position or a group move involving the sign position, or the position was
never initialized. Check for the above cases.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ017

IGZ0040S An invalid separate sign was detected in program program-name on line
line-number.

Explanation: An operation was attempted on data defined with a separate sign. The value
in the sign position was not a plus (+) or a minus (-).

Programmer Response: This error might have occurred because of a REDEFINES clause
involving the sign position or a group move involving the sign position, or the position was
never initialized. Check for the above cases.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ018

 Chapter 15. COBOL Run-Time Messages 749

 IGZ0041W N IGZ0046W

IGZ0041W The warning message limit was exceeded. Further warning messages were
suppressed.

Explanation: The limit on warning messages is 256. This constraint on the number of
warning messages prevents a looping program from flooding the system buffers.

Programmer Response: Correct the situations causing the warning messages or correct
the looping problem.

System Action: No system action was taken.

Symbolic Feedback Code: IGZ019

IGZ0042C There was an attempt to use the IGZBRDGE macro, but the calling program
was not COBOL.

Explanation: A non-COBOL program attempted to call a COBOL program using the
IGZBRDGE interface. COBOL/370 could not find a COBOL environment.

Programmer Response: Do not call an entry point specified via the IGZBRDGE macro
from a non-COBOL program.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ01A

IGZ0044S There was an attempt to call the COBOL main program program-name that
was not in initial state.

Explanation: You will receive this message if you attempt to enter a NONREENTRANT
COBOL/370, VS COBOL II, COBOL for MVS & VM, or COBOL for OS/390 & VM main
program more than once. This is a nonstandard entry attempt.

Programmer Response: Modify the application so that the non-reentrant COBOL main
program won't be called more than once.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ01C

IGZ0045S Unable to invoke method method-name on line number line number in
COBOL program program-name.

Explanation: The specific method is not supported for the class of the current object refer-
ence.

Programmer Response: Check the indicated line number in the program to ensure that
the class of the current object reference supports the method being invoked.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ01D

IGZ0046W The value specified in the program for the special-register special register
was overridden by the corresponding value in the sort control file.

Explanation: A nondefault value for the SORT special register specified in the message
was used in a program, but a value in the SORT control file which corresponds to that SORT
special register was found. The value in the SORT control file was used, and the value in the
SORT special register was ignored.

Programmer Response: See COBOL for OS/390 & VM Programming Guide or COBOL for
MVS & VM Programming Guide for a description of SORT special registers and the SORT
control file.

System Action: No system action was taken.

Symbolic Feedback Code: IGZ01E

750 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IGZ0047S N IGZ0050S

IGZ0047S Unable to invoke method method-name on line number line number in
COBOL class class-name.

Explanation: The specific method is not supported for the class of the current object refer-
ence.

Programmer Response: Check the indicated line number in the class to ensure that the
class of the current object reference supports the method being invoked.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ01F

IGZ0048W A negative base was raised to a fractional power in an exponentiation
expression in program program-name at displacement displacement. The
absolute value of the base was used.

Explanation: A negative number raised to a fractional power occurred in a library routine.

The value of a negative number raised to a fractional power is undefined in COBOL. If a
SIZE ERROR clause had appeared on the statement in question, the SIZE ERROR imper-
ative would have been used. However, no SIZE ERROR clause was present, so the abso-
lute value of the base was used in the exponentiation.

Programmer Response: Ensure that the program variables in the failing statement have
been set correctly.

System Action: No system action was taken.

Symbolic Feedback Code: IGZ01G

IGZ0049W A zero base was raised to a zero power in an exponentiation expression in
program program-name at displacement displacement. The result was set to
one.

Explanation: The value of zero raised to the power zero occurred in a library routine.

The value of zero raised to the power zero is undefined in COBOL. If a SIZE ERROR clause
had appeared on the statement in question, the SIZE ERROR imperative would have been
used. However, no SIZE ERROR clause was present, so the value returned was one.

Programmer Response: Ensure that the program variables in the failing statement have
been set correctly.

System Action: No system action was taken.

Symbolic Feedback Code: IGZ01H

IGZ0050S A zero base was raised to a negative power in an exponentiation
expression in program program-name at displacement displacement.

Explanation: The value of zero raised to a negative power occurred in a library routine.

The value of zero raised to a negative number is not defined. If a SIZE ERROR clause had
appeared on the statement in question, the SIZE ERROR imperative would have been used.
However, no SIZE ERROR clause was present.

Programmer Response: Ensure that the program variables in the failing statement have
been set correctly.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ01I

 Chapter 15. COBOL Run-Time Messages 751

 IGZ0051S N IGZ0055W

IGZ0051S An invalid EBCDIC digit string was detected on conversion to floating point
in program-name at displacement displacement.

Explanation: The input to the conversion routine contained invalid EBCDIC data.

Programmer Response: Ensure that the program variables in the failing statement have
been set correctly.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ01J

IGZ0052C An internal error or invalid parameters were detected in the floating point
conversion routine called from program-name at displacement displacement.

Explanation: None

Programmer Response: See your IBM service representative.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ01K

IGZ0053S An overflow occurred on conversion to floating point in program-name at
displacement displacement.

Explanation: A number was generated in the program that is too large to be represented in
floating point.

Programmer Response: You need to modify the program appropriately to avoid an over-
flow.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ01L

IGZ0054W An overflow occurred on conversion from floating point to fixed point in
program-name at displacement displacement. The result was truncated.

Explanation: The result of a conversion to fixed point from floating point contains more
digits than will fit in the fixed point receiver. The high order digits were truncated.

Programmer Response: No action is necessary, although you may want to modify the
program to avoid an overflow.

System Action: No system action was taken.

Symbolic Feedback Code: IGZ01M

IGZ0055W An underflow occurred on conversion to floating point in program-name at
displacement displacement. The result was set to zero.

Explanation: On conversion to floating point, the negative exponent exceeded the limit of
the hardware. The floating point value was set to zero.

Programmer Response: No action is necessary, although you may want to modify the
program to avoid an underflow.

System Action: No system action was taken.

Symbolic Feedback Code: IGZ01N

752 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IGZ0056W N IGZ0060W

IGZ0056W One or more files were not closed by program program-name prior to
program termination.

Explanation: The specified program has finished but has not closed all of the files it
opened. COBOL attempts to clean up storage and closes any open files.

Programmer Response: Check that all files are closed before the program terminates.

System Action: No system action was taken.

Symbolic Feedback Code: IGZ01O

IGZ0057S There was an attempt to initialize a reusable environment through
ILBOSTP0, but either the enclave was not the first enclave or COBOL was
not the main program of the already established enclave.

Explanation: A request to establish a reusable environment through ILBOSTP0 can only
occur at the beginning of the application. Examples when this error can occur:

� PL/I program calls ASSEMBLE program which calls ILBOSTP0.

� Language Environment enabled ASSEMBLER program calls ILBOSTP0.

Programmer Response: Only invoke ILBOSTP0 prior to calling any program within the
application that brings up Language Environment.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ01P

IGZ0058S Exponent overflow occurred in program program-name at displacement dis-
placement.

Explanation: Floating point exponent overflow occurred in a library routine.

Programmer Response: Ensure that the program variables in the failing statement have
been set correctly.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ01Q

IGZ0059W An exponent with more than nine digits was truncated in program program-
name at displacement displacement.

Explanation: Exponents in fixed point exponentiations may not contain more than nine
digits. The exponent was truncated back to nine digits; some of the truncated digits were not
0.

Programmer Response: No action is necessary, although you may want to adjust the
exponent in the failing statement.

System Action: No system action was taken.

Symbolic Feedback Code: IGZ01R

IGZ0060W Truncation of high order digit positions occurred in program program-name
at displacement displacement.

Explanation: Code in a library routine has truncated an intermediate result (that is, tempo-
rary storage used during an arithmetic calculation) back to 30 digits; some of the truncated
digits were not 0.

Programmer Response: See COBOL for OS/390 & VM Programming Guide or COBOL for
MVS & VM Programming Guide for a description of intermediate results.

System Action: No system action was taken.

Symbolic Feedback Code: IGZ01S

 Chapter 15. COBOL Run-Time Messages 753

 IGZ0061S N IGZ0066S

IGZ0061S Division by zero occurred in program program-name at displacement dis-
placement.

Explanation: Division by zero occurred in a library routine. Division by zero is not defined.
If a SIZE ERROR clause had appeared on the statement in question, the SIZE ERROR
imperative would have been used. However, no SIZE ERROR clause was present.

Programmer Response: Ensure that the program variables in the failing statement have
been set correctly.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ01T

IGZ0063S An invalid sign was detected in a numeric edited sending field in program-
name on line number line-number.

Explanation: An attempt has been made to move a signed numeric edited field to a signed
numeric or numeric edited receiving field in a MOVE statement. However, the sign position in
the sending field contained a character that was not a valid sign character for the corre-
sponding PICTURE.

Programmer Response: Ensure that the program variables in the failing statement have
been set correctly.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ01V

IGZ0064S A recursive call to active program program-name in compilation unit
compilation-unit was attempted.

Explanation: COBOL does not allow reinvocation of an internal program which has begun
execution, but has not yet terminated. For example, if internal programs A and B are siblings
of a containing program, and A calls B and B calls A, this message will be issued.

Programmer Response: Examine your program to eliminate calls to active internal pro-
grams.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ020

IGZ0065S A CANCEL of active program program-name in compilation unit compilation-
unit was attempted.

Explanation: An attempt was made to cancel an active internal program. For example, if
internal programs A and B are siblings in a containing program and A calls B and B cancels
A, this message will be issued.

Programmer Response: Examine your program to eliminate cancellation of active internal
programs.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ021

IGZ0066S The length of external data record data-record in program program-name did
not match the existing length of the record.

Explanation: While processing External data records during program initialization, it was
determined that an External data record was previously defined in another program in the
run-unit, and the length of the record as specified in the current program was not the same
as the previously defined length.

Programmer Response: Examine the current file and ensure the External data records are
specified correctly.

754 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IGZ0067S N IGZ0070S

System Action: The application was terminated.

Symbolic Feedback Code: IGZ022

IGZ0067S The NOEQUALS keyword in the sort control file file-name conflicted with
the specifications of the DUPLICATES phrase on the SORT statement.

Explanation: A sort control file with an OPTION card specifying the NOEQUALS keyword
was used for a SORT which had the DUPLICATES IN ORDER phrase specified. The
NOEQUALS keyword and the DUPLICATES phrase conflict.

Programmer Response: Either remove the NOEQUALS keyword from the sort control file
or remove the DUPLICATES IN ORDER phrase from the SORT statement.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ023

IGZ0068W Duplicate characters were ignored in an INSPECT CONVERTING statement
in program program-name at displacement displacement.

Explanation: The same character appeared more than once in the identifier that contained
the characters to be converted in an INSPECT CONVERTING statement. The first occur-
rence of the character, and the corresponding character in the replacement field, are used,
and subsequent occurrences are not used.

Programmer Response: Duplicate characters in the indicated INSPECT statement may be
deleted; programmer action is not required.

System Action: No system action was taken.

Symbolic Feedback Code: IGZ024

IGZ0069S On VM, file file-name in program program-name attempted to use VSAM in
XA or ESA mode. Using VSAM while in XA or ESA mode is not supported
under the installed level of VM. The program was terminated.

Explanation: VSAM can only operate in S/370 mode virtual machines on VM/SP XA and
VM/ESA Release 1 ESA feature. The job was cancelled. Only on VM/ESA Release 1.1
(CMS8), and higher releases, can VSAM and VS COBOL II be used in XA-mode and
XC-mode virtual machines.

Programmer Response: See your systems programmer for assistance.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ025

IGZ0070S The FILEDEF command "FILEDEF ddname DISK FILE ddname A4" was
unsuccessful.

Explanation: An attempt at dynamic allocation for CMS file ddname using the FILEDEF
command has failed.

Programmer Response: See your systems programmer for assistance.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ026

 Chapter 15. COBOL Run-Time Messages 755

 IGZ0071S N IGZ0074S

IGZ0071S ALL subscripted table reference to table table-name by verb number verb-
number on line line-number had an ALL subscript specified for an OCCURS
DEPENDING ON dimension, and the object was less than or equal to 0.

Explanation: When the SSRANGE option is in effect, this message is issued to indicate
that there are 0 occurrences of dimension subscripted by ALL.

The check is performed against the current value of the OCCURS DEPENDING ON
OBJECT.

Programmer Response: Ensure that ODO object(s) of ALL-subscripted dimensions of any
subscripted items in the indicated statement are positive.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ027

IGZ0072S A reference modification start position value of reference-modification-value
on line line-number referenced an area outside the region of data item data-
item.

Explanation: The value of the starting position in a reference modification specification was
less than 1, or was greater than the current length of the data item that was being reference
modified. The starting position value must be a positive integer less than or equal to the
number of characters in the reference modified data item.

Programmer Response: Check the value of the starting position in the reference modifica-
tion specification.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ028

IGZ0073S A non-positive reference modification length value of reference-modification-
value on line line-number was found in a reference to data item data-item.

Explanation: The length value in a reference modification specification was less than or
equal to 0. The length value must be a positive integer.

Programmer Response: Check the indicated line number in the program to ensure that
any reference modified length values are (or will resolve to) positive integers.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ029

IGZ0074S A reference modification start position value of reference-modification-value
and length value of length on line line-number caused reference to be made
beyond the rightmost character of data item data-item.

Explanation: The starting position and length value in a reference modification specification
combine to address an area beyond the end of the reference modified data item. The sum of
the starting position and length value minus one must be less than or equal to the number of
characters in the reference modified data item.

Programmer Response: Check the indicated line number in the program to ensure that
any reference modified start and length values are set such that a reference is not made
beyond the rightmost character of the data item.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ02A

756 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IGZ0075S N IGZ0078S

IGZ0075S Inconsistencies were found in EXTERNAL file file-name in program program-
name. The following file attributes did not match those of the established
external file: attribute-1 attribute-2 attribute-3 attribute-4 attribute-5 attribute-6
attribute-7

Explanation: One or more attributes of an external file did not match between two pro-
grams that defined it.

Programmer Response: Correct the external file. For a summary of file attributes which
must match between definitions of the same external file, see IBM COBOL Language Refer-
ence

System Action: The application was terminated.

Symbolic Feedback Code: IGZ02B

IGZ0076W The number of characters in the INSPECT REPLACING CHARACTERS BY
data-name in program program-name at displacement displacement was not
equal to one. The first character was used.

Explanation: A data item which appears in a CHARACTERS phrase within a REPLACING
phrase in an INSPECT statement must be defined as being one character in length.
Because of a reference modification specification for this data item, the resultant length value
was not equal to one. The length value is assumed to be one.

Programmer Response: You may correct the reference modification specifications in the
failing INSPECT statement to ensure that the reference modification length is (or will resolve
to) 1; programmer action is not required.

System Action: No system action was taken.

Symbolic Feedback Code: IGZ02C

IGZ0077W The lengths of the data-item items in program program-name at displacement
displacement were not equal. The shorter length was used.

Explanation: The two data items which appear in a REPLACING or CONVERTING phrase
in an INSPECT statement must have equal lengths, except when the second such item is a
figurative constant. Because of the reference modification for one or both of these data
items, the resultant length values were not equal. The shorter length value is applied to both
items, and execution proceeds.

Programmer Response: You may adjust the operands of unequal length in the failing
INSPECT statement; programmer action is not required.

System Action: No system action was taken.

Symbolic Feedback Code: IGZ02D

IGZ0078S ALL subscripted table reference to table table-name by verb number verb-
number on line line-number will exceed the upper bound of the table.

Explanation: When the SSRANGE option is in effect, this message is issued to indicate
that a multi-dimension table with ALL specified as one or more of the subscripts will result in
a reference beyond the upper limit of the table.

The range check was performed on the composite of the subscripts and the maximum occur-
rences for the ALL subscripted dimensions. For variable-length tables the address is outside
the region of the table defined when all OCCURS DEPENDING ON objects are at their
maximum values; the ODO object's current value is not considered. The check was not per-
formed on individual subscripts.

Programmer Response: Ensure that OCCURS DEPENDING ON objects as evaluated at
run-time do not exceed the maximum number of occurrences of the dimension for table
items referenced in the failing statement.

System Action: The application was terminated.

 Chapter 15. COBOL Run-Time Messages 757

 IGZ0079S N IGZ0097S

Symbolic Feedback Code: IGZ02E

IGZ0079S On CICS, program-lang program program-name attempted to call OS/VS
COBOL program program-name.

Explanation: On CICS, a COBOL/370, VS COBOL II, COBOL for MVS & VM, or COBOL
for OS/390 & VM program attempted to call an OS/VS COBOL program with the CALL state-
ment. Using the CALL statement to perform calls between the following are not not sup-
ported on CICS:

� COBOL for OS/390 & VM programs and OS/VS COBOL programs
� COBOL for MVS & VM programs and OS/VS COBOL programs
� COBOL/370 programs and OS/VS COBOL programs
� VS COBOL II programs and OS/VS COBOL programs

Programmer Response: If you need to invoke an OS/VS COBOL program from a
COBOL/370, VS COBOL II, COBOL for MVS & VM, or COBOL for OS/390 & VM
programuse EXEC CICS LINK.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ02F

IGZ0080S A dynamic call to module-name failed because the program entry name
program-name does not match.

Explanation: If a program compiled with the PGMNAME(LONGUPPER) or the
PGMNAME(LONGMIXED) option is dynamically called, the program name must be identical
to the name of the module that contains it. If an alternate entry name is called, the entry
name must be identical to the ALIAS name representing that entry point. Note that the
program entry name can not exceed 8 bytes and must be entirely upper-case.

Programmer Response: The name of the program failing the dynamic call, must be modi-
fied to comply with the rules state aboved. Otherwise, only static calls to the program are
permitted.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ02G

IGZ0096C A load of module module-name was unsuccessful.

Explanation: An attempt to load a module failed. The module was not available or a
system load failure occurred.

Programmer Response: See your systems programmer for assistance.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ030

IGZ0097S Argument-1 for function function-name in program program-name at dis-
placement displacement contained no digits.

Explanation: Argument-1 for the indicated function must contain at least 1 digit.

Programmer Response: Adjust the number of digits in Argument-1 in the failing statement.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ031

758 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IGZ0098C N IGZ0100S

IGZ0098C The message text for message message-number was inaccessible to
IGZCWTO.

Explanation: The message text module used by IGZCWTO did not contain message text
for the indicated message number.

Programmer Response: See your IBM service representative.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ032

IGZ0099C Internal error error-number was detected in module module-name.

Explanation: An unrecoverable error was detected in run-time module module-name.

When the module name in the message is IGZCXCC, the error-number indicates the error
as described below:

Error-number Description

1 The COBOL environment is not initialized. The COBOL environment must
be initialized before calling IGZCXCC.

2 An invalid function code was passed to IGZCXCC.

3 An invalid name length was passed to IGZCXCC.

4 IGZCXCC detected that a nested enclave should be created.

5 IGZCXCC cannot be called when running on CICS or VM.

When the module name in the message is IGZCLNC, IGZCLNK, or IGZCFCC, the error-
number indicates the error as described below:

Error-number Description

9 IGZCXCC is being used and an invalid cancel was attempted.

When the module name in the message is IGZEINI, the error-number indicates the error as
described below:

Error-number Description

101 There was an attempt to initialize a VS COBOL II or OS/VS COBOL
program as a subprogram before the main program has run.

102 An OS/VS COBOL program is being initialized but the TGT address was
not passed.

Programmer Response: See your IBM service representative.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ033

IGZ0100S Argument-1 for function function in program program at displacement dis-
placement was less than or equal to -1.

Explanation: An illegal value was used for Argument-1.

Programmer Response: Ensure that argument-1 is greater than -1.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ034

 Chapter 15. COBOL Run-Time Messages 759

 IGZ0108S N IGZ0155S

IGZ0108S The cancel of program program-name failed because the module load point
address was not provided when the program was loaded.

Explanation: In a Language Environment/370preinitialized environment users may specify
their own load service routine. If this routine fails to provide the module load point address
as an output parameter when loading a COBOL program, that program can not be cancelled
using COBOL'S CANCEL statement.

Programmer Response: Modify the user load service to provide the module load point
address.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ03C

IGZ0151S Argument-1 for function function-name in program program-name at dis-
placement displacement contained more than 18 digits.

Explanation: The total number of digits in argument-1 of the indicated function exceeded
18 digits.

Programmer Response: Adjust the number of digits in argument-1 in the failing statement.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ04N

IGZ0152S Invalid character character was found in column column-number in
argument-1 for function function-name in program program-name at displace-
ment program-displacement.

Explanation: A non-digit character other than a decimal point, comma, space or sign
(+,-,CR,DB) was found in argument-1 for NUMVAL/NUMVAL-C function.

Programmer Response: Correct argument-1 for NUMVAL or NUMVAL-C in the indicated
statement.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ04O

IGZ0154S A procedure pointer was set to nested program nested-program-name in
program program-name at displacement displacement.

Explanation: Procedure pointers can not be set to a nested program.

Programmer Response: Make sure that the procedure program is set to an external
program.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ04Q

IGZ0155S Invalid character character was found in column column-number in
argument-2 for function function-name in program program-name at displace-
ment program-displacement.

Explanation: Illegal character was found in argument-2 for NUMVAL-C function.

Programmer Response: Check that the function argument does follow the syntax rules.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ04R

760 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IGZ0156S N IGZ0161S

IGZ0156S Argument-1 for function function-name in program program-name at line line-
number was less than zero or greater than 28.

Explanation: Input argument to function FACTORIAL is greater than 28 or less than 0.

Programmer Response: Check that the function argument is only one byte long.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ04S

IGZ0157S The length of Argument-1 for function function-name in program program-
name at line line-number was not equal to 1.

Explanation: The length of input argument to ORD function is not 1.

Programmer Response: Check that the function argument is only one byte long.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ04T

IGZ0158S The length of Argument-1 for function function-name in program program-
name at displacement displacement was zero.

Explanation: The length of the argument of the REVERSE, the UPPER-CASE or the
LOWER-CASE function is zero.

Programmer Response: Make sure that the length of the argument is greater than zero.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ04U

IGZ0159S Argument-1 for function function-name in program program-name at line line-
number was less than 1 or greater than 3067671.

Explanation: The input argument to DATE-OF-INTEGER or DAY-OF-INTEGER function is
less than 1 or greater than 3067671.

Programmer Response: Check that the function argument is in the valid range.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ04V

IGZ0160S Argument-1 for function function-name in program program-name at line line-
number was less than 16010101 or greater than 99991231.

Explanation: The input argument to function INTEGER-OF-DATE is less than 16010101 or
greater than 99991231.

Programmer Response: Check that the function argument is in the valid range.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ050

IGZ0161S Argument-1 for function function-name in program program-name at line line-
number was less than 1601001 or greater than 9999365.

Explanation: The input argument to function INTEGER-OF-DAY is less than 1601001 or
greater than 9999365.

Programmer Response: Check that the function argument is in the valid range.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ051

 Chapter 15. COBOL Run-Time Messages 761

 IGZ0162S N IGZ0166S

IGZ0162S Argument-1 for function function-name in program program-name at line line-
number was less than 1 or greater than the number of positions in the
program collating sequence.

Explanation: The input argument to function CHAR is less than 1 or greater than the
highest ordinal position in the program collating sequence.

Programmer Response: Check that the function argument is in the valid range.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ052

IGZ0163S Argument-1 for function function-name in program program-name at line line-
number was less than zero.

Explanation: The input argument to function RANDOM is less than 0.

Programmer Response: Correct the argument for function RANDOM in the failing state-
ment.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ053

IGZ0164C module-name was unable to get HEAP storage.

Explanation: The request made to obtain heap storage failed.

Programmer Response: See your IBM service representative.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ054

IGZ0165S A reference modification start position value of start-position-value on line
line referenced an area outside the region of the function result of function-
result.

Explanation: The value of the starting position in a reference modification specification was
less than 1, or was greater than the current length of the function result that was being refer-
ence modified. The starting position value must be a positive integer less than or equal to
the number of characters in the reference modified function result.

Programmer Response: Check the value of the starting position in the reference modifica-
tion specification and the length of the actual function result.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ055

IGZ0166S A non-positive reference modification length value of length on line line-
number was found in a reference to the function result of function-result.

Explanation: The length value in a reference modification specification for a function result
was less than or equal to 0. The length value must be a positive integer.

Programmer Response: Check the length value and make appropriate correction.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ056

762 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IGZ0167S N IGZ0170S

IGZ0167S A reference modification start position value of start-position and length
value of length on line line-number caused reference to be made beyond the
rightmost character of the function result of function-result.

Explanation: The starting position and length value in a reference modification specification
combine to address an area beyond the end of the reference modified function result. The
sum of the starting position and length value minus one must be less than or equal to the
number of characters in the reference modified function result.

Programmer Response: Check the length of the reference modification specification
against the actual length of the function result and make appropriate corrections.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ057

IGZ0168S The creation of a second enclave within a reusable environment was
attempted. The first program of the second enclave was program-name.

Explanation: Reusable environment support is limited to a single enclave. The enclave
must be the first enclave.

Programmer Response: Modify the application so that it can run within a single enclave
with the COBOL reusable environment. If the program name printed is "????????" then the
first program of the second enclave is not COBOL.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ058

IGZ0169W External data data-record was allocated within the 31-bit address range. The
called program program-name contained a definition for this external data,
and it was compiled with the DATA(24) option.

Explanation: External data was allocated ANYWHERE within the 31-bit addressing range
by a program. But a subsequently called program containing a definition for that same
external data was compiled with the DATA(24) option. This was discovered while processing
external data records during program initialization.

Programmer Response: Re-compile program with the DATA(31) option if appropriate. If
the external data needs to be allocated below 16M, then the FIRST program in the rununit
that contains a definition of the external data must be compiled with the DATA(24) option.

System Action: No system action was taken.

Symbolic Feedback Code: IGZ059

IGZ0170S One or more files were not closed by NORENT program program-name and
the program cannot be found in storage.

Explanation: The specified NORENT program has not closed all of the files it opened and
the program cannot be found in storage. COBOL is unable to close the files because the
required control blocks which reside in the program are no longer available. Unpredictable
results will occur when the system attempts to close the files. This error can occur if the
application has an assembler program that loads and deletes the specified NORENT
program.

Programmer Response: Ensure that all files are closed by the NORENT program.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ05A

 Chapter 15. COBOL Run-Time Messages 763

 IGZ0172W N IGZ0176S

IGZ0172W RTEREUS was specified, but ignored. A reusable run-time environment was
not established because the first program in the application was not
COBOL.

Explanation: A reusable environment can be established only when the main program of
the first enclave is COBOL.

Programmer Response: Ensure that RTEREUS is off. The performance benefits of using
RTEREUS are available without the run-time option when the application is running under
Language Environment.

System Action: No system action is taken.

Symbolic Feedback Code: IGZ05C

IGZ0173S There was an invalid attempt to start a sort or merge.

Explanation: A sort or merge initiated by a COBOL program was already in progress when
another sort or merge was attempted by another COBOL program. Only one sort or merge
can be active at a time.

Programmer Response: Change the application so that it does not initiate another sort or
merge from within the COBOL sort exits.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ05D

IGZ0174S A dynamic call to module-name failed because the load module is a DLL.

Explanation: A COBOL dynamic call cannot be made to a load module that is a DLL. A
load module that is a DLL contains one or more of the following:

� A COBOL for OS/390 & VM program compiled with the DLL option and the EXPORTALL
option.

� A C routine compiled with the DLL option that exports functions or variables.

� A C++ routine that exports functions or variables.

Programmer Response: Change the dynamically called load module so that it does not
contain routines that export functions or variables. If the load module contains COBOL for
OS/390 & VM programs compiled with the DLL and the EXPORTALL options, recompile the
programs with NOEXPORTALL.

System Action: The application was terminated.

IGZ0175S A dynamic call to module-name failed because the entry point is a COBOL
program compiled with the DLL compiler option.

Explanation: A COBOL dynamic call cannot be made to a COBOL for OS/390 & VM
program that is compiled with the DLL compiler option.

Programmer Response: Compile the COBOL for OS/390 & VM program with the NODLL
compiler option.

System Action: The application was terminated.

IGZ0176S A call from a COBOL program compiled with the DLL compiler option failed
because the program program-name was previously dynamically called by a
COBOL program compiled without the DLL compiler option.

Explanation: When dynamically calling a COBOL program, insure that the DLL compiler
option is consistent between calling and called programs.

Programmer Response: Compile both the calling and called COBOL for OS/390 & VM
programs with either the DLL or the NODLL compiler option.

System Action: The application was terminated.

764 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IGZ0177S N IGZ0182W

IGZ0177S A CANCEL of DLL program-name is not allowed.

Explanation: The program was called with a CALL identifier statement from a COBOL
program compiled with the DLL option. This caused the called program to be identified as a
DLL. A DLL cannot be cancelled.

Programmer Response: Do not request that a DLL be cancelled.

System Action: The application was terminated.

IGZ0178S An attempt to find program program-name in DLL module-name was unsuc-
cessful.

Explanation: An error during the load of a DLL or during a query DLL function request
prevented an entry point address from being returned.

Programmer Response: See the corresponding CEEnnnnI message for additional informa-
tion and the details of the problem. If the CEEnnnn message is not found in the MSGFILE
insure that the runtime option INFOMSGFILTER is OFF.

System Action: The application was terminated.

| IGZ0179S A dynamic call to module-name failed because the load module contains
| one or more routines with XPLINK linkage.

| Explanation: A COBOL dynamic call cannot be made to a load module that contains rou-
| tines with XPLINK linkage.

| Programmer Response: Change the dynamically called load module so that it does not
| contain routines that use XPLINK linkage.

| System Action: The application was terminated.

IGZ0180S An attempt was made to run a VS COBOL II or OS/VS COBOL program in a
OS/390 UNIX process. The program name is program-name.

Explanation: VS COBOL II and OS/VS COBOL programs cannot be run in a OS/390 UNIX
process.

Programmer Response: Compile the program with COBOL for MVS & VM or COBOL for
OS/390 & VM.

System Action: The application was terminated.

IGZ0181S An attempt was made to run a COBOL program that is not reentrant in a
OS/390 UNIX process. The program name is program-name.

Explanation: COBOL programs running in a OS/390 UNIX process must be reentrant.

Programmer Response: In order to make a COBOL program reentrant, compile the
COBOL program with the RENT compile-time option.

System Action: The application was terminated.

IGZ0182W A fork() is not allowed when a COBOL reusable environment is active.

Explanation: A COBOL reusable environment is active and the fork() function was called.
A COBOL reusable environment is established by doing one of the following:

� Using the RTEREUS run-time option

 � Calling ILBOSTP0

 � Calling IGZERRE

Programmer Response: Change the application so that a COBOL reusable environment is
not used.

System Action: The fork() function is not performed.

 Chapter 15. COBOL Run-Time Messages 765

 IGZ0183W N IGZ0187S

IGZ0183W A fork() is not allowed when an OS/VS COBOL program or a VS COBOL II
program is in the environment.

Explanation: At least one OS/VS COBOL program or VS COBOL II program is in the envi-
ronment and the fork() function was called.

Programmer Response: Compile all OS/VS COBOL programs and the VS COBOL II pro-
grams with COBOL for MVS & VM or COBOL for OS/390 & VM.

System Action: The fork() function is not performed.

IGZ0184W A fork() is not allowed when a sort or merge is in progress.

Explanation: A SORT or MERGE statement is in progress and the fork() function was
called.

Programmer Response: Change the application to call fork() when sort or merge is not
active.

System Action: The fork() function is not performed.

IGZ0185W A fork() is not allowed when a declarative in a COBOL program is active.

Explanation: A declarative in a COBOL program is active and the fork() function was
called.

Programmer Response: Change the application to call fork() when a declarative is not
active.

System Action: The fork() function is not performed.

| IGZ0186S An attempt was made to run a VS COBOL II program with the run-time
| option XPLINK(ON). The program name is program-name.

| Explanation: Run-time option XPLINK(OFF) must be specified to run VS COBOL II pro-
| grams.

| Programmer Response: Set the XPLINK run-time option to OFF and remove any load
| modules from the application that use XPLINK linkage, or compile the COBOL program with
| COBOL for MVS & VM or COBOL for OS/390 & VM.

| System Action: The application was terminated.

| IGZ0187S There was an attempt to establish a COBOL reusable environment with the
| run-time option XPLINK(ON).

| Explanation: A COBOL reusable environment cannot be established when the
| XPLINK(ON) run-time option is specified. A COBOL reusable environment is established by
| doing one of the following:

| � Using the RTEREUS run-time option

| � Calling ILBOSTP0

| � Calling IGZERRE

| Programmer Response: Set the XPLINK run-time option to OFF and remove any load
| modules from the application that use XPLINK linkage, or do not use a COBOL reusable
| environment.

| System Action: The application was terminated.

766 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IGZ0188S N IGZ0201W

| IGZ0188S Value string is invalid for environment variable _IGZ_SYSOUT.

| Explanation: Allowable values for environment variable _IGZ_SYSOUT are "stdout" or
| "stderr". Value can be any combination of upper and lower case and must not contain
| leading or trailing spaces.

| Programmer Response: Change value to be either "stdout" or "stderr".

| System Action: The application was terminated.

| IGZ0199S An attempt was made to run a COBOL program that was compiled with the
| SEPARATE suboption of the TEST compiler option. This is not supported
| with this level of Language Environment or this level of Debug Tool. The
| program name is program-name.

| Explanation: COBOL programs running with TEST(,,SEPARATE) must run on levels of
| Language Environment and Debug Tool that support it. This error can occur with any of the
| following:

| � running with a level of Language Environment that does not support the SEPARATE
| suboption

| � running with a level of Language Environment that could support the SEPARATE sub-
| option but does not have current maintenance applied

| � running with a level of Debug Tool that could support the SEPARATE suboption but
| does not have current maintenance applied

| Programmer Response: Run the program under levels of Language Environment and
| Debug Tool that support programs compiled with TEST(,,SEPARATE) or recompile the
| COBOL program without the SEPARATE suboption of the TEST compiler option.

| System Action: The application was terminated.

IGZ0200W A file attribute mismatch was detected. File file-name in program program-
name was defined as a physical sequential file and the file specified in the
ASSIGN clause was a VSAM data set.

Explanation: The program file description specified that the file was a physical sequential
file and the data set associated with the ASSIGN clause was found to be a VSAM file. The
OPEN statement failed.

Programmer Response: Check that the file description and the DD parameter associated
with the ASSIGN clause are for the correct data set.

System Action: If a file status was specified, no system action is performed. If a file status
field was not specified, the program is terminated and message IGZ0035S is generated.

Symbolic Feedback Code: IGZ068

IGZ0201W A file attribute mismatch was detected. File file-name in program program-
name had a record length of record-length-1 and the file specified in the
ASSIGN clause had a record length of record-length-2.

Explanation: The program file description specified a record length that did not match the
record length of the data set associated with the ASSIGN clause. The OPEN statement
failed.

Programmer Response: For Format-V and Format-S files the maximum record length
specified in your program must be exactly 4 bytes smaller than the length attribute of the
data set. For Format-F files, the record length specified in your program must exactly match
the length attribute of the data set. For Format-U files, the maximum record length specified
in your program must exactly match the length attribute of the data set. If your file is a printer
file, the compiler may add one byte to the file description for carriage control character,
depending on the ADV compiler option and the COBOL statements used in your program. In
which case, the added byte must be included in the data set length attribute. For VSAM

 Chapter 15. COBOL Run-Time Messages 767

 IGZ0202W N IGZ0204W

files, the record length must not be greater than the maximum length attribute of the data
set. For VSAM simulated RRDS (SIMVRD run-time option) the record length specified in the
ASSIGN clause is incremented by 4 bytes prior to comparison with the length attribute of the
data set.

System Action: If a file status was specified, no system action is performed. If a file status
field was not specified, the program is terminated and message IGZ0035S is generated.

Symbolic Feedback Code: IGZ069

IGZ0202W A file attribute mismatch was detected. File file-name in program program-
name specified ASCII data and the file specified in the ASSIGN clause did
not contain the ASCII data attribute.

Explanation: The CODE-SET clause was specified in the program file description and the
data set associated with the ASSIGN clause did not contain ASCII data. The OPEN state-
ment failed.

Programmer Response: Check that the data set associated with the ASSIGN clause is the
correct one, and if it is, check the data set for the ASCII attribute.

System Action: If a file status was specified, no system action is performed. If a file status
field was not specified, the program is terminated and message IGZ0035S is generated.

Symbolic Feedback Code: IGZ06A

IGZ0203W A file attribute mismatch was detected. File file-name in program program-
name specified non-ASCII data and the file specified in the ASSIGN clause
contained the ASCII data attribute.

Explanation: The data set associated with the ASSIGN clause contained ASCII type data
and the file description in the program did not contain ASCII data. The OPEN statement
failed.

Programmer Response: Check that the data set associated with the ASSIGN clause is the
correct one, and if it is, check the data set for the ASCII attribute.

System Action: If a file status was specified, no system action is performed. If a file status
field was not specified, the program is terminated and message IGZ0035S is generated.

Symbolic Feedback Code: IGZ06B

IGZ0204W A file attribute mismatch was detected. File file-name in program program-
name was defined as RECORDING MODE recording-mode and the file speci-
fied in the ASSIGN clause did not contain the same attribute.

Explanation: The RECORDING MODE specified in the program file description did not
match the data control block fields of the data set associated with the ASSIGN clause. The
OPEN statement failed.

Programmer Response: Check the data control block fields of the actual data set to verify
that the RECORDING MODE matches. The most common cause of this error is conflicting
fixed and variable record length data set attributes.

System Action: If a file status was specified, no system action is performed. If a file status
field was not specified, the program is terminated and message IGZ0035S is generated.

Symbolic Feedback Code: IGZ06C

768 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IGZ0205W N IGZ0210S

IGZ0205W An OPEN failure occurred for file file-name in program program-name
because the SMSVSAM server was not available. The file was closed.

Explanation: COBOL encountered a SMSVSAM server not available error return while per-
forming OPEN, I/O, or control block testing of a VSAM data set in RLS mode. For this error
condition VSAM requires that the file be closed, opened, and positioned prior to resubmitting
requests. Look for possible VSAM error messages in the job log.

Programmer Response: COBOL only performs a close of the file. Resolve the SMSVSAM
server not available condition and resubmit the run or remove the RLS keyword specification
from the DD statement.

System Action: No system action is performed.

Symbolic Feedback Code: IGZ06D

IGZ0206W The AIXBLD run-time option was invalid for file file-name in program
program-name because the file was opened in RLS mode. The file was
closed.

Explanation: The AIXBLD option is only supported for VSAM data sets opened without
RLS mode. VSAM data sets opened in RLS mode can be empty, but upgrades to empty
paths are not supported. The alternate index path must be built prior to using RLS mode.
The alternate index was not built and the file was closed.

Programmer Response: If AIXBLD option is required, remove the RLS keyword specifica-
tion from the DD statement for this file and resubmit the run.

System Action: No system action is performed.

Symbolic Feedback Code: IGZ06E

IGZ0207W The SIMVRD run-time option was invalid for file file-name in program
program-name because the file was opened in RLS mode. The file was
closed.

Explanation: The SIMVRD option is not supported for VSAM data sets in RLS mode. The
file was closed.

Programmer Response: If SIMVRD option is required, remove the RLS keyword specifica-
tion from the DD statement for this file and resubmit the run.

System Action: No system action is performed.

Symbolic Feedback Code: IGZ06F

IGZ0210S There was an attempt to run an OS/VS COBOL program program-name in a
non-initial thread.

Explanation: OS/VS COBOL programs can only run in the initial thread. For example,
OS/VS COBOL programs can not run in a subtask created by a PL/I CALL statement with
the TASK, EVENT, or PRIORITY option.

Programmer Response: Compile the COBOL program with the COBOL for MVS & VM or
COBOL for OS/390 & VM compiler.

System Action: The application is terminated.

Symbolic Feedback Code: IGZ06I

 Chapter 15. COBOL Run-Time Messages 769

 IGZ0211S N IGZ0213S

IGZ0211S There was an attempt to run COBOL programs in more than one thread.
The name of the program that was invoked is program-name.

Explanation: COBOL/370, VS COBOL II, COBOL for MVS & VM, or COBOL for OS/390 &
VM programs can only be run in one thread at a time. This condition can occur when PL/I
multitasking is used or when POSIX(ON) is in effect.

If PLI multitasking is used, here are examples that can cause this condition:

� If a COBOL/370, VS COBOL II, COBOL for MVS & VM, or COBOL for OS/390 & VM
program has been invoked in the main task, then any attempts to invoke a COBOL/370,
VS COBOL II, COBOL for MVS & VM, or COBOL for OS/390 & VM program in a
subtask created by a PL/I statement with the TASK, EVENT or the PRIORITY option will
cause this condition to be signalled.

� If a COBOL/370, VS COBOL II, COBOL for MVS & VM, or COBOL for OS/390 & VM
program has been invoked in a subtask, then any attempts to invoke a COBOL/370, VS
COBOL II, COBOL for MVS & VM, or COBOL for OS/390 & VM program in any other
thread will cause this condition to be signalled until the subthread is terminated.

If POSIX(ON) is in effect, here are examples that can cause this condition:

� If a COBOL/370, VS COBOL II, COBOL for MVS & VM, or COBOL for OS/390 & VM
program has been invoked in the initial thread, then any attempts to invoke a
COBOL/370, VS COBOL II, COBOL for MVS & VM, or COBOL for OS/390 & VM
program in a non-initial thread will cause this condition to be signalled.

� If a COBOL/370, VS COBOL II, COBOL for MVS & VM, or COBOL for OS/390 & VM
program has been invoked in a non-initial thread, then any attempts to invoke a
COBOL/370, VS COBOL II, COBOL for MVS & VM, or COBOL for OS/390 & VM
program in another thread will cause this condition to be signalled until the non-initial
thread in which a COBOL program was invoked is terminated.

Programmer Response: Change the application so that COBOL programs are used in
only one task at a time if they are running in the PL/I Multitasking environment or in one
thread at a time if they are running with POSIX(ON).

System Action: The application is terminated.

Symbolic Feedback Code: IGZ06J

IGZ0212S There was an attempt to run an OS/VS COBOL program with the run-time
option RTLS(ON). The name of the program that was invoked is program-
name.

Explanation: OS/VS COBOL programs cannot run with the run-time option RTLS(ON).

Programmer Response: Set the RTLS run-time option to OFF.

System Action: The application is terminated.

Symbolic Feedback Code: IGZ06K

IGZ0213S There was an attempt to establish a COBOL reusable environment with the
run-time option RTLS(ON).

Explanation: A COBOL reusable environment cannot be established when the RTLS(ON)
run-time option is specified. A COBOL reusable environment is established by doing one of
the following:

� Using the RTEREUS run-time option

 � Calling ILBOSTPO

 � Calling IGZERRE

Programmer Response: Set the RTLS run-time option to OFF.

System Action: The application is terminated.

770 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IGZ0214C N IGZ0218S

Symbolic Feedback Code: IGZ06L

IGZ0214C A run time level mismatch was detected.

Explanation: The run-time option RTLS(ON) is specified and the run-time routines loaded
from the SCEERTLS library is not at the same release level of the run-time routines loaded
from RTLS.

Programmer Response: Set the RTLS run-time option to OFF or use the SCEERTLS
library at the same release level specified using RTLS.

System Action: The application is terminated.

Symbolic Feedback Code: IGZ06M

IGZ0215S Argument —1 for function function-name in program program-name at line
line-number was less than 0 or greater than 99.

Explanation: An illegal value was used for Argument-1.

Programmer Response: Ensure that argument-1 is greater than, or equal to 0, and less
than 100.

System Action: The application is terminated.

Symbolic Feedback Code: IGZ06N

IGZ0216S Argument —1 for function function-name in program program-name at line
line-number was less than 0 or greater than 99366.

Explanation: An illegal value was used for Argument-1.

Programmer Response: Ensure that argument-1 is greater than, or equal to 0, and less
than 99367.

System Action: The application is terminated.

Symbolic Feedback Code: IGZ06O

IGZ0217S Argument —1 for function function-name in program program-name at line
line-number was less than 0 or greater than 991231.

Explanation: An illegal value was used for Argument-1.

Programmer Response: Ensure that argument-1 is greater than, or equal to 0, and less
than 991231.

System Action: The application is terminated.

Symbolic Feedback Code: IGZ06P

IGZ0218S The sum of the year at the time of execution and the value of argument —2
was less than 1700 or greater than 10000 for function function-name in
program program-name at line line-number.

Explanation: An illegal value was used for Argument-2.

Programmer Response: Ensure that the sum of the year at the time of execution and the
value of argument-2 is less than 1700 or greater than 10000.

System Action: The application is terminated.

Symbolic Feedback Code: IGZ06Q

 Chapter 15. COBOL Run-Time Messages 771

 IGZ0219S N IGZ0221W

IGZ0219S The base year for program program-name was outside the valid range of
1900 through 1999. The sliding window value window-value resulted in a
base year of base-year.

Explanation: When the 100-year window was computed using the current year and the
sliding window value specified with the YEARWINDOW compiler option, the base year of the
100-year window was outside the valid range of 1900 through 1999.

For example, if a COBOL program had been compiled with YEARWINDOW(-99) and the
COBOL program was run in the year 1998 this message would occur because the base year
of the 100-year window would be 1899 (1998-99).

Programmer Response: Examine the application design to determine if it will support a
change to the YEARWINDOW option value. If the application can run with a change to the
YEARWINDOW option value, then compile the program with an appropriate YEARWINDOW
option value. If the application cannot run with a change to the YEARWINDOW option value,
then convert all date fields to expanded dates and compile the program with NODATEPROC.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ06R

IGZ0220S The current year was outside the 100-year window, year-start through
year-end for program program.

Explanation: The current year was outside the 100-year fixed window specified by the
YEARWINDOW compiler option value.

For example, if a COBOL program is compiled with YEARWINDOW(1920), the 100-year
window for the program is 1920 through 2019. When the program is run in the year 2020,
this error message would occur since the current year is not within the 100 year window.

Programmer Response: Examine the application design to determine if it will support a
change to the YEARWINDOW option value. If the application can run with a change to the
YEARWINDOW option value, then compile the program with an apporpriate YEARWINDOW
option value. If the application cannot run with a change to the YEARWINDOW option value,
then convert all date fields to expanded dates and compile the program with NODATEPROC.

System Action: The application was terminated.

Symbolic Feedback Code: IGZ06S

IGZ0221W The Y2PAST= y2past-value SORT option (from the YEARWINDOW compiler
option) was overridden by the Y2PAST value in the sort control file.

Explanation: A windowed date field was specified as a KEY in a SORT or MERGE, which
resulted in the YEARWINDOW compiler option being converted into a SORT option Y2PAST
value, but Y2PAST was also specified in the sort control file.

The value in the sort control file was used, and the Y2PAST value from the program was
ignored.

Programmer Response: See COBOL for OS/390 & VM Programming Guide or COBOL for
MVS & VM Programming Guide for a description of using windowed date fields with SORT
and MERGE.

System Action: No system action was taken.

Symbolic Feedback Code: IGZ06T

772 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 IGZ0222S N IGZ0223S

| IGZ0222S No significant digits remain in a fixed-point exponentiation operation in
| program program at displacement displacement due to excessive decimal
| positions specified in the operands or receivers.

| Explanation: A fixed-point exponentiation operation that specifies a negative exponent
| could not be completed because all significant digits were lost after the operands were
| scaled. This condition is caused by excessive decimal positions being specified in the oper-
| ands or receivers of the expression.

| Programmer Response: Simplify the arithmetic expression, specifying less decimal posi-
| tions in the operands.

| Do not use exponentiation of a base having 31 decimal positions, using a negative integral
| exponent. Rather, use an exponentiation specifying a positive exponent followed by an
| explicit division operation.

| Alternatively, use a floating-point expression. To do this, specify at least one floating-point
| operand or receiver.

| System Action: The application was terminated.

| IGZ0223S Argument-1 for function function-name in program program-name at line line-
| number was less than zero or greater than 29.

| Explanation: Input argument to function FACTORIAL is greater than 29 or less than 0.

| Programmer Response: Check that the function argument is in the valid range.

| System Action: The application was terminated.

 Chapter 15. COBOL Run-Time Messages 773

774 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 UXXXX (≤ 4000) N U4036 (X'FC4')

Chapter 16. Language Environment Abend Codes

This chapter lists the Language Environment abend codes with descriptions and
programmer responses. The hexadecimal equivalent of the abend code is shown in
parentheses. Reason codes are shown in hexadecimal with the decimal equivalent
in parentheses.

UXXXX (≤ 4000)

Explanation: The assembler user exit could have forced an abend for an unhandled condi-
tion. These are user-specified abend codes.

Programmer Response: Check the Language Environment message file for message
output. This will tell you what the original abend was.

System Action: Task terminated.

U4034 (X'FC2')

Explanation: Language Environment condition handling was bypassed. This could result
from an error condition being raised while Language Environment was dormant.

Programmer Response: Follow appropriate problem determination procedures.

System Action: Task terminated.

U4036 (X'FC4')

Explanation: A program check occurred and Language Environment determined that it
could not turn the program check into a condition.

Reason codes:

X'01' (1) A program check was detected when Language Environment condition handling
was disabled. One cause for this abend is a program check during an Informa-
tion Management System (IMS) call such as CEETDLI. The address of the EPIE
is loaded into register 2 prior to the abend being issued. Another cause for this
abend is a program check during a SORT or MERGE that has been initiated by
a SORT or MERGE statement in an OS/VS COBOL program.

X'02' (2) A program check was detected and Language Environment could not determine
if the program check occurred in the current enclave. The address of the EPIE is
loaded into register 2 prior to the abend being issued.

X'03' (3) A program check was detected and the Language Environment run-time option
for the enclave is TRAP(OFF). The address of the EPIE is loaded into register 2
prior to the abend being issued.

X'04' (4) A program check was detected and the Language Environment run-time option
for the enclave is TRAP(OFF) or TRAP(ON,NOSPIE). Language Environment
expected to recover from this program check but was unable to do so. The
address of the EPIE is not loaded into register 2 for this case.

| X'05'(5) A program check occurred due to a branch into unbacked storage, when the
| current XPLINK stack segment was almost full, and the TRAP(ON,SPIE) option
| was in effect. If the XPLINK stack were not almost full or TRAP(ON,NOSPIE)
| were in effect, normal CEE3204 condition handling would have occurred for this
| program check.

Programmer Response: For reason codes 1–3:

� Use the contents of register 2 at the abend to find the EPIE. The EPIE is a system
control block that has the value of the registers and the PSW at the time of the program
check. The values in the EPIE can be used to start the problem determination process.

 Copyright IBM Corp. 1991, 2000 775

 U4038 (X'FC6') N U4039 (X'FC7')

For reason code 4:

� This may be a secondary error. Check any messages and/or CEEDUMPs to diagnose
the original error. If this program check is the only error then run the program with the
run-time option TRAP(ON) (or TRAP(ON,SPIE)) to diagnose the original program check.

The EPIE has the following format:

Offset Content

 0 Eyecatcher: EPIE

8 Value of R0

C Value of R1

10 Value of R2

14 Value of R3

18 Value of R4

1C Value of R5

20 Value of R6

24 Value of R7

28 Value of R8

2C Value of R9

30 Value of R10

34 Value of R11

38 Value of R12

3C Value of R13

40 Value of R14

44 Value of R15

48 PSW bits 0–31

4C PSW bits 32–63

50 Program interruption information:

� ILC (Instruction Length Code)
 � Interruption code

54 Translation exception address if interruption code is a page fault interrupt code

System Action: Task terminated.

U4038 (X'FC6')

Explanation: The enclave ended with an unhandled Language Environment software-
raised or user-raised condition of severity 2 or greater, and the run-time option
ABTERMENC(ABEND) was specified.

Programmer Response: Check the Language Environment message file for message
output.

System Action: Enclave terminated.

U4039 (X'FC7')

Explanation: Language Environment is requesting a system abend dump due to an unhan-
dled severity 2, 3, or 4 condition. This does not necessarily indicate an error condition.

Programmer Response: Refer to the original unhandled condition.

System Action: Language Environment continues with termination.

776 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 U4041 (X'FC9') N U4081 (X'FF1')

U4041 (X'FC9')

Explanation: Language Environment message processing tried to issue a dynamic allo-
cation for a data set. The return code used by the ABEND macro is the same return code
from SVC 99. For an explanation of SVC 99, see TSO Extensions Version 2 Programming
Services.

Programmer Response: Follow appropriate problem determination procedures.

System Action: Enclave terminated.

U4042 (X'FCA')

Explanation: User HEAP damage was found by the HEAPCHK run-time option.

Programmer Response: Examine the Language Environment message file, looking for
HEAPCHK messages that identify where the damage is located.

System Action: The routine terminates.

U4081 (X'FF1')

Explanation: An error occurred when Language Environment tried to issue the CSVRTLS
service. The reason code describes which CSVRTLS function failed.

Reason codes:

X'01' (1) The MVS Run-Time Library Services (RTLS) is not available.

The MVS CVT indicates that the Language Environment cannot use the
CSVRTLS functions to load the required library routines.

X'02' (2) Storage required to initialize Language Environment is not available.

The number of bytes needed (in subpool 1) is saved in register 3 at the time of
the ABEND. The return code from GETMAIN is saved in register 2.

X'03' (3) Language Environment is unable to free storage obtained earlier.

The number of bytes being freed (below the line, in subpool 1) is in register 3 at
the time of the ABEND. The address of the storage beging freed is in register 4
at the time of the ABEND. The return code from FREEMAIN is saved in register
2.

X'04' (4) During Language Environment initialization, CSVRTLS REQUEST=CONNECT
failed.

The reason code from CSVRTLS is saved in register 2 at the time of the
ABEND. The 8-byte name of the logical library being connected to is loaded into
registers 3 and 4. The 8-byte logical library version is loaded into registers 5 and
6 at the time of the ABEND.

X'05' (5) During Language Environment initialization, CSVRTLS REQUEST=LOAD failed.

The reason code from CSVRTLS is saved in register 2 at the time of the
ABEND.The module being loaded from the RTLS logical Library is 'CEEBINSS'.
The 8-byte logical library name is loaded into registers 3 and 4. The 8-byte
logical library version is loaded into registers 5 and 6 at the time of the ABEND.
Register 7 contains the output EP address from CSVRTLS, which is actually
extended diagnostic information for the LOAD error.

X'06' (6) During Language Environment termination, CSVRTLS REQUEST=DELETE
failed.

| The reason code from CSVRTLS is saved in register 2 at the time of the
| ABEND. The module being deleted from the RTLS logical library is 'CEEBINSS'.

 Chapter 16. Language Environment Abend Codes 777

 U4081 (X'FF1') N U4081 (X'FF1')

X'07' (7) During Language Environment termination, CSVRTLS
REQUEST=DISCONNECT failed.

The reason code from CSVRTLS is saved in register 2 at the time of the
ABEND.

X'08' (8) During Language Environment initialization, CSVRTLS REQUEST=CONNECT
failed with reason code X'0804'. This reason code indicates that the user is not
authorized to connect to RTLS or to the specified RTLS logical library or version.

The reason code from CSVRTLS is saved in register 2 at the time of the
ABEND. The 8-byte name of the logical library being connected to is loaded into
registers 3 and 4. The 8-byte logical library version is loaded into registers 5 and
6 at the time of the ABEND.

X'09' (9) During Language Environment initialization, CSVRTLS REQUEST=CONNECT
failed with reason code X'0810'. This reason code indicates that the specified
RTLS logical library or version is not available.

The reason code from CSVRTLS is saved in register 2 at the time of the
ABEND. The 8-byte name of the logical library being connected to is loaded into
registers 3 and 4. The 8-byte logical library version is loaded into registers 5 and
6 at the time of the ABEND.

X'0A' (10) During Language Environment initialization, CSVRTLS REQUEST=CONNECT
failed with reason code X'0C02'. This reason code indicates that the maximum
number of RTLS connections already exist in this address space. No more
RTLS connections can start in this address space.

The reason code from CSVRTLS is saved in register 2 at the time of the
ABEND. The 8-byte name of the logical library being connected to is loaded into
registers 3 and 4. The 8-byte logical library version is loaded into registers 5 and
6 at the time of the ABEND.

X'0B' (11) During Language Environment initialization, CSVRTLS REQUEST=LOAD failed
with reason code X'0804'. This reason code indicates that the user is not
authorized to load CEEBINSS from the specified RTLS logical library.

The reason code from CSVRTLS is saved in register 2 at the time of the
ABEND. The module being loaded from the RTLS logical Library is 'CEEBINSS'.
The 8-byte logical library name is loaded into registers 3 and 4. The 8-byte
logical library version is loaded into registers 5 and 6 at the time of the ABEND.
Register 7 contains the output EP address from CSVRTLS, which is actually
extended diagnostic information for the LOAD error.

X'0C' (12) During Language Environment initialization, CSVRTLS REQUEST=LOAD failed
with reason code X'082D'. This reason code indicates that module CEEBINSS
could not be found in the specified RTLS logical library.

The reason code from CSVRTLS is saved in register 2 at the time of the
ABEND. The module being loaded from the RTLS logical Library is 'CEEBINSS'.
The 8-byte logical library name is loaded into registers 3 and 4. The 8-byte
logical library version is loaded into registers 5 and 6 at the time of the ABEND.
Register 7 contains the output EP address from CSVRTLS, which is actually
extended diagnostic information for the LOAD error.

Programmer Response: Do not specify the RTLS(ON) run-time option unless RTLS is
operational. Make sure that the LIBRARY run-time option specifies a valid RTLS logical
library name. Make sure that the VERSION run-time option specifies a valid RTLS logical
library version. Make sure that there is enough storage in the address space to initialize
Language Environment. Make sure that the user is authorized to access RTLS and the
logical LIBRARY and VERSION. For some ABEND reason codes, register 2 contains the
error reason code from the CSVRTLS service. The contents of register 2 may appear in the
ABEND message. See OS/390 MVS Programming: Assembler Services Reference for more
information about the error reason codes from CSVRTLS.

System Action: Enclave terminated.

778 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 U4082 (X'FF2') N U4084 (X'FF4')

U4082 (X'FF2')

Explanation: A second malfunction occurred while handling a condition.

Reason codes:

X'01' (1) A second malfunction occurred while trying to initialize a second math save
area.

X'02' (2) A condition was raised prior to the point where a second condition could be
recorded.

X'03' (3) A condition was raised while Language Environment was processing a current
condition under CICS.

Programmer Response: This condition can be fixed by correcting the initial condition.

System Action: Enclave terminated.

U4083 (X'FF3')

Explanation: The back chain was found in error. The reason code describes the most likely
cause of the abend.

Reason codes:

X'01' (1) A save area loop exists. The save area points to itself or another save area
incorrectly points to a higher save area.

X'02' (2) Traversal of the back chain resulted in a program check.

X'03' (3) Under normal conditions, all save area chains should end with a save area
pointed to by CEECAADDSA. In this case, the save area chain terminated with
a back chain pointer of 0.

X'04' (4) Under normal conditions, all save areas are presumed to be word-aligned.
Either a linkage stack has been encountered with the character string of "F1SA'
(X'C6F1E2C1') in a backward pointer field of the save area chain, or a misa-
ligned (non-word) boundary save area is in the chain. Examine the save area
chain to determine which is the case.

X'05' (5) A condition was raised prior to the allocation of the main stack frame, or after
the main routine terminated.

X'0F' (15) The save area chain is not intact.

Programmer Response: For applications that generate their own save areas, ensure the
save areas are chained together correctly; all save areas must be addressable in
AMODE(31). It may be helpful to generate a system dump of the original error by using
run-time options TERMTHDACT(UAIMM) and TRAP(ON,NOSPIE).

For other types of applications, a storage overlay problem has probably occurred.

System Action: Enclave terminated.

U4084 (X'FF4')

Explanation: Thread terminated abnormally.

Reason code:

X'01' (1) A shared resource associated with a member library-held mutex might have
been corrupted.

Programmer Response: This is an internal problem. Contact your service representative.

System Action: Enclave terminated.

 Chapter 16. Language Environment Abend Codes 779

 U4085 (X'FF5') N U4087 (X'FF7')

U4085 (X'FF5')

Explanation: The GOTO routine encountered an error.

Reason code:

X'01' (1) GOTO is already active.

X'02' (2) The address of the stack frame could not be found on the save area chain, and
no feedback code was provided.

Programmer Response: Ensure the save areas are active.

System Action: Enclave terminated.

U4086 (X'FF6')

Explanation: A library routine could not be loaded.

Reason codes:

X'01' (1) Not enough storage to load module.

X'02' (2) Module not found.

X'03' (3) Module not loaded.

Programmer Response: System installation error.

System Action: Process terminated.

U4087 (X'FF7')

Explanation: A recursive error was detected. A condition was raised, causing the number
of nested conditions to exceed the limit set by the DEPTHCONDLMT option. The reason
code indicates which subcomponent or process was active when the exception was
detected.

Reason codes:

X'00' (0) Language Environment condition manager was in control at the time of the con-
dition.

X'01'(1) While enabling the language specific condition handlers a subsequent condition
was raised.

X'02' (2) A user handler routine (CEEHDLR) was processing a condition when a subse-
quent condition was raised.

X'03' (3) A language-specific condition handler was processing a condition when a subse-
quent condition was raised.

X'04' (4) During the Language Environment condition manager’s processing of the stack
frame that precedes the stack frame for the first routine, a subsequent condition
was raised.

X'05' (5) While a language-specific event handling was being processed, a subsequent
condition was raised.

X'06' (6) A malfunction occurred while the Debug Tool was in control.

X'07' (7) While Language Environment was trying to output a message, a subsequent
condition was raised.

X'08' (8) While attempting to output a dump, a subsequent condition was raised.

X'0A' (10) An abnormal termination exit was in control and Language Environment detected
one of the following:

� A program check
 � An ABEND
� A call to CEESGL to signal a condition
� Invalid DCT under CICS

780 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 U4088 (X'FF8') N U4088 (X'FF8')

Programmer Response: In the case of CEEHDLR routine, recursion can occur when you
use the DEPTHCONDLMT run-time option. It may be helpful to generate a system dump of
the original error by using run-time options TERMTHDACT(UAIMM) and TRAP(ON,NOSPIE).

For reason code 10, determine the error in the abnormal termination exit.

System Action: Enclave terminated.

U4088 (X'FF8')

Explanation: A storage condition occurred during the processing of a storage condition.
The reason code indicates the request type.

Reason codes:

X'5B' (91) Stack pointer corrupted at location 1.

X'5C' (92) Stack pointer corrupted at location 2.

X'5D' (93) Stack pointer corrupted at location 3.

X'5E' (94) Stack pointer corrupted at location 4.

X'5F' (95) Stack pointer corrupted at location 5.

X'61' (97) DSA not found in stack

X'62' (98) Previous NAB not in stack

X'63' (99) Stack segment owning the next-available-byte (NAB) could not be found or a
DSA backchain pointer did not contain a valid 31-bit addressable address. DSA
backchain pointers must contain valid addresses that can be accessed as is
while in 31-bit addressing mode. For instance, a 24-bit address that was
obtained by using the BAL or BALR assembler instruction will contain the ILC,
CC, and Program Mask in the uppermost byte of this address, thus making it an
invalid address in 31-bit mode.

X'64' — X'74' (10x) First free storage request terminated with return code x.

| X'75'(117) During a stack overflow on the Down stack, the stack pointer (R4) was not within
| the current Down stack segment.

| X'76'(118) The system service IARVSERV was invoked with the
| CHANGEACCESS,TARGET_VIEW=HIDDEN options to create a guard page for
| a Down stack segment. The service returned a non-zero return code.

| X'77'(119) During a stack overflow on the Down stack, the entry point of the routine that
| caused the overflow could not be found or a program check occurred while
| attempting to access data from the routine's entry point or PPAs.

| X'78'(120) The Get Next Available Byte service (CEEVGTUN) was invoked when the stack
| direction was down.

X'C8' — X'D8' (20x) Second free storage request terminated with return code x.

X'3E8' — X'3F8' (100x) First get storage terminated with return code x, and reserve stack
segment already in use. This indicates a storage condition was raised while han-
dling the storage condition.

X'BB8' — X'BC2' (3000-3010x) Debug Tool storage manager control blocks corrupted.

nnn Critical condition nnn was signaled, but CEESGL returned control to the
signaller. The signaller does not support a retry of the operation, so the module
terminated.

Programmer Response: For reason codes 91–20x, probable internal malfunction or
storage corruption. For code 1001 or 1004, increase region size or check for infinite
recursion. Using the STORAGE run-time option to increase the size of the reserve stack
segment can also help.

System Action: Enclave terminated.

 Chapter 16. Language Environment Abend Codes 781

 U4089 (X'FF9') N U4091 (X'FFB')

U4089 (X'FF9')

Explanation: During attention processing, a request to end the task was made.

Reason code:

X'01' (1) A debugging tool was asked to interrupt the code sequence and process the
CEE3250 condition.

Programmer Response: Continue debugging the application using a debugging tool.

System Action: Process terminated.

U4091 (X'FFB')

Explanation: An unexpected condition occurred during the running of Language Environ-
ment condition management.

Reason codes:

X'01' (1) A GOTO was made by an enablement routine.

X'02' (2) Invalid return code from a language-specific event handler was received during
enablement processing.

X'03' (3) Language Environment condition management detected an implicit movement of
the resume cursor. Either a GOTO or move resume cursor should have been
used for resumption in a different stack frame.

X'04' (4) Invalid return code from a language-specific event handler was received.

X'05' (5) A program check was detected while Language Environment condition manager
was in control.

X'06' (6) A request to resume the application was not accepted. The Language Environ-
ment condition manager does not accept resumption requests with conditions,
such as abends.

X'07' (7) Invalid return code from a language-specific event handler was received during
stack frame processing.

X'08' (8) CEESGL callable service was attempting to signal a new condition. A control
information block could not be allocated for that condition.

X'09' (9) The CEEHDLR routine returned with an invalid feedback code.

X'0A' (10) The Language Environment library was unable to find a free control information
block for a new condition. This is a critical error.

X'0B' (11) The error count specified in the ERRCOUNT run-time option has been
exceeded.

X'0C' (12) Language Environment signaled a condition that could not be resumed. After a
resume took place, Language Environment again attempted to terminate by sig-
nalling an imminent termination. Another resume was attempted and caused an
abend.

X'0D' (13) An invalid return code from the Debug Tool was received.

X'0E' (14) An invalid attempt to populate an ISI with qualifying data was detected.

X'0F' (15) A condition token other than CEE000 was returned from a member event
handler. The feedback token resulted from a new condition being raised.

X'10' (16) A request to extend stack storage could not be honored. A fixed-size stack
might currently be in use.

X'11' (17) A request for library stack storage could not be completed.

X'12' (18) Stack storage was requested when storage management services were not
available.

X'13' (19) A request to extend stack storage could not be honored.

782 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 U4091 (X'FFB') N U4091 (X'FFB')

X'14' (20) After being informed of a new condition, the condition handler indicated an unre-
coverable error.

X'15' (21) The maximum depth of condition nesting specified in the DEPTHCONDLMT run-
time option was exceeded.

X'16' (22) The resume point was invalid.

X'17' (23) BXITA requested ABEND.

X'18' (24) ABEND without LIBVEC layer.

X'19' (25) A CIBH pointer was expected in HCOM_CIBH=0, but the field contained 0.

X'1A' (26) A PCQ pointer was expected in HCOM_PCQ=0, but the field contained 0.

X'1B' (27) No matching PCIBH was found because there was a logic error or the language
environment is corrupted.

X'1C' (28) No storage was available for PCIBH.

X'1D' (29) No storage was available for QDATA.

X'1E' (30) No storage was available for SigRetData.

X'1F' (31) An internal call to the MVS function BPX1SPM was not successful.

X'20' (32) An internal call to the MVS function BPX1PTR was not successful.

X'21' (33) An internal call to the MVS function BPX1SPB was not successful.

X'22' (34) CSRL16J tried unsuccessfully to return to the interrupt point for the signal
delivery.

X'23' (35) There was a logic error in Sig safing or the language environment is corrupted.

X'24' (36) There was an internal logic error or the language environment is corrupted.

X'25' (37) The alternate signal stack supplied by the application is full. Automatic expan-
sion is not available for alternal signal stacks.

X'26' (38) CEERSN_EMTYCIBH. No Language Environment condition information block
(CIB) was found to be in use.

X'28' (40) CEERSN_NOCIBH. The chain of Language Environment condition information
blocks (CIB) is empty.

| X'29'(41) The BPX1SIA callable service failed when Language Environment was trying to
| generate a signal.

| X'30' (42) An Internal error occurred in LE condition management when the OS/390
| CSRL16J service failed to resume the interrupted program. The return code
| from CSRL16J is loaded into register 8 at the time the ABEND is declared. See
| OS/390 MVS Programming: Assembler Services Reference for a description of
| these return codes.

| X'31' (43) An Internal error occurred in LE condition management when the RP instruction
| failed to resume the interrupted program.

| X'32' (44) The DBX user (or other user of BPX1PTR or PTRACE) tried to resume the
| application after a program check using an invalid value in register 4 or 13.
| When altering the resume registers after a program check using DBX, make
| sure that register 4 or 13 points to a valid stack frame for the current thread.

| X'33' (45) An Internal error occurred in LE condition management when trying to resume
| an application with an unknown DSA address in register 4 or 13.

Programmer Response: If this abend was caused by a user-written condition handler,
check the return codes provided to Language Environment condition manager.

Another source of this problem can be the use of CEEMRCR with a type_of_move '1' done
for a condition handler that is invoked for another condition handler.

System Action: Enclave terminated.

 Chapter 16. Language Environment Abend Codes 783

 U4092 (X'FFC') N U4093 (X'FFD')

U4092 (X'FFC')

Explanation: ESPIE or ESTAE issued this abend because control storage was overlaid.
Language Environment condition manager could not proceed.

Reason codes:

X'00' (0) SPIE/ESPIE routine was detected.

X'01' (1) STAE/ESTAE routine was detected.

X'02' (2) A CICS interface routine was detected.

Programmer Response: Determine why storage was overlaid.

System Action: Enclave terminated.

U4093 (X'FFD')

Explanation: Abend issued during initialization when errors were detected.

Reason codes:

X'04' (4) Storage management could not properly allocate the initial storage area.

X'08' (8) Language Environment control blocks could not be set up properly.

X'0C' (12) System not supported.

X'10' (16) The application's parameter list could not be processed correctly. The
parameter list might be invalid.

X'14' (20) Hardware not supported.

X'18' (24) An error occurred when attempting to process the options specified in the
application.

X'1C' (28) Stack management could not allocate stack and/or heap storage.

X'20' (32) Program management could not find a module that was to be loaded.

X'24' (36) When trying to load a module, program management encountered a
storage condition.

X'28' (40) Program management could not be initialized properly.

X'2C' (44) The Language Environment math library could not be initialized properly.

X'30' (48) Condition management could not be initialized properly.

X'34' (52) A language-specific event handler returned to initialization with a feedback
code, causing immediate termination.

X'38' (56) Vector initialization did not succeed.

X'3C' (60) The initial fixed-size stack overflowed.

X'40' (64) Process level ran out of storage.

X'44' (68) Enclave level ran out of storage.

X'48' (72) Thread level ran out of storage.

X'4C' (76) CAA pointer became corrupted.

X'50' (80) PCB pointer became corrupted.

X'54' (84) Assembler user exit malfunctioned.

X'58' (88) Get heap malfunctioned during initialization.

X'5C' (92) Anchor setup malfunctioned.

X'60' (96) The PLIST run-time option conflicts with the operating system type.

X'64' (100) The Language Environment anchor support was unavailable.

784 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 U4093 (X'FFD') N U4093 (X'FFD')

X'6C' (108) The routine was compiled with an unsupported release of a compiler.

X'70' (112) A load module did not contain a main procedure/function and was invoked
without Language Environment having been previously initialized.

X'74' (116) The primary entry point routine of the root load module was found with
Language Environment V1R2 CEESTART, but the rest of the routines in
the load module were not linked with Language Environment V1R2 (or
later) library.

X'7C' (124) An unsupported parameter style was detected.

X'80' (128) Too many files, fetched procedures, controlled variables in a PL/I routine,
or assembler use of external dummy sections caused the total length of
the PRV to exceed the maximum limit of 4096 bytes.

X'84' (132) Library routines required for CICS support are not defined in the CICS
CSD. See OS/390 Language Environment Customization for the library
routines required for CICS support. If running a PL/I application with the
shared library, see PL/I for MVS & VM Compiler and Run-Time Migration
Guide for instructions on enabling shared library support under Language
Environment.

X'88' (136) Reinitialization feature is not supported in PL/I-defined preinitialization
support.

X'8C' (140) MVS has not installed an anchor pointer; therefore, no anchor support is
available.

X'90' (144) Condition management for MVS could not be initialized.

X'94' (148) A language-specific event handler returned to thread initialization with a
return code, causing immediate termination.

X'98' (152) A bad return code was received from the member thread initialization exit,
causing immediate termination.

X'A0' (160) Re-entry at the top of an existing Language Environment run-time environ-
ment from a non-Language Environment-conforming driver is attempted at
a different Link Level than that in effect when the Language Environment
run-time environment was first created. Link level is the count of Link or
CMSCALL SVCs currently active within the task. Following is an example
of when this can happen:

1. An assembler program calls IGZERRE with the initialization call.

2. The assembler program calls a COBOL program using LOAD and
BALR.

3. The assembler program calls a COBOL program using a LINK SVC.
When the LINK SVC is done to the COBOL program, abend U4093
will occur.

This abend can also happen when the RTEREUS run-time option, or calls
to ILBOSTP0 or IGZERRE , are used in an IMS message processing
region and all of the programs that receive control from IMS are not pre-
loaded.

X'A4' (164) The service routine vector address was non-zero when using request
modifier value 4 in the Extended Parameter List (EPL) for the INIT func-
tion of the Pre-Init Compatibility Interface (PICI). This is not supported.

X'A8' (168) Pre-Init Compatibility Interface (PICI) initialization was attempted while a
Unix System Services medium weight process was in effect. This is not
supported.

X'AC' (172) POSIX(ON) run-time option in a nested enclave is not supported.

| X'B0' (176) An XPLINK application cannot be started while LRR is active. There is no
| support for LRR in an XPLINK environment.

 Chapter 16. Language Environment Abend Codes 785

 U4094 (X'FFE') N U4094 (X'FFE')

| X'B4' (180) An XPLINK application cannot be started while RTLS is active. There is
| no support for RTLS in an XPLINK environment.

| X'B8' (184) An XPLINK application cannot be started while SORT is active. There is
| no support for SORT in an XPLINK environment.

| X'BC' (188) An XPLINK application cannot be started while PIPI is active. There is no
| support for PIPI in an XPLINK environment.

| X'C0' (192) An XPLINK application cannot be started while CICS is active. There is no
| support for CICS in an XPLINK environment.

| X'C4' (196) An XPLINK application cannot be started in a nested child enclave whose
| parent enclave is a non-XPLINK environment.

| X'C8' (200) The entry point of the XPLINK-compiled implicit caller of a DLL function
| could not be found. This is an internal error.

| X'CC' (204) The Writeable Static Area (WSA) of the XPLINK-compiled implicit caller of
| a DLL function could not be found. This is an internal error.

| X'D0' (208) There was an internal error in the format of the Import Export Table (IET)
| of the XPLINK-compiled implicit caller of a DLL function.

X'3E8'–X'4E7' (1000–1255) Unable to load event handler for a high-level language. The
last 3 digits indicate the facility ID of the component that did not load cor-
rectly.

| X'3EB'(1003) The load of CELHV003 failed. If the XPLINK(ON) run-time option is being
| used, add 'CEE.SCEERUN2' to the load module concatenation.

X'7D0' (2000) For a Fortran application, a call to CEEARLU that the Language Environ-
ment CAA does not exist.

Programmer Response: See system programmer.

System Action: Enclave terminated.

U4094 (X'FFE')

Explanation: An abend was issued during termination, when errors were detected.

Reason codes:

X'04' (4) An invalid parameter to termination services was discovered.

X'08' (8) A language-specific event handler returned an invalid return code.

X'0C' (12) A language-specific event handler returned to termination with a return code,
causing immediate termination.

X'10' (16) Condition management could not properly terminate.

X'14' (20) Program management could not properly terminate.

X'18' (24) Storage management could not properly free stack and/or heap storage. This
might be due to writing beyond storage.

X'1C' (28) Storage management could not properly free the initial storage allocation.

X'20' (32) The user stack was unable to be collapsed using GOTO.

X'24' (36) The fixed-size termination stack overflowed.

X'28' (40) An unhandled condition of severity 2 or greater occurred in a created enclave
with TRAP(OFF) set in the creating enclave. Under CMS, this abend is issued
when a severity 2 or greater condition is unhandled in a nested enclave, or a
debugging tool has terminated the enclave at the user's request.

In addition to TRAP(OFF), this abend can also result when a parent enclave
save area chain cannot be located, even though two enclaves existed, thus
causing an attempt to propagate the failing condition. When the parent enclave

786 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 U4095 (X'FFF') N U4095 (X'FFF')

received control, the save area chain was not intact, and the ABEND was
percolated.

An example of this is a COBOL program that is invoked without a LINK SVC
and with a reusable run-time environment. On return from the COBOL program,
the Language Environment enclave still exists, because of the reusable environ-
ment. When a second COBOL program is invoked by a LINK SVC, any Lan-
guage Environment attempt to create a second enclave does not succeed. In an
attempt to propagate this error condition to the parent enclave, Language Envi-
ronment issues an abend. When the first enclave is not in the current save area
chain, Language Environment percolates this abend. See OS/390 Language
Environment Programming Guide for information about nested enclaves.

X'2C' (44) Termination requested during termination.

X'30' (48) Condition management for MVS could not properly terminate.

X'34' (52) The MVS environment could not properly terminate.

X'38' (56) A language-specific event handler returned to thread termination with a return
code, causing immediate termination.

X'3C' (60) An internal logic error occurred during recursive termination handling.

X'40' (64) An internal logic error occurred during forced thread termination handling.

X'44' (68) An internal logic error occurred because termination was not expected.

X'48' (72) During termination, library latches were being held and could not be released,
causing immediate termination.

X'4C' (76) Library latch services have received an unrecognized latch request, causing
immediate termination.

X'4E' (78) A language-specific event handler returned to thread termination with a return
code, causing immediate termination.

Programmer Response: See system programmer.

System Action: Enclave terminated.

U4095 (X'FFF')

Explanation: An abend was issued as a response to the fatal return code of a Language
Environment-conforming language.

Reason codes:

<X'12C' (<300) The reason code is set to the Language Environment-conforming language
ID.

X'12C' (300) The condition was provoked from a user handler attention routine.

X'12D' (301) The condition was provoked from a user handler routine.

Programmer Response: See system programmer.

System Action: Enclave terminated.

 Chapter 16. Language Environment Abend Codes 787

788 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 2100 (X'834') N 2104 (X'838')

Chapter 17. C Abend and Reason Codes and SPC Messages

| This chapter is divided into three sections. The first section lists the C System Pro-
| gramming abend codes and explanations. The hexadecimal equivalents of the
| abend codes are shown in parentheses. The next section lists the System Pro-
| gramming reason codes and explanations. Reason codes are shown in
| hexadecimal with the decimal equivalent in parentheses. The final section lists
| System Programming C Messages.

C System Programming Abend Codes

2100 (X'834')

Explanation: An internal request for more storage was unsuccessful.

Programmer Response: Enlarge the address space to provide more storage.

System Action: The routine terminates.

2101 (X'835')

Explanation: An internal request to free storage was unsuccessful, probably as a result of
corrupted storage.

Programmer Response: Search for possible causes of corrupted storage.

System Action: The routine terminates.

2102 (X'836')

Explanation: The stack's home segment could not be found, indicating a corrupted stack.

Programmer Response: Search for the cause of the corrupted storage in the user routine.

System Action: The routine terminates.

2103 (X'837')

Explanation: An error occurred when attempting to load the C library.

Programmer Response: Ensure the AD/Cycle C library is available to your routine. Make
sure that the modules CEEEV003 or EDCZV2 are available for the routine. The system pro-
grammer or the person who installed the product should be able to provide the location of
the library and your routine can access it.

System Action: The routine terminates and on MVS, a CSV code and message appears in
the job. Check the message to see which C library module was not available.

2104 (X'838')

Explanation: An error occurred during heap allocation. Using EDCXSTRX, a heap was
supplied with a size smaller than the specified minimum.

Programmer Response: Correct the heap size in the calling routine.

System Action: The routine terminates.

 Copyright IBM Corp. 1991, 2000 789

 2105 (X'839') N 4000 (X'FA0')

2105 (X'839')

Explanation: An error occurred when CMSCALL or SVC 202 was issued.

Programmer Response: Consult with your system programmer and correct the problem as
a VM/CMS or System Programming Facilities problem.

System Action: The routine terminates.

2106 (X'83A')

Explanation: A routine used with EDCXSTRT was compiled with the RENT option, but
EDCRCINT was not included in the load module. Initialization of writable static was unsuc-
cessful.

System Action: The routine terminates.

2107 (X'83B')

Explanation: TRAP(ON) was requested through #pragma runopts but EDCXABRT was not
included in the load module.

Programmer Response: Rebuild the load module with EDCXABRT.

System Action: The routine terminates.

2108 (X'83C')

Explanation: A routine built with EDCXSTRX attempted to terminate normally, but the ter-
mination routines discovered the heap needed to be extended earlier. All heap storage
needs to be supplied by the caller of EDCXSTRX.

Programmer Response: Correct the calling routine to provide sufficient heap storage to
EDCXSTRX.

System Action: The routine terminates.

2052 (X'804')

Explanation: The system programming application that is accessing the C run-time library
is running AMODE=24. However, the C run-time library was installed above the 16M line,
which the application cannot address.

Programmer Response: Ensure that the AMODE of the application matches that of the C
run-time library. If you must run AMODE=24, the C run-time library must be installed below
the line. Otherwise, relink your application to be AMODE=31.

System Action: The application terminates.

4000 (X'FA0')

Explanation: An abend occurred during the handling of a prior abend.

Programmer Response: Specify TRAP(OFF) in #pragma runopts, recompile and rerun the
routine to isolate the cause of the original abend, and correct the cause of the original
abend.

System Action: The routine terminates.

790 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 X'7011' (28689) N X'7207' (29191)

C System Programming Reason Codes

X'7011' (28689)

Explanation: A failure occurred during the CMS PIPE command issued to initialize the
environment variables from GLOBALV. This is most likely caused because the application
being initialized was invoked by a stage of the CMS PIPE command and illegal recursion
occurred.

X'7012' (28690)

Explanation: An error occurred while initializing the environment variables from GLOBALV.
This may have occurred because the array of environment variable pointers was corrupted.

X'7201' (29185)

Explanation: An error occurred during initialization.

X'7202' (29186)

Explanation: An error occurred during termination.

X'7203' (29187)

Explanation: An error occurred while extending the stack.

X'7204' (29188)

Explanation: An error occurred during longjmp/setjmp.

X'7205' (29189)

Explanation: Initialization of writable static had not been performed. The routine
EDCRCINT must be included in your module if you use the RENT compiler option.

X'7206' (29190)

Explanation: The EDCXABRT module was not explicitly included at link-edit time.

X'7207' (29191)

Explanation: A heap was required, but the initialization had been requested without initial
heap.

System Programming C Messages
The System Programming C (SPC) messages have the following format:

Message Format: EDCKxxx text

EDCK Indicates message is generated by the C library when running under CICS

xxx Error message number

The messages that can be issued are as follows:

 Chapter 17. C Abend and Reason Codes and SPC Messages 791

 EDCK001 N EDCK006

EDCK001 ABEND=8091 operation exception.

Explanation: An attempt has been made to execute an instruction with an invalid operation
code. The operation code could be unassigned, or the instruction with that operation code
might not be installed on the CPU.

Programmer Response: Determine the reason for the operation exception in the user
code and correct.

System Action: The program terminates.

EDCK002 ABEND=8092 privileged operation exception.

Explanation: An attempt had been made to execute a privileged instruction in the problem
state.

Programmer Response: Determine the reason for the privileged operation exception in the
user code and correct.

System Action: The program terminates.

EDCK003 ABEND=8093 execute exception.

Explanation: An attempt had been made to execute an EXECUTE instruction.

Programmer Response: Determine the reason for the execute exception in the user code
and correct.

System Action: The program terminates.

EDCK004 ABEND=8094 protection exception.

Explanation: An attempt had been made to access data that was protected against this
type of reference or to store data in protected storage, such as a low address # - 511.

Programmer Response: Determine the reason for the protection exception in the user
code and correct.

System Action: The program terminates.

EDCK005 ABEND=8095 addressing exception.

Explanation: An attempt was made to reference a main storage location that is not avail-
able in the configuration.

Programmer Response: Determine the reason for the addressing exception in the user
code and correct.

System Action: The program terminates.

EDCK006 ABEND=8096 specification exception.

Explanation: An alignment error in the operands of an instruction or an error in the specifi-
cation of the operands has occurred (that is, an odd-numbered register was specified when
an even-numbered register was expected).

Programmer Response: Determine the reason for the specification exception in the user
code and correct.

System Action: The program terminates.

792 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 EDCK007 N EDCK017

EDCK007 ABEND=8097 data exception.

Explanation: An attempt had been made to process packed decimal data that is not in the
correct format.

Programmer Response: Determine the reason for the data exception in the user code and
correct.

System Action: The program terminates.

EDCK008 ABEND=0220 zero divide.

Explanation: An attempt had been made to execute an instruction in which the value of
zero has been used as the divisor of a division operation, or an overflow condition has
occurred during a conversion to binary.

Programmer Response: Determine the reason for the zero divide in the user code and
correct.

System Action: The program terminates.

EDCK009 ABEND=0620 overflow.

Explanation: The OVERFLOW condition occurred when the magnitude of a floating-point
number exceeded the supported maximum.

Programmer Response: Determine the reason for the overflow in the user code and
correct.

System Action: The program terminates.

EDCK010 The signal SIGFPE has been raised.

Explanation: The routine issued a raise(SIGFPE) under default conditions.

Programmer Response: None.

System Action: The program terminates.

EDCK011 The signal SIGILL has been raised.

Explanation: The routine issued a raise(SIGILL) under default conditions.

Programmer Response: None.

System Action: The program terminates.

EDCK012 The signal SIGSEGV has been raised.

Explanation: The routine issued a raise(SIGSEGV) under default conditions.

Programmer Response: None.

System Action: The program terminates.

EDCK017 ABEND=0320 fixed or decimal overflow.

Explanation: The overflow condition occurred when the magnitude of a fixed or decimal
number exceeds the supported maximum.

Programmer Response: Determine the reason for the fixed or decimal overflow in the user
code and correct.

System Action: The program terminates.

 Chapter 17. C Abend and Reason Codes and SPC Messages 793

794 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 11000 N 11040

Chapter 18. Return Codes to CICS

When Language Environment detects an error and Language Environment is not
fully initialized or unable to generate a message, the component of Language Envi-
ronment in charge generates a return code. The return code passes from the Lan-
guage Environment component to CICS. CICS returns the return code to the
system console. The COBOL component also sends a message that precedes the
return code to the system console.

Language Environment Return Codes

11000

Explanation: Invalid parameters passed from CICS to Language Environment for the parti-
tion (region) initialization call.

Programmer Response: This is most likely an internal error in CICS or Language Environ-
ment.

System Action: CICS continues system initialization with Language Environment inactive.

11010

Explanation: Storage could not be acquired by Language Environment to initialize in the
CICS region.

Programmer Response: Increase the size of the CICS region using the DSASIZE SIT
parameter.

System Action: CICS continues system initialization with Language Environment inactive.

11020

Explanation: Unable to load Language Environment modules in order to initialize Language
Environment for the CICS region.

Programmer Response: Make sure the CSD definitions are correct for Language Environ-
ment. Also, make sure that the CICS region size is large enough to run Language Environ-
ment.

System Action: CICS continues system initialization with Language Environment inactive.

11030

Explanation: Language Environment partition initialization did not succeed in a language
support module.

Programmer Response: Language Environment can write other messages to the opera-
tors console explaining the cause of the malfunction. If there are none, this is more than
likely an internal error in Language Environment.

System Action: CICS continues system initialization with Language Environment inactive.

11040

Explanation: An internal abend has occurred during Language Environment initialization for
the CICS region.

Programmer Response: There should be a CEE1000S message written to the operators
console describing the abend code and reason code for the abend. See Chapter 16, “Lan-
guage Environment Abend Codes” on page 775 for more information.

System Action: CICS continues system initialization with Language Environment inactive.

 Copyright IBM Corp. 1991, 2000 795

 11100 N 11150

11100

Explanation: Invalid parameters passed from CICS to Language Environment for the parti-
tion (region) termination call.

Programmer Response: This is most likely an internal error in CICS or Language Environ-
ment.

System Action: CICS continues system termination.

11110

Explanation: Unable to release Language Environment modules during partition (region)
termination.

Programmer Response: This is most likely an internal error in Language Environment.

System Action: CICS continues system termination.

11120

Explanation: Unable to free storage acquired at partition (region) initialization during parti-
tion (region) termination.

Programmer Response: This is most likely an internal error in Language Environment.

System Action: CICS continues system termination.

11130

Explanation: Partition termination did not succeed in a language support module.

Programmer Response: This is most likely an internal error in Language Environment.

System Action: CICS continues system termination.

11140

Explanation: Language Environment could not release a CEEEVnnn module during parti-
tion (region) termination.

Programmer Response: This is most likely an internal error in Language Environment.

System Action: CICS continues system termination.

Explanation: Invalid anchor vector.

Programmer Response: Most likely an internal error in CICS or Language Environment.

System Action: CICS initialization will fail.

11150

Explanation: An internal abend occurred during Language Environment termination for the
CICS region.

Programmer Response: There should be a CEE1000S message in the operators console
describing the abend code and reason code for the abend. See Chapter 16, “Language
Environment Abend Codes” on page 775 for more information.

System Action: CICS continues system termination.

796 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 12000 N 12130

12000

Explanation: Invalid parameters passed from CICS to Language Environment for the
thread initialization call.

Programmer Response: This is most likely an internal error in CICS or Language Environ-
ment.

System Action: CICS abnormally terminates the transaction with abend code AEC7.

12020

Explanation: Preallocated storage was expected by Language Environment from CICS for
the thread work area, but was not supplied.

Programmer Response: This is most likely an internal error in CICS or Language Environ-
ment.

System Action: CICS abnormally terminates the transaction with abend code AEC7.

12030

Explanation: Thread initialization did not succeed in a language support module.

Programmer Response: This is most likely an internal error in Language Environment.

System Action: CICS abnormally terminates the transaction with abend code AEC7.

12100

Explanation: Invalid parameters passed from CICS to Language Environment for the
thread termination call.

Programmer Response: This is most likely an internal error in CICS or Language Environ-
ment.

System Action: CICS continues with termination of the transaction.

12110

Explanation: Thread termination was called before all run units in the thread were termi-
nated by calls to run unit termination.

Programmer Response: This is most likely an internal error in CICS or Language Environ-
ment.

System Action: CICS continues with termination of the transaction.

12120

Explanation: An error occurred while trying to free storage for language thread work areas
during thread termination.

Programmer Response: This is most likely an internal error in Language Environment.

System Action: CICS continues with termination of the transaction.

12130

Explanation: Thread termination did not succeed in a language support module.

Programmer Response: This is most likely an internal error in Language Environment.

System Action: CICS continues with termination of the transaction.

 Chapter 18. Return Codes to CICS 797

 13000 N 13060

13000

Explanation: Invalid parameters passed from CICS to Language Environment for the run
unit initialization call.

Programmer Response: This is most likely an internal error in CICS or Language Environ-
ment.

System Action: CICS abnormally terminates the transaction with abend code AEC8.

13010

Explanation: There was not enough preallocated storage by CICS to Language Environ-
ment to complete initialization for all languages in the application routine.

Programmer Response: This is most likely an internal error in Language Environment.

System Action: CICS abnormally terminates the transaction with abend code AEC8.

13020

Explanation: The mix of languages in the application load module is not supported by this
release of Language Environment.

Programmer Response: See OS/390 Language Environment Programming Guide for
information on supported languages and ILC.

System Action: CICS abnormally terminates the transaction with abend code AEC8.

13030

Explanation: Run unit initialization did not succeed in a language support module.

Programmer Response: This is most likely an internal error in Language Environment.

System Action: CICS abnormally terminates the transaction with abend code AEC8.

13040

Explanation: An invalid application routine argument list passed by CICS to Language
Environment during run unit initialization.

Programmer Response: This is most likely an internal error in CICS or Language Environ-
ment.

System Action: CICS abnormally terminates the transaction with abend code AEC8.

13050

Explanation: A member language support module is not available for a language in the
application. Initialization cannot be performed.

Programmer Response: Make sure the CEEEVnnn language support modules of Lan-
guage Environment are defined in the CSD for all languages in the application programs.

System Action: CICS abnormally terminates the transaction with abend code AEC8.

13060

Explanation: Allocation of storage for a language thread work area did not succeed.

Programmer Response: Increase the size of the CICS region using the DSASIZE SIT
parameter.

System Action: CICS abnormally terminates the transaction with abend code AEC8.

798 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 13100 N 13220

13100

Explanation: Invalid parameters passed from CICS to Language Environment for the run
unit termination call.

Programmer Response: This is most likely an internal error in CICS or Language Environ-
ment.

System Action: CICS continues with termination of the application.

13110

Explanation: The thread token passed by CICS to Language Environment for run unit ter-
mination is invalid.

Programmer Response: This is most likely an internal error in CICS or Language Environ-
ment.

System Action: CICS continues with termination of the application.

13130

Explanation: Run unit termination did not succeed in a language support module.

Programmer Response: This is most likely an internal error in Language Environment.

System Action: CICS continues with termination of the application.

13140

Explanation: Unable to free storage for Language Environment control blocks.

Programmer Response: This is most likely an internal error in Language Environment.

System Action: CICS continues with termination of the application.

13200

Explanation: Invalid parameters passed from CICS to Language Environment for the run
unit invocation call.

Programmer Response: This is most likely an internal error in CICS or Language Environ-
ment.

System Action: CICS abnormally terminates the transaction with abend code AEC9.

13210

Explanation: Preallocated storage was expected by Language Environment from CICS for
the run unit work area, but was not supplied.

Programmer Response: This is most likely an internal error in CICS or Language Environ-
ment.

System Action: CICS abnormally terminates the transaction with abend code AEC9.

13220

Explanation: Spool files for standard in, standard out, and standard error could not be
opened.

Programmer Response: This is most likely an internal error in Language Environment.

System Action: CICS abnormally terminates the transaction with abend code AEC9.

 Chapter 18. Return Codes to CICS 799

 13230 N 13330

13230

Explanation: Run unit invocation did not succeed in a language support module.

Programmer Response: This is most likely an internal error in Language Environment.

System Action: CICS abnormally terminates the transaction with abend code AEC9.

13240

Explanation: An invalid application routine argument list passed by CICS during run unit
invocation.

Programmer Response: This is most likely an internal error in CICS or Language Environ-
ment.

System Action: CICS abnormally terminates the transaction with abend code AEC9.

13250

Explanation: A language support module was not available in order to invoke the applica-
tion.

Programmer Response: Make sure the CEEEVnnn language support modules of Lan-
guage Environment are defined in the CSD for all languages in the application routines.

System Action: CICS abnormally terminates the transaction with abend code AEC9.

13300

Explanation: Invalid parameters passed from CICS to Language Environment for the run
unit end invocation call.

Programmer Response: This is most likely an internal error in CICS or Language Environ-
ment.

System Action: CICS continues with termination of the application.

13310

Explanation: CICS passed an invalid thread token during run unit end invocation.

Programmer Response: This is most likely an internal error in CICS or Language Environ-
ment.

System Action: CICS continues with termination of the application.

13320

Explanation: CICS passed an invalid routine termination block during run unit end invoca-
tion.

Programmer Response: This is most likely an internal error in CICS or Language Environ-
ment.

System Action: CICS continues with termination of the application.

13330

Explanation: Unable to close spool files for standard in, standard out, and standard error.

Programmer Response: This is most likely an internal error in Language Environment.

System Action: CICS continues with termination of the application.

800 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 15000 N 15060

15000

Explanation: Invalid parameters passed from CICS to Language Environment for the
establish ownership call.

Programmer Response: This is most likely an internal error in CICS or Language Environ-
ment.

System Action: CICS abnormally terminates the transaction with abend code APCS.

15010

Explanation: Initialization could not be performed for a routine because the language-
specific initialization routines of Language Environment were not available for the language.

Programmer Response: Make sure the CEEEVnnn language support modules of Lan-
guage Environment are defined in the CSD for all languages in the application routines.

System Action: CICS abnormally terminates the transaction with abend code APCS.

15020

Explanation: The language of the main routine could not be determined. Initialization could
not be performed for the routine.

Programmer Response: The routine is probably link-edited incorrectly.

System Action: CICS abnormally terminates the transaction with abend code APCS.

15030

Explanation: Language Environment establish ownership did not succeed in a language
support module.

Programmer Response: This is most likely an internal error in CICS or Language Environ-
ment.

System Action: CICS abnormally terminates the transaction with abend code APCS.

15040

Explanation: The application load module does not contain a main routine.

Programmer Response: Make sure there is a main routine in the application load module.

System Action: CICS abnormally terminates the transaction with abend code APCS.

15050

Explanation: The AMODE of the routine is 24, but the routine contains C routines that
must run with AMODE(31).

Programmer Response: Relink-edit the routine AMODE(31).

System Action: CICS abnormally terminates the transaction with the abend code APCS.

15060

Explanation: The application provided is a program object with deferred classes which can
not be supported with the current level of CICS.

Programmer Response: Build the application using the Language Environment Prelinker
Utility.

System Action: CICS abnormally terminates the transaction with the abend code APCS.

 Chapter 18. Return Codes to CICS 801

 16000 N 17040

16000

Explanation: Invalid parameters passed from CICS to Language Environment for the deter-
mine working storage call.

Programmer Response: This is most likely an internal error in CICS or Language Environ-
ment.

System Action: CICS continues running the transaction under Execution Diagnostic Facility
(EDF).

16030

Explanation: Determine working storage call did not succeed in a language support
module.

Programmer Response: This is most likely an internal error in Language Environment.

System Action: CICS continues running the transaction under Execution Diagnostic Facility
(EDF).

16040

Explanation: Language Environment could not determine the working storage address and
length for a routine.

Programmer Response: This is most likely an internal error in Language Environment.

System Action: CICS continues running the transaction under Execution Diagnostic Facility
(EDF).

17000

Explanation: Invalid parameters passed from CICS to Language Environment for the
perform goto call.

Programmer Response: This is most likely an internal error in CICS or Language Environ-
ment.

System Action: CICS abnormally terminates the transaction with abend code APC2.

17030

Explanation: Perform goto cannot be completed because a goto-out-of-block is not sup-
ported for the language.

The application routine is a mix of languages. One routine is performing an EXEC CICS
HANDLE with the LABEL option and calling another routine that is written in a language that
does not support EXEC CICS HANDLE with LABEL. A condition occurred that caused CICS
to try to branch to the handle label in the caller.

Programmer Response: Change the logic of the routine. Try using EXEC CICS HANDLE
with the PROGRAM option instead of EXEC CICS HANDLE with the LABEL option.

System Action: CICS abnormally terminates the transaction with abend code APC2.

17040

Explanation: Errors occurred while trying to perform the goto-out-of-block on behalf of the
perform goto call by CICS.

Programmer Response: This is most likely an internal error in Language Environment.

System Action: CICS abnormally terminates the transaction with abend code APC2.

802 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 17060 N 18000

17060

Explanation: An invalid stack frame chain was detected while trying to perform a goto-out-
of-block on behalf of the perform goto call by CICS.

Programmer Response: This is most likely an internal error in Language Environment.

System Action: CICS abnormally terminates the transaction with abend code APC2.

18000

Explanation: Invalid parameters passed from CICS to Language Environment for the short
on storage alert call.

Programmer Response: This is most likely an internal error in CICS or Language Environ-
ment.

System Action: CICS continues to attempt to free storage in response to the short of
storage condition.

C Return Codes

31923

Explanation: Run units terminated out of sequence.

Programmer Response: If this problem persists, it is most likely an internal error. Contact
IBM service personnel.

System Action: CICS abnormally terminates the transaction.

32112

Explanation: All run units have not been terminated before process termination.

Programmer Response: If this problem persists, it is most likely an internal error. Contact
IBM service personnel.

System Action: CICS abnormally terminates the transaction.

32820

Explanation: Mixed-language module unsupported for pre-Language Environment C appli-
cations.

Programmer Response: Recompile using IBM C compiler.

System Action: CICS abnormally terminates the transaction.

32821

Explanation: C not present in language signature.

Programmer Response: Recompile using IBM C compiler.

System Action: CICS abnormally terminates the transaction.

32822

Explanation: Identify module entry point (event 28) was issued for a Language Environ-
ment conforming entry point when a non-Language Environment conforming entry point was
expected.

Programmer Response: If this problem persists, it is most likely an internal error. Contact
IBM service personnel.

System Action: CICS abnormally terminates the transaction.

 Chapter 18. Return Codes to CICS 803

 51401 N 52801

COBOL Return Codes

51401

Explanation: Control returned from the application to the COBOL interface routine.

Programmer Response: Contact IBM service personnel.

System Action: CICS continues with termination of the application.

52801

Explanation: A VS COBOL II program does not have the required CSECTs link-edited with
the load module.

Programmer Response: Make sure that the VS COBOL II program has been link-edited
correctly with no unresolved references for IGZEBST. Additionally, if the VS COBOL II
program was link-edited with Language Environment, there must be no unresolved refer-
ences for CEESTART or CEEBETBL.

System Action: CICS abnormally terminates the transaction.

PL/I Return Codes

101010

Explanation: CICS GETMAIN command did not succeed during PL/I partition initialization.

Programmer Response: Contact IBM service personnel.

System Action: CICS continues system initialization with Language Environment PL/I inac-
tive.

101020

Explanation: CICS LOAD for IBMRSAP did not succeed during PL/I partition initialization.

Programmer Response: Make sure the module IBMRSAP is defined in CSD. Make sure
the module IBMRSAP is located in DFHRPL.

System Action: CICS continues system initialization with Language Environment PL/I inac-
tive.

101030

Explanation: CICS LOAD did not succeed when loading one of the following shared library
modules, IBMBPSMA or IBMBPSLA.

Programmer Response: If the shared library compatibility support is requested, both
IBMBPSMA and IBMBPSLA should be defined in CSD and located in DFHRPL.

System Action: CICS continues system initialization with Language Environment PL/I inac-
tive.

101110

Explanation: CICS FREEMAIN command did not succeed during PL/I partition termination.

Programmer Response: Contact IBM service personnel.

System Action: CICS continues system termination.

804 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 101120 N 105210

101120

Explanation: CICS RELEASE for IBMRSAP did not succeed during PL/I partition termi-
nation.

Programmer Response: This is most likely an internal error in CICS or Language Environ-
ment. Contact IBM service personnel.

System Action: CICS continues system termination.

105210

Explanation: Total length of PRV exceeded the specified maximum 4096 bytes.

Programmer Response: Too many files, fetched procedures, CONTROLLED variables, or
assembler use of PRV caused the total length of PRV to exceed the maximum limit of 4096
bytes. Try to reduce PRV usage.

System Action: CICS abnormally terminates the transaction with abend code APCS.

 Chapter 18. Return Codes to CICS 805

806 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 Part 4. Appendixes

 Copyright IBM Corp. 1991, 2000 807

808 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Appendix A. Diagnosing Problems with Language
Environment

This appendix provides information for diagnosing problems in the Language Envi-
ronment product. It helps you determine if a correction for a product failure similar
to yours has been previously documented. If the problem has not been previously
reported, it tells you how to open a Problem Management Record (PMR) to report
the problem to IBM, and if the problem is with an IBM product, what documentation
you need for an Authorized Program Analysis Report (APAR).

 Diagnosis Checklist
Step through each of the items in the diagnosis checklist below to see if they apply
to your problem. The checklist is designed to either solve your problem or help you
gather the diagnostic information required for determining the source of the error. It
can also help you confirm that the suspected failure is not a user error; that is, it
was not caused by incorrect usage of the Language Environment product or by an
error in the logic of the routine.

1. If your failing application contains programs that were changed since they last
ran successfully, review the output of the compile or assembly (listings) for any
unresolved errors.

2. If there have not been any changes in your applications, check the output (job
or console logs, CICS transient (CESE) queues) for any messages from the
failing run.

3. Check the message prefix to identify the system or subsystem that issued the
message. This can help you determine the cause of the problem. Following are
some of the prefixes and their respective origins.

EDC The prefix for C/C++ messages. The following series of messages are
from the C/C++ run-time component of Language Environment: 5000
(except for 5500, which are from the DSECT utility), 6000, and 7000.

IGZ The prefix for messages from the COBOL run-time component of Lan-
guage Environment.

FOR The prefix for messages from the Fortran run-time component of Lan-
guage Environment.

IBM The prefix for messages from the PL/I run-time component of Language
Environment.

CEE The prefix for messages from the common run-time component of Lan-
guage Environment.

4. For any messages received, check for recommendations in the “Programmer
Response” sections of the messages in this manual.

5. Verify that abends are caused by product failures and not by program errors.
See the appropriate chapters in this manual for a list of Language Environment-
related abend codes.

6. Your installation may have received an IBM Program Temporary Fix (PTF) for
the problem. Verify that you have received all issued PTFs and have installed
them, so that your installation is at the most current maintenance level.

 Copyright IBM Corp. 1991, 2000 809

7. The preventive service planning (PSP) bucket, an online database available to
IBM customers through IBM service channels, gives information about product
installation problems and other problems. Check to see whether it contains
information related to your problem.

8. Narrow the source of the error.

| � If a Language Environment dump is available, locate the traceback in the
Language Environment dump for the source of the problem.

| � If a system dump is taken on MVS, use the IPCS verbexit LEDATA with the
| CEEDUMP option to format the traceback. Check the traceback for the
| source of the problem. Refer to Chapter 3, “Using Language Environment
| Debugging Facilities” on page 37 for information on how to generate and
| use a Language Environment or system dump to isolate the cause of the
| error.

� If a system dump is taken on VM, follow the save area chain to find out the
name of the failing module and whether IBM owns it. See “Locating the
Name of the Failing Routine in a System Dump on VM” for information on
finding the routine name.

9. After you identify the failure, consider writing a small test case that re-creates
the problem. The test case could help you determine whether the error is in a
user routine or in the Language Environment product. Do not make the test
case larger than 75 lines of code. The test case is not required, but it could
expedite the process of finding the problem.

If the error is not a Language Environment failure, refer to the diagnosis proce-
dures for the product that failed.

10. Record the conditions and options in effect at the time the problem occurred.
Compile your program with the appropriate options to obtain an assembler
listing and data map. If possible, obtain the linkage editor output listing, or the
binder if running on MVS, or the LOAD/GENMOD map if running on VM. Note
any changes from the previous successful compilation or run. For an explana-
tion of compiler options, refer to the compiler-specific programming guide.

11. If you are experiencing a no-response problem, try to force a dump. Under VM
in the CP mode, enter the DUMP command. Under other systems, CANCEL
the program with the dump option.

12. Record the sequence of events that led to the error condition and any related
programs or files. It is also helpful to record the service level of the compiler
associated with the failing program.

| Locating the Name of the Failing Routine in a System Dump on VM
If a system dump is taken, follow the save area chain to find out the name of the
failing routine and whether IBM owns it. Following are the procedures for locating
the name of the failing routine, which is the primary entry point name.

1. Find the entry point associated with the current save area. The entry point
address (EPA), located in the previous save area at displacement X'10',
decimal 16, points to it.

2. Determine the entry point type, of which there are four:

810 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

For routines with Language Environment-conforming and C/C++ entry points,
Language Environment provides program prolog areas (PPAs). PPA1 contains
the entry point name and the address of the PPA2; PPA2 contains pointers to
the timestamp, where release level keyword information is found, and to the
PPA1 associated with the primary entry point of the routine.

If the entry point type of the failing routine is Language
Environment-conforming, go to step 3.

If the entry point type is C/C++, go to step 5 on page 815.

If the entry point type is nonconforming, go to step 6 on page 815.

3. If the entry point type is Language Environment-conforming, find the entry point
name for the Language Environment or COBOL program.

a. Use an offset of X'C' from the entry point to locate the address of the
PPA1.

b. In the PPA1, locate the offset to the length of the name. If OPLINK, then
multiply the offset by 2 to locate the actual offset to the length of the name.

c. Add this offset to the PPA1 address to find the halfword containing the
length of the name, followed by the entry point name.

The entry point name appears in EBCDIC, with the translated version in the
right-hand margin of the system dump.

4. Find the Language Environment or COBOL program name.

a. Find the address of the PPA2 at X'04' from the start of the PPA1.

b. Find the address of the compilation unit’s primary entry point at X'10' in
the PPA2.

c. Find the entry point name associated with the primary entry point as
described above. The primary entry point name is the routine name.

Figure 112 on page 812 illustrates the non-XPLINK Language Environment-
conforming PPA1 and PPA2.

Entry point type is... If...

Language Environment con-
forming

The entry point plus 4 is X'00C3C5C5'.

Language Environment con-
forming OPLINK

The entry point plus 4 is X'01C3C5C5'. OPLINK linkage
conventions are used.

C/C++ The entry point plus 5 is X'CE'.

Nonconforming The entry point is neither of the above. Nonconforming
entry points are for routines that follow the linking conven-
tion in which the name is at the beginning of the routine.
X'47F0Fxxx' is the instruction to branch around the routine
name.

 Appendix A. Diagnosing Problems with Language Environment 811

Offset to the
length of name

Address of PPA2

X’CE’
(Lang Env Signature)

Lan Env
flags

Member
flags

Signed offset to BDI from the entry point of zero

Reserved

Reserved

Reserved

Reserved

Language Environment flags (16 bits)

Length of name Untruncated entry/label name

X’00’

X’04’

X’08’

X’0C’

X’10’

X’14’

X’18’

X’1C’

PPA1: Entry Point Block

•
•
•

•
•
•

V(CEESTART) for load module

Member
Subid

Member
Defined

Control Level
(= 1)

Offset from PPA2 to CDI, zero if no compile unit debug info

Offset from PPA2 to timestamp/version information, or zero

A(PEP) - address of the compilation unit’s Primary Entry Point

X’00’

X’04’

X’08’

X’0C’

X’10’

Member
identifier

PPA2: Compile Unit Block

Figure 112. Language Environment Non-XPLINK PPA1 and PPA2

Figure 113 on page 813 illustrates the XPLINK Language Environment-
conforming PPA1, followed by the XPLINK PPA1 optional area fields.

812 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Version LE Signature X‘CE’ Saved GPR Mask
(Lan Env Signature)

Signed Offset to PPA2 from start of PPA1

PPA1 Flags 1 PPA1 Flags 2 PPA1 Flags 3 PPA1 Flags 4

Length/4 of Parms Length/2 of Prolog Alloca Reg Offs/2 R4
Chg

Length of Code

+00

+04

+08

+0C

+10

PPA1: XPLINK Entry Point Block Fixed Area (Version 3)

| Figure 113. Language Environment PPA1 for XPLINK

+0
State Variable Locator

PPA1 Flags 3
Bit 0

+0
Argument Area Length

PPA1 Flags 3
Bit 1

+0
FPR mask Reserved

PPA1 Flags 3
Bit 2 or 3

+0
Floating Point Register Save Area Locator

PPA1 Flags 3
Bit 2

+0
Reserved

PPA1 Flags 3
Bit 3

+0
PPA1 Member Word

PPA1 Flags 3
Bit 4

+0
Block Debug Info

PPA1 Flags 3
Bit 5

| Interface Mapping Flags

| +0
| Linkage
| Return
| Value
| Adjust
| Parameter Mapping Flags
| PPA1 Flags 3
| Bit 6

+0
Java Method Locator Table (MLT)

PPA1 Flags 3
Bit 7+4

 Appendix A. Diagnosing Problems with Language Environment 813

Figure 114 illustrates the non-XPLINK Language Environment PPA2.

+0
+4

Length of
Name

PPA1 Flags 4
Bit 7

Name of Function
+8

...

00

04

08

0C

10

V(CEESTART) for load module

Offset from PPA2 to Compile Debugging Information (CDI) or zero

Offset from PPA2 to timestamp/version information or zero

A(PEP) - address to the compilation unit’s Primary Entry Point

Control Level
(= 1)

Member
Defined

Member
Subid

Member
Identifier

PPA2: Compile Unit Block

:

:

:

Figure 114. PPA2: Compile Unit Block (Non-XPLINK)

Figure 115 illustrates the Language Environment PPA2: Compile Unit Block for
XPLINK, and Figure 116 on page 815 illustrates the PPA2 timestamp and
version information.

| Figure 115. PPA2 Compile Unit Block for XPLINK

814 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

CL4’yyyy’ Year of compilation

CL4’mmdd’ Date of compilation

CL4’hhmm’ Time of compilation

CL2’ss’ Time of compilation

CL4’rrmm’ Release/Modification

Service level string length Untruncated service level string

CL2’vv’ Version

14

10

00

04

08

0C

| Figure 116. PPA2 Timestamp and Version Information for XPLINK

5. If the entry point type is C/C++, find the C/C++ routine name.

a. Use the entry point plus 4 to locate the offset to the entry point name in the
PPA1.

b. Use this offset to find the length-of-name byte followed by the routine
name.

The routine name appears in EBCDIC, with the translated version in the
right-hand margin.

Figure 117 illustrates the C PPA1.

yy

B xxx(0,15) Branch around prolog data

08

00

Untruncated entry/label name

04

0C

10

A (Block Debugging Information (BDI)) or zero

Stack frame size

Member flagsLanguage Environment
Flags

X’CE’
(Language Environment

signature)

X’14’ Offset to
the name

C Routine Layout Entry and PPA1

:

:

:

Length of name

A(PPA2)

Figure 117. C PPA1

6. If the entry point type is nonconforming, find the PL/I routine name.

a. Find the one byte length immediately preceding the entry point. This is the
length of the routine name.

 Appendix A. Diagnosing Problems with Language Environment 815

b. Go back the number of bytes specified in the name length. This is the
beginning of the routine name.

7. If the entry point type is nonconforming, find the name of the routine other than
PL/I.

a. Use the entry point plus 4 as the location of the entry point name.

b. Use the next byte as the length of the name. The name directly follows the
length of name byte. The entry point name appears in EBCDIC with the
translated version in the right-hand margin.

Figure 118 illustrates a nonconforming entry point type.

Nonconforming entry points that can appear do not necessarily follow this
linking convention. The location of data in these save areas can be unpredict-
able.

 #2#### = 47F#F##C #6D3C9E2 E3C9E3## 9#ECD##C E#B |.##..LISTIT.....|
 #2##1# = 18CF41B# C2985#BD ###85#DB ###418DB |....Bq&...&.....|
 #2##2# = 451#C#52 E3E8D7D3 C9D54#4# #1#2##34 |....TYPLIN|
 #2##3# = C2####1E C5D5E3C5 D94#D5E4 D4C2C5D9 |B...ENTER NUMBER|
 #2##4# = 4#D6C64# D9C5C3D6 D9C4E24# D6D94#C1 | OF RECORDS OR A|
 #2##5# = D3D3#ACA ###2##58 451#C#6C E6C1C9E3 |LL.........%WAIT|
 #2##6# = D9C44#4# #1#2#2F# E4###### #ACA###2 |RD ...#U.......|

Figure 118. Nonconforming Entry Point Type with Sample Dump

Searching the IBM Software Support Database
Failures in the Language Environment product can be described through the use of
keywords. A keyword is a descriptive word or abbreviation assigned to describe
one aspect of a product failure. A set of keywords, called a keyword string,
describes the failure in detail. You can use a keyword or keyword string as a
search argument against an IBM software support database, such as the Service
Information Search (SIS). The database contains keyword and text information
describing all current problems reported through APARs and associated PTFs. IBM
Support Center personnel have access to the software support database and are
responsible for storing and retrieving the information. Using keywords or a keyword
string, they will search the database to retrieve records that describe similar known
problems.

If you have IBMLink or some other connection to the IBM databases, you can do
your own search for previously recorded product failures before calling the IBM
Support Center.

If your keyword or keyword string matches an entry in the software support data-
base, the search may yield a more complete description of the problem and pos-
sibly identify a correction or circumvention. Such a search may yield several
matches to previously reported problems. Review each error description carefully to
determine if the problem description in the database matches the failure.

If a match is not found, go to “Preparing Documentation for an Authorized Program
Analysis Report (APAR)” on page 817.

816 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Preparing Documentation for an Authorized Program Analysis Report
(APAR)

Prepare documentation for an APAR only after you have done the following:

� Eliminated user errors as a possible cause of the problem.
� Followed the diagnostic procedures.
� You or your local IBM Support Center has been unsuccessful with the keyword

search.

Having met these criteria, follow the instructions below.

1. Report the problem to IBM.

If you have not already done so, report the problem to IBM by opening a
Program Management Record (PMR).

If you have IBMLink or some other connection to IBM databases, you can open
a PMR yourself. Or, the IBM Software Support Center can open the PMR after
consulting with you on the phone. The PMR is used to document your problem
and to record the work that the Support Center does on the problem. Be pre-
pared to supply the following information:

 � Customer number

 � PMR number

 � Operating system

� Operating system release level

� Your current Language Environment maintenance level (PTF list and list of
APAR fixes applied)

� Keyword strings you used to search the IBM software support database

� Processor number (model and serial)

� A description of how reproducible the error is. Can it be reproduced each
time? Can it be reproduced only sometimes? Have you been unable to
reproduce it? Supply source files, test cases, macros, subroutines, and
input files required to re-create the problem. Test cases are not required,
but can often speed the response time for your problem.

If the IBM Support Center concludes that the problem described in the PMR is
a problem with the Language Environment product, they will work with you to
open an APAR, so the problem can be fixed.

2. Provide APAR documentation. When you submit an APAR, you will need to
supply information that describes the failure. Table 12 describes how to
produce documentation required for submission with the APAR.

Table 12 (Page 1 of 2). Problem Resolution Documentation Requirements

Item Materials Required How to Obtain Materials

1 Machine-readable source
program, including macros, sub-
routines, input files, and any other
data that might help to reproduce
the problem.

IBM-supplied system utility program

 Appendix A. Diagnosing Problems with Language Environment 817

3. Submit the APAR documentation.

When submitting material for an APAR to IBM, carefully pack and clearly iden-
tify any media containing source programs, job stream data, interactive environ-
ment information, data sets, or libraries.

All magnetic media submitted must have the following information attached and
visible:

� The APAR number assigned by IBM.

� A list of data sets on the tape (such as source program, JCL, data).

� A description of how the tape was made, including:

– The exact JCL listing or the list of commands used to produce the
machine-readable source. Include the block size, LRECL, and format of
each file. If the file was unloaded from a partitioned data set, include
the block size, LRECL, and number of directory blocks in the original
data set.

– Labeling information used for the volume and its data sets.

– The recording mode and density.

Table 12 (Page 2 of 2). Problem Resolution Documentation Requirements

Item Materials Required How to Obtain Materials

2 Compiler listings:

 Source listing
 Object listing
 Storage map
 Traceback
 Cross-reference listing

JCL listing and linkage editor
listing

 Assembler-language expan-
sion

Use appropriate compiler options

3 Dumps

Language Environment dump
 System dump

See instructions in Chapter 3, “Using Lan-
guage Environment Debugging Facilities” on
page 37 (as directed by IBM support per-
sonnel).

4 Partition/region size/virtual storage
size

5 List of applied PTFs System programmer

6 Operating instructions or console
log

Application programmer

7 JCL statements used, or the VM
commands used, to invoke and
run the routine, including all run-
time options, in machine-readable
form

Application programmer

8 System output associated with the
MSGFILE run-time option.

Specify MSGFILE(SYSOUT)

9 Contents of the applicable catalog

10 A hardcopy log of the events
leading up to the failure.

On MVS, print out each display. On VM,
spool the console

818 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

– The name of the utility program that created each data set.

– The record format and block size used for each data set.

Any printed materials must show the corresponding APAR number.

The IBM service personnel will inform you of the mailing address of the service
center nearest you.

If an electronic link with IBM Service is available, use this link to send diag-
nostic information to IBM Service.

After the APAR is opened and the fix is produced, the description of the problem
and the fix will be in the software support database in SIS, accessible through
ServiceLink.

 Appendix A. Diagnosing Problems with Language Environment 819

820 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 Appendix B. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the pro-
ducts and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the oper-
ation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNA-
TIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this publication
at any time without notice.

Any references in this information to non-IBM Web sites are provided for conven-
ience only and do not in any manner serve as an endorsement of those Web sites.
The materials at those Web sites are not part of the materials for this IBM product
and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

 Copyright IBM Corp. 1991, 2000 821

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material avail-
able for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Program License Agreement, or any equivalent agreement between
us.

Any performance data contained herein was determined in a controlled environ-
ment. Therefore, the results obtained in other operating environments may vary sig-
nificantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been esti-
mated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those pro-
ducts.

All statements regarding IBM's future direction or intent are subject to change
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business oper-
ations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application pro-
grams conforming to the application programming interface for the operating plat-
form for which the sample programs are written. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the pur-

822 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

poses of developing, using, marketing, or distributing application programs con-
forming to IBM's application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This publication documents information NOT intended to be used as a Program-
ming Interface of Language Environment in OS/390 and VM/ESA.

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

IEEE is a trademark of the Institute of Electrical and Electronics Engineers, Inc. in
the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsys-
tems, Inc. in the United States and other countries.

Other company, product, and service names may be trademarks or service marks
of others.

AD/Cycle
AFP
AIX
AT
C/MVS
C/370
CICS
CICS/ESA
COBOL/370
DB2
DFSMS
DFSMS/MVS

DFSORT
ESA/390
IBM
IBMLink
IMS
IMS/ESA
Language Environment
MVS/DFP
MVS/ESA
MVS/SP
Open Class
OpenEdition

OS OPEN
OS/2
OS/390
Presentation Manager
RACF
S/370
SP
SQL/DS
System/370
VisualAge
VM/ESA

 Appendix B. Notices 823

824 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 Bibliography

This section lists the books in the Language Environ-
ment library and other publications that may be helpful
when using Language Environment.

Language Products Publications

OS/390 Language Environment for OS/390 & VM

OS/390 Language Environment Concepts Guide,
GC28-1945
OS/390 Language Environment Programming
Guide, SC28-1939
OS/390 Language Environment Programming Ref-
erence, SC28-1940
OS/390 Language Environment Customization,
SC28-1941
OS/390 Language Environment Debugging Guide
and Run-Time Messages, SC28-1942
OS/390 Language Environment Run-Time Migration
Guide, SC28-1944
OS/390 Language Environment Writing Interlan-
guage Applications, SC28-1943
OS/390 Language Environment Vendor Interfaces,
SY28-1152

OS/390 C/C++

OS/390 C/C++ IBM Open Class Library User's
Guide, SC09-2363
OS/390 C/C++ IBM Open Class Library Reference,
SC09-2364
OS/390 C/C++ Language Reference, SC09-2360
OS/390 C/C++ Compiler and Run-Time Migration
Guide, SC09-2359
OS/390 C/C++ Programming Guide, SC09-2362
OS/390 C/C++ Reference Summary, SX09-1313
OS/390 C/C++ User's Guide, SC09-2361
OS/390 C/C++ Run-Time Library Reference,
SC28-1663

IBM C for VM/ESA

IBM C for VM/ESA Licensed Program
Specifications, GC09-2148
IBM C for VM/ESA Compiler and Run-Time
Migration Guide, SC09-2147
IBM C for VM/ESA Programming Guide, SC09-2151
IBM C for VM/ESA User's Guide, SC09-2152
IBM C for VM/ESA Language Reference,
SC09-2153
IBM C for VM/ESA Library Reference, SC23-3908

COBOL for OS/390 & VM

COBOL for OS/390 & VM Licensed Program Spec-
ifications, GC26-9044

Installation and Customization under OS/390,
SC26-9045
COBOL Language Reference, SC26-9046
COBOL for OS/390 & VM Diagnosis Guide,
SC26-9047
COBOL for OS/390 & VM Programming Guide,
SC26-9049
COBOL for OS/390 & VM Compiler and Run-Time
Migration Guide, GC26-4764

COBOL for MVS & VM (Release 2)

Licensed Program Specifications, GC26-4761
Programming Guide, SC26-4767
Language Reference, SC26-4769
Compiler and Run-Time Migration Guide,
GC26-4764
Installation and Customization under MVS,
SC26-4766
Reference Summary, SX26-3788
Diagnosis Guide, SC26-3138

VS COBOL II

VS COBOL II Application Programming Guide for
MVS and CMS, SC26-4045

Debug Tool

Debug Tool User's Guide and Reference,
SC09-2137

VS FORTRAN Version 2

Language Environment Fortran Run-Time Migration
Guide, SC26-8499
Language and Library Reference, SC26-4221
Programming Guide for CMS and MVS, SC26-4222

VisualAge PL/I

VisualAge PL/I for OS/390 Licensed Program Spec-
ifications, GC26-9471
VisualAge PL/I for OS/390 Programming Guide,
SC26-9473
VisualAge PL/I Language Reference, SC26-9476
VisualAge PL/I for OS/390 Compiler and Run-Time
Migration Guide, SC26-9474
VisualAge PL/I Messages and Codes, SC26-9478
VisualAge PL/I for OS/390 Diagnosis Guide,
SC26-9475

PL/I for MVS & VM

PL/I for MVS & VM Licensed Program Specifica-
tions, GC26-3116
PL/I for MVS & VM Programming Guide,
SC26-3113
PL/I for MVS & VM Language Reference,
SC26-3114

 Copyright IBM Corp. 1991, 2000 825

PL/I for MVS & VM Reference Summary,
SX26-3821
PL/I for MVS & VM Compiler and Run-Time
Migration Guide, SC26-3118
PL/I for MVS & VM Installation and Customization
under MVS, SC26-3119
PL/I for MVS & VM Compile-Time Messages and
Codes, SC26-3229
PL/I for MVS & VM Diagnosis Guide, SC26-3149

High Level Assembler for MVS & VM & VSE

Programmer's Guide, MVS & VM Edition,
SC26-4941

 Related Publications

CICS

CICS Transaction Server for OS/390 Installation
Guide, GC34-5697
CICS Operations and Utilities Guide, SC34-5717
CICS Problem Determination Guide, GC33-5719
CICS Resource Definition Guide, SC34-5722
CICS Data Areas, LY33-6096
CICS Application Programming Guide, SC34-5702
CICS Application Programming Reference,
SC34-5703
CICS System Definition Guide, SC34-5725

DB2

Database 2 Application Programming and SQL
Guide, SC26-4377

DFSMS/MVS

OS/390 DFSMS Program Management, SC27-0806

DFSORT

DFSORT Application Programming Guide R14,
SC33-4035

IMS/ESA

IMS/ESA Application Programming: Design Guide,
SC26-8728
IMS/ESA Application Programming: Database
Manager, SC26-8727
IMS/ESA Application Programming: Transaction
Manager, SC26-8729
IMS/ESA Application Programming: EXEC DLI
Commands for CICS and IMS, SC26-8726

OS/390

OS/390 Introduction and Release Guide,
GC28-1725
OS/390 ISPF Dialog Tag Language Guide and Ref-
erence, SC28-1219

OS/390 ISPF Planning and Customizing,
SC28-1298
OS/390 ISPF Dialog Developer's Guide and Refer-
ence, SC28-1273
OS/390 MVS System Codes, GC28-1780
OS/390 MVS Diagnosis: Tools and Service Aids,
SY28-1085
OS/390 MVS Initialization and Tuning Guide,
SC28-1751
OS/390 MVS Initialization and Tuning Reference,
SC28-1752
OS/390 MVS JCL Reference, GC28-1757
OS/390 MVS Programming: Authorized Assembler
Services Guide, GC28-1763
OS/390 MVS Programming: Assembler Services
Reference, GC28-1910
OS/390 UNIX System Services User's Guide,
SC28-1891
OS/390 UNIX System Services Command Refer-
ence, SC28-1892
OS/390 UNIX System Services Programming:
Assembler Callable Services Reference, SC28-1899
OS/390 UNIX System Services Planning,
SC28-1890
OS/390 TSO/E Customization, SC28-1965
OS/390 TSO/E Programming Services, SC28-1971
OS/390 TSO/E System Programming Command
Reference, SC28-1972

VM/ESA (Version 2)

VM/ESA: CMS User's Guide, SC24-5460
VM/ESA: CMS Command Reference, SC24-5461
VM/ESA: XEDIT User's Guide, SC24-5463
VM/ESA: XEDIT Command and Macro Reference,
SC24-5464
VM/ESA: CP Command and Utility Reference,
SC24-5519
VM/ESA: Service Guide, SC24-5527
OpenEdition for VM/ESA: Callable Services Refer-
ence, SC24-5726
OpenEdition for VM/ESA: Command Reference,
SC24-5728
OpenEdition for VM/ESA: User's Guide, SC24-5727
OpenEdition for VM/ESA: Sockets Reference,
SC24-5741

YEAR 2000

The Year 2000 and 2-Digit Dates: Guide,
GC28-1251

 Softcopy Publications
IBM Online Library Omnibus Edition: OS/390 Col-
lection, SK2T-6700
IBM Online Library Omnibus Edition: VM Collection,
SK2T-2067

826 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

 Index

Special Characters
__abend 122
__alloc 122
__amrc 122
__code 122
__error 122
__feedback 122
__last_op 122
__msg 123
_BPXK_MDUMP 78

A
abend codes

< 4000 32
>= 4000 32
C, list of 789
Language Environment, list of 775
passing to operating system 25
system, example of 34
user-specified, example of 34
user, example of 34
using 34

abends
internal, table of output 261
Language Environment 34, 259
requested by assembler user exit 25
system 35
under CICS 259
user 35

ABPERC run-time option
function 10
generating a system dump and 76
modifying condition handling behavior and 23

ABTERMENC run-time option 10, 26
using 26

AGGREGATE compiler option 4, 8
anywhere heap

statistics 21
APAR (Authorized Program Analysis Report) 817

documentation 817
application programs

debugging
handling a core dump written to a BFS file 179
handling a core dump written to an HFS file 179

argument
in dump 61

arguments, registers, and variables for active rou-
tines 59

assembler language
user exit 25, 26

for CICS 260

assembler language (continued)
user exit (continued)

generating a system dump with 76
modifying condition handling behavior and 26
using 25, 26

atexit
information in dump 153

Authorized Program Analysis Report (APAR) 817
automatic variables

locating in dump 132, 243

B
base locator

for working storage 197
in dump 197

batch
generating a system dump 76

below heap
statistics 21

BLOCKS option of CEE3DMP callable service 39

C
C return codes to CICS 260, 803
C-CAA (C-specific common anchor area)

See C/C++, C-specific common anchor area
(C-CAA)

C/C++
__amrc

example of structure 122
information in dump 155

__msg 123
atexit

information in dump 153
C-specific common anchor area (C-CAA) 152
cdump() function 139
compiler listings 130

IPA link step listing 131
compiler options 3
debugging examples 168, 174
dump

automatic variables, locating in 132
external variables, locating in 134
fetch information in 153
parameter in 136
signal information in 152
structure variables, locating in 137
system, structures in 137

file
control block information 154
status and attributes in dump 154

 Copyright IBM Corp. 1991, 2000 827

C/C++ (continued)
functions

calling dump, example 139
cdump() 44, 139
csnap() 44, 139, 140
ctrace() 44, 139, 140
fetch() 121
fopen() 123
perror() 121
printf() 122
to produce dump output 43

memory file control block 154
perror() function 127
return codes 803
static

variables, locating in dump 133
writable map 133

stdio.h 122
system programming C

abend codes 789
reason codes

timestamp 139
CAA (common anchor area) 63
call chain 61
CALL statement

CDUMP/CPDUMP 215
DUMP/PDUMP 214
SDUMP 216

callable services 22
case 1 condition token 29
case 2 condition token 29
cdump() 139
CEE prefix 31, 33
CEE3ABD—terminate enclave with an abend 22,

34, 76
generating a dump and 76
handling user abends and 22, 34
modifying condition handling behavior and 22

CEE3DMP—generate dump 37, 61
See also Language Environment dump
generating a Language Environment dump with 37
options 38
relationship to PLIDUMP 238
syntax 38

CEE3GRO—returns location offset 22
CEE3SRP—set resume point 23
CEEBXITA assembler user exit 25, 26
CEECXITA assembler user exit 260
CEEDCOD—decompose a condition token 29
CEEDUMP — Language Environment Dump

Service 37
See also Language Environment dump
control blocks 95
locating 112

CEEHDLR—register user condition handler 25

CEEMGET—get a message 29
CEEMOUT—dispatch a message 27
CEEMRCE—move resume cursor to designated

label 22
CEEMRCR—move resume cursor relative to handle

cursor 22
CEEMSG—get, format, and dispatch a message 29
CEESGL—signal a condition 29
CEESTART 121
character

data dump 215
CHECK run-time option

function 10
modifying condition handling behavior and 23

CHECKOUT compiler option 4
CICS

abends 259
application, from an EXEC CICS command 261

debugging for 257
debugging information, table of locations 257
destination control table (DCT) 257
example traceback in CESE transient data

queue 258
examples of output 257
generating a system dump 77
nonzero reason code returned, table of output 261
reason codes 259
register and program status word contents 259
return codes

C 803
COBOL
Language Environment 260
PL/I 795

run-time messages 257
transaction

dump 258
rollback 260

class test 188
classifying errors table 31
CLLE (COBOL load list entry) 196
COBCOM control block 200
COBOL

base locator for working storage 197
compiler options 6
debugging examples 200, 210
dump

external data in 197
file information in 197
linkage section in 197
local variables in 193
routine information in 193
run unit storage in 199
stack frames for active routines in 193
working storage in 197

errors 187
listings 190

828 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

COBOL (continued)
memory file control block 153
program class storage 197
return codes to CICS 260
routine

calling Language Environment dump service 191
COBOL run-time messages 741
COBVEC control block 200
COMMAREA (Communication Area) 258
compiler options

C 3
COBOL 6
Fortran 7
PL/I 8

Compiler options map 130
condition

information
for active routines 58
in dump 59

POSIX 29
unhandled 29

condition handling
behavior, modifying 22
user-written condition handler 22, 25

condition information block 61, 70
condition manager 29
CONDITION option of CEE3DMP callable

service 40, 61
condition token 28, 29

case 1 29
case 2 29
example of 29

conditions, nested 30
control block

for active routines 59
core dump

written to an HFS file 179
Cross-Reference listing 130
csnap() 140
ctrace() 140

D
data

map listing 191
values 61

DCB (data control block) 196
DCT (destination control table) 257
DEBUG run-time option 10
debugging

C, examples 168, 174
COBOL, examples 200, 210
for CICS 257
Fortran, examples 221, 225
PL/I, examples 247, 251
tool 37

DEPTHCONDLMT run-time option
function 10
modifying condition handling behavior and 23
wait/loop error and 32

diagnosis checklist 809
DISPLAY statement 27, 187
DSA (dynamic save area) 61

See also stack, frame
dummy DSA 61
dump

an area of storage 215
core

written to an HFS file 179
date in 57
dynamically allocated storage in 60
symbolic 216

DUMP suboption of TERMTHDACT run-time
option 41

DUMP/PDUMP routine 214
format specifications 214
output 215
usage considerations 215

E
ECB (enclave control block) 60
EDB (enclave data block) 60
EDC prefix 31, 33
EIB (exec interface block) 258
enclave

identifier in dump 57
member list 60
storage 60
termination

behavior, establishing 26
entry information 56
ENTRY option of CEE3DMP callable service 40
entry point

name of active routines in dump 58
ERRCOUNT run-time option

function 10
modifying condition handling behavior and 23
wait/loop error and 32

errno 153
error

determining source of 809
message while Language Environment was handling

another error 30
unanticipated 31

ESD compiler option 8
examples

application abends from 261
C routines 168, 174
calling a nonexistent subroutine 172, 203, 250
COBOL routines 200, 210
divide-by-zero error 168, 206, 252

 Index 829

examples (continued)
output under CICS 257
PL/I routines 247, 251
SUBSCRIPTANGE error 200, 247

EXEC CICS DUMP statements 259
external data

for COBOL programs in dump 197
External symbol cross reference listing 130

F
fetch

fetch information in dump 153
fetch() 121
fetchable module 121
file

for COBOL, in dump 197
status key 188

file control block (FCB) 154
FILES option of CEE3DMP callable service 39
FLAG compiler option 4
floating point registers

in dump 57
FNAME option of CEE3DMP callable service 38
fopen() 123
FOR prefix 31, 33
Fortran

compiler options 7
debugging examples 221, 225
dump services 214
errors, determining the source of 211
listings 213
messages, list of 482

G
general purpose registers 57
Global symbols map 130
GMAREA 196
GONUMBER compiler option 3, 4

H
HANDLE ABEND EXEC CICS command 257
header files, C

ctest.h 139
errno.h 168
stdio.h 122
stdlib.h 168

heap storage
created by CEECRHP callable service 22
in LEDATA Output 96

reports 100
storage in dump 60
user 19

HEAPCHK run-time option
function 10

HEAPPOOL Storage
statistics 183

user-created, _uheapreport 185

I
I/O

conventions 121
IBM prefix 31, 33
IGZ prefix 31, 33
IMS

generating a system dump 77
in dump 56
INFOMSGFILTER run-time option

function 10
INITIALIZE statement 188
inline

report 130
Inline report for IPA 130
instruction length counter in dump 59
interactive problem control system (IPCS)

analyzing a core dump 179
INTERRUPT compiler option

function 8
INTERRUPT run-time option 10
interruption code in dump 59
ITBLK in dump 200

L
language constructs 187
Language Environment (Language Environment/370)

return codes to CICS 260, 795
run-time messages 265
symbolic feedback code 28

Language Environment dump
C information in 152
CEEDUMP 37
COBOL information in 196
default options 40
example traceback in 60
Fortran information in 219
multiple enclaves and 75
options

BLOCKS 39
CONDITION 40, 61
ENCLAVE 38
ENTRY 40
FILES 39
FNAME 38, 40
NOBLOCKS 39
NOCONDITION 40
NOENTRY 40
NOFILES 39
NOSTORAGE 39

830 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Language Environment dump (continued)
options (continued)

NOTRACEBACK 39
NOVARIABLES 39
PAGESIZE(n) 40
STACKFRAME 39
STORAGE 39
THREAD 39
TRACEBACK 39, 61
VARIABLES 39, 61

output
for C routines 144
for COBOL program 190
for Fortran routines 219
for PL/I routines 238
information for multiple enclaves 44

PL/I information in 240
section descriptions 56
TERMTHDACT suboptions 42
title 56
traceback with condition information

C routine 144
COBOL program 193
Language Environment routine 56
PL/I routine 238

using C functions 43
using CDUMP/CPDUMP subroutine 214
using CEE3DMP callable service 37, 56
using DUMP/PDUMP subroutine 214
using PLIDUMP subroutine 43, 238
using SDUMP subroutine 214
using TERMTHDACT run-time option 40

Language Environment/370 (Language Environment)
See Language Environment (Language

Environment/370)
LEDATA

IPCS Verbexit 79
C/C++ Output 102
COBOL Output 108
Format 79
Parameters 80
Understanding Output 81

linkage editor
module map 130

linkage section
for COBOL programs in dump 197

LIST compiler option 4, 6, 8
listings generated by compiler

C 130
COBOL 190
Fortran 213
PL/I 231

LMESSAGE compiler option 8
local

variables 59

M
machine state information

in dump 59
MAP compiler option 6, 9
memory file control block (MFCB) 153, 154
message

classifying errors and 32
genxlt utility 413, 414
iconv utility 410, 412
localedef 397, 410
prelinker and object utility 387, 395
run-time, CICS 257
run-time, COBOL 741
run-time, Fortran 482
run-time, Language Environment 265
run-time, PL/I 647
System Programming C 791, 793
user-created 27
using in your routine 27

module
fetchable 121

module name prefixes, Language Environment 31
MSG suboption

of TERMTHDACT 41
MSGFILE run-time option

function 10
run-time messages and 33

MSGQ run-time option 10

N
nested condition 30
no response (wait/loop) 32
NOBLOCKS option of CEE3DMP callable

service 39
NOCONDITION option of CEE3DMP callable

service 40
NOENTRY option of CEE3DMP callable service 40
NOFILES option of CEE3DMP callable service 39
NOSTORAGE option of CEE3DMP callable

service 39
Notices 821
NOTRACEBACK option of CEE3DMP callable

service 39
NOVARIABLES option of CEE3DMP callable

service 39

O
Object file map 130
object library utility messages 387, 395
OFFSET compiler option 4, 6, 7, 9
optimizing

C 3, 61
COBOL 6
PL/I 8

 Index 831

options
C compiler 3
COBOL compiler 6
defaults for dump 42
determining run-time in effect 11
Fortran compiler 7
Language Environment run-time 10
PL/I compiler 8, 9

OS/390 UNIX System Services
C application program and 179
generating a system dump 78

OUTDD compiler option 7
output

incorrect 32
missing 32

P
page

number in dump 57
PAGESIZE(n) option of CEE3DMP callable

service 40
parameter

checking value of 25
variable 136

perror() function 127
PL/I

address of interrupt, finding in dump 242
CAA address, finding in dump 246
common anchor area (CAA) 246
compiler listings

object code listing 235
static storage map 234
variable storage map 235

compiler options
generating listings with 231
list of 8

CSECT 234
debugging examples 247, 251
dump

error type, finding in 242
parameter list, finding contents in 244
PL/I information, finding in 240, 244
PLIDUMP subroutine and 238
statement number, finding in 242
timestamp, finding in 244
variables, finding in 243

ERROR ON-unit 228, 242
errors 227, 230
floating-point register 228
object code listing 235
ON statement control block 235
static storage listing 234
SUBSCRIPTRANGE condition 229, 249

PLIDUMP subroutine 238

PMR (Problem Management Record) 817
pointer

variable 121
PPA 811
Prelinker map 130
prelinker messages 387, 395
preventive service planning (PSP) bucket 810
printf() function 27, 122
Problem Management Record (PMR) 817
procedure division listings 191
process

control block 60
member list 60

process control block (PCB) 60
PROFILE run-time option

function 10
program

class storage 197
program prolog area 811
program status word (PSW) 59
pseudo-assembler listing 130
PSP (preventive service planning) bucket 810

Q
QUIET suboption of TERMTHDACT run-time

option 41

R
reason code

for Language Environment abends 775
nonzero returned to CICS 261
under CICS 259

registers 0–15
in dump 57

release number
in dump 57

return code
bad or nonzero 32
C to CICS 803
COBOL to CICS
Language Environment to CICS 795

RPTOPTS run-time option 11
RPTSTG run-time option 13
run unit

COBOL 199
level control block 199
storage in dump 60, 199

run-time
messages

COBOL 741
Fortran 482
Language Environment 265
PL/I 647
under CICS 257

832 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

run-time options 23
determining those in effect 11
sample options report 11
specifying 25

S
scope

terminator 187
SDUMP routine

description 216
format specifications 217
output 216
usage considerations 217

service routines
CDUMP/CPDUMP 215
DUMP/PDUMP 214
SDUMP 216

SET statement 188
signal information in dump 152
sorted cross-reference listing 191
SOURCE compiler option 4, 7, 9
Source file map 130
source listing 130
stack

frame 61
STACKFRAME option of CEE3DMP callable

service 39
statement

numbers
in dump 57

static
variables in dump 243
writable map 133, 135, 138

status
of routines in dump 58

stderr 27
stdio.h 122
stdout 27
storage

evaluating use of 13
for active routines 60
offset listing 130
report 13
statistics 19, 21

STORAGE compiler option 9
STORAGE option of CEE3DMP callable service 39
STORAGE run-time option 10
structure

map 130, 137
variable example code 137

symbolic
feedback code 28

symbolic dumps 216
how to call under Fortran 216

system
abend

with TRAP(OFF) 32
with TRAP(ON) 32

system dump
generating 76

in batch 76
in CICS 77
in IMS 77
in OS/390 UNIX shell 78

system programming
abend codes 789

T
task global table (TGT) 196
TERMINAL compiler option 4, 9
TERMTHDACT run-time option

function 10, 40, 250
generating a dump and 24
modifying condition handling behavior and 10
suboptions 41

TEST compiler option 3, 4, 6, 7, 8
TEST run-time option 11
text file name prefixes, Language Environment 31
THDCOM in dump 200
THREAD option of CEE3DMP callable service 39
time

in dump 57
TRACE run-time option

function 11
trace table 113

TRACE suboption of TERMTHDACT run-time
option 41

TRACEBACK option of CEE3DMP callable
service 39, 61

transaction
dump 258
rollback 260
rollback effects of assembler user exit on 260
work area 258

TRAP run-time option
function 11
Language Environment condition handling and 24,

76
user abends and 35

U
UADUMP suboption of TERMTHDACT run-time

option 24, 41
UAIMM suboption of TERMTHDACT run-time

option 24, 42
UAONLY suboption of TERMTHDACT run-time

option 24, 41

 Index 833

UATRACE suboption of TERMTHDACT run-time
option 24, 41

unhandled conditions 26, 29
establishing enclave termination behavior for 26

USE EXCEPTION/ERROR declaratives 188
USE FOR DEBUGGING declarative 188, 189
user

abend 34, 35
code 32
codes, list of 775

exit 25, 26
heap

statistics 21
stack

statistics 19
user-specified abends 34
USRHDLR run-time option 10, 24
utility and service subroutines

CDUMP/CPDUMP 215
DUMP/PDUMP 214
SDUMP 216

V
variables

in Language Environment dump 61
static, figure of how stored 134
structure example code 137

VARIABLES option of CEE3DMP callable
service 39, 61

VBREF compiler option 7
verb cross-reference 191
verbexit

LEDATA 79
version number

in dump 57

W
working storage

in dump 60, 197

X
XPLINK

downward-growing stack 62
finding XPLINK information in a dump 162
storage stastics 20
trace table entries for 163

XREF compiler option 7, 9
XUFLOW run-time option

function 11
modifying condition handling behavior and 24

834 OS/390 V2R10.0 Lang Env for OS/390 & VM Debug & Msgs

Communicating Your Comments to IBM

OS/390
Language Environment for OS/390 & VM
Debugging Guide and
Run-Time Messages

Publication No. SC28-1942-09

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a reader's comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

– FAX: (International Access Code)+1+845+432-9405

� If you prefer to send comments electronically, use one of these network IDs:

– Internet e-mail: mhvrcfs@us.ibm.com
– World Wide Web: http://www.ibm.com/s390/os390/webqs.html

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies

Optionally, if you include your telephone number, we will be able to respond to your com-
ments by phone.

Reader's Comments — We'd Like to Hear from You

OS/390
Language Environment for OS/390 & VM
Debugging Guide and
Run-Time Messages

Publication No. SC28-1942-09

You may use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you. Your comments will be sent to the author's
department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Today's date:

What is your occupation?

Newsletter number of latest Technical Newsletter (if any) concerning this publication:

How did you use this publication?

Is there anything you especially like or dislike about the organization, presentation, or writing in this
manual? Helpful comments include general usefulness of the book; possible additions, deletions, and
clarifications; specific errors and omissions.

Page Number: Comment:

Name Address

Company or Organization

Phone No.

[] As an introduction [] As a text (student)

[] As a reference manual [] As a text (instructor)

[] For another purpose (explain)

Cut or Fold
Along Line

Cut or Fold
Along Line

Reader's Comments — We'd Like to Hear from You
SC28-1942-09 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400

Fold and Tape Please do not staple Fold and Tape

SC28-1942-09

IBM

Program Number: 5647-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC28-1942-#9

	Contents
	Figures
	Tables
	About This Book
	Using Your Documentation

	Summary of Changes
	Part 1. Introduction to Debugging in Language Environment
	Chapter 1. Preparing Your Routine for Debugging
	Setting Compiler Options
	C and C++ Compiler Options
	IPA Compile Step Sub-Options
	IPA Link Step Sub-Options

	COBOL Compiler Options
	Fortran Compiler Options
	PL/I Compiler Options
	VisualAge PL/I Compiler Options

	Using Language Environment Run-Time Options
	Determining Run-Time Options in Effect

	Controlling Storage Allocation
	Stack Storage Statistics
	STACK, THREADSTACK, and LIBSTACK Statistics for the Upward-Growing Stack
	XPLINK Statistics — XPLINK STACK and XPLINK THREADSTACK Statistics for the Downward-Growing Stack
	Determining the Applicable Threads
	Allocating Stack Storage

	Heap Storage Statistics
	HEAP, HEAP24, THREADHEAP, ANYHEAP, and BELOWHEAP Statistics
	THREADHEAP Statistics
	HEAP, HEAP24, ANYHEAP, BELOWHEAP, and Additional Heap Statistics
	HEAP, HEAP24, THREADHEAP, ANYHEAP, BELOWHEAP, and Additional Heap Statistics
	Additional Heap Statistics

	HeapPools Storage Statistics

	Modifying Condition Handling Behavior
	Language Environment Callable Services
	Language Environment Run-Time Options
	Customizing Condition Handlers
	Invoking the Assembler User Exit
	Establishing Enclave Termination Behavior for Unhandled Conditions

	Using Messages in Your Routine
	C/C++
	COBOL
	Fortran
	PL/I

	Using Condition Information
	Using the Feedback Code Parameter
	Using the Symbolic Feedback Code

	Chapter 2. Classifying Errors
	Identifying Problems in Routines
	Language Environment Module Names
	Common Errors in Routines

	Interpreting Run-Time Messages
	Message Prefix
	Message Number
	Severity Code
	Message Text

	Understanding Abend Codes
	User Abends
	System Abends

	Chapter 3. Using Language Environment Debugging Facilities
	Debugging Tool
	Language Environment Dump Service, CEE3DMP
	Generating a Language Environment Dump with CEE3DMP
	Generating a Language Environment Dump with TERMTHDACT
	Considerations for Setting TERMTHDACT Options

	Generating a Language Environment Dump with Language-Specific Functions
	Understanding the Language Environment Dump
	Sections of the Language Environment Dump

	Debugging with Specific Sections of the Language Environment Dump
	The Tracebacks, Condition Information, and Data Values Section
	The Upward-Growing (Non-XPLINK) Stack Frame Section
	The Downward-Growing (XPLINK) Stack Frame Section
	The Common Anchor Area
	The Condition Information Block

	Multiple Enclave Dumps
	Generating a System Dump
	Generating a System Dump in a Batch Run-Time Environment
	Generating a System Dump in an IMS Run-Time Environment
	Generating a System Dump in a CICS Run-Time Environment
	Generating a System Dump in an OS/390 UNIX Shell

	Formatting and Analyzing System Dumps on OS/390
	Preparing to Use the Language Environment IPCS Verbexit LEDATA
	Language Environment IPCS Verbexit – LEDATA
	Format
	Parameters
	Report Type Parameters

	Understanding the Language Environment IPCS Verbexit LEDATA Output
	Sections of the Language Environment LEDATA Verbexit Formatted Output

	Understanding the HEAP LEDATA Output
	Heap Report Sections of the LEDATA Output
	Diagnosing Heap Damage Problems
	Diagnosing Storage Leak Problems
	Diagnosing Heap Fragmentation Problems

	Understanding the C/C++-specific LEDATA Output
	C/C++-specific Sections of the LEDATA Output

	Understanding the COBOL-specific LEDATA Output
	COBOL-specific Sections of the LEDATA Output

	Requesting a Language Environment Trace for Debugging
	Locating the Trace Dump
	Using the Language Environment Trace Table Format in a Dump Report
	Understanding the Trace Table Entry (TTE)
	Sample Dump for the Trace Table Entry

	Part 2. Debugging Language-Specific Routines
	Chapter 4. Debugging C/C++ Routines
	Debugging C/C++ Input/Output Programs
	Using the __amrc and __amrc2 Structures
	__last_op Values
	Displaying an Error Message with the perror() Function
	Using __errno2() to Diagnose Application Problems

	Using C/C++ Listings
	Generating C/C++ Listings and Maps
	C, C++, and C/C++ IPA Listings

	Finding Variables
	Finding Automatic Variables
	Finding the Writable Static Area
	Finding the Static Storage Area
	Finding RENT Static Variables
	Finding External RENT Variables
	Finding NORENT Static Variables
	Finding External NORENT Variables
	Finding the C/370 Parameter List
	Finding the C++ Parameter List
	Finding Members of Aggregates
	Finding the Timestamp

	Generating a Language Environment Dump of a C/C++ Routine
	cdump()
	csnap()
	ctrace()
	Sample C Routine that Calls cdump
	Sample C++ Routine that Generates a Language Environment Dump
	Sample Language Environment Dump with C/C++-Specific Information
	Finding C/C++ Information in a Language Environment Dump
	Additional Floating-Point Registers

	Sample Language Environment Dump with XPLINK-Specific Information
	Finding XPLINK Information in a Language Environment Dump

	C/C++ Contents of the Language Environment Trace Tables
	Debugging Examples of C/C++ Routines
	Divide-by-Zero Error
	Calling a Nonexistent Non-XPLINK Function
	Calling a Nonexistent XPLINK Function

	Handling Dumps Written to the OS/390 UNIX File System
	Multithreading Consideration
	Understanding C/C++ Heap Information in Storage Reports
	Language Environment Storage Report with HeapPools Statistics
	HeapPools Storage Statistics

	C Function, __uheapreport, Storage Report

	Chapter 5. Debugging COBOL Programs
	Determining the Source of Error
	Tracing Program Logic
	Finding Input/Output Errors
	Handling Input/Output Errors
	Validating Data (Class Test)
	Assessing Switch Problems
	Generating Information about Procedures

	Using COBOL Listings
	Generating a Language Environment Dump of a COBOL Program
	COBOL Program that Calls Another COBOL Program
	COBOL Program that Calls the Language Environment CEE3DMP Callable Service
	Sample Language Environment Dump with COBOL-Specific Information
	Finding COBOL Information in a Dump
	Control Block Information for Active Routines
	Storage for Each Active Routines
	Enclave-Level Data
	Process-Level Data

	Debugging Example COBOL Programs
	Subscript Range Error
	Calling a Nonexistent Subroutine
	Divide-by-Zero Error

	Chapter 6. Debugging Fortran Routines
	Determining the Source of Errors in Fortran Routines
	Identifying Run-Time Errors

	Using Fortran Compiler Listings
	Generating a Language Environment Dump of a Fortran Routine
	DUMP/PDUMP Subroutines
	Usage Considerations for DUMP/PDUMP

	CDUMP/CPDUMP Subroutines
	Usage Considerations for CDUMP/CPDUMP

	SDUMP Subroutine
	Usage Considerations for SDUMP

	Finding Fortran Information in a Language Environment Dump
	Understanding the Language Environment Traceback Table
	Identifying Condition Information
	Identifying Variable Information
	Identifying File Status Information

	Examples of Debugging Fortran Routines
	Calling a Nonexistent Routine
	Divide-by-Zero Error

	Chapter 7. Debugging PL/I Routines
	Determining the Source of Errors in PL/I Routines
	Logic Errors in the Source Routine
	Invalid Use of PL/I
	Unforeseen Errors
	Invalid Input Data
	Compiler or Run-Time Routine Malfunction
	System Malfunction
	Unidentified Routine Malfunction
	Storage Overlay Problems

	Using PL/I Compiler Listings
	Generating PL/I Listings and Maps
	Finding Information in PL/I Listings
	Static Internal Storage Map
	Variable Storage Map
	Object Code Listing

	Generating a Language Environment Dump of a PL/I Routine
	PLIDUMP Syntax and Options
	PLIDUMP Usage Notes

	Finding PL/I Information in a Dump
	Traceback
	PL/I Task Traceback
	Condition Information
	Statement Number and Address Where Error Occurred

	Control Blocks for Active Routines
	Automatic Variables
	Static Variables
	Based Variables
	Area Variables
	Variables in Areas
	Contents of Parameter Lists
	Timestamp

	Control Blocks Associated with the Thread
	The CAA
	File Status and Attribute Information

	PL/I Contents of the Language Environment Trace Table
	Debugging Example of PL/I Routines
	Subscript Range Error
	Calling a Nonexistent Subroutine
	Divide-by-Zero Error

	Chapter 8. Debugging under CICS
	Accessing Debugging Information
	Locating Language Environment Run-Time Messages
	Locating the Language Environment Traceback
	Locating the Language Environment Dump
	Using CICS Transaction Dump
	Using CICS Register and Program Status Word Contents
	Using Language Environment Abend and Reason Codes
	Using Language Environment Return Codes to CICS

	Ensuring Transaction Rollback
	Finding Data When Language Environment Returns a Nonzero Reason Code
	Finding Data When Language Environment Abends Internally
	Finding Data When Language Environment Abends from an EXEC CICS Command

	Part 3. Run-Time Messages and Codes
	Chapter 9. Language Environment Run-Time Messages
	Chapter 10. C Prelinker and the C Object Library Utility Messages
	Severe Error Messages

	Chapter 11. C Utility Messages
	localedef Messages
	Return Codes
	Messages

	iconv Utility Messages
	Return Codes
	Messages

	genxlt Utility Messages

	Chapter 12. C/C++ Run-Time Messages
	Chapter 13. Fortran Run-Time Messages
	Fortran Run-Time Message Number Ranges
	Qualifying Data
	Permissible Resume Actions
	locator-text in the Run-Time Message Texts
	List of Run-Time Messages

	Chapter 14. PL/I Run-Time Messages
	Chapter 15. COBOL Run-Time Messages
	Chapter 16. Language Environment Abend Codes
	Chapter 17. C Abend and Reason Codes and SPC Messages
	C System Programming Abend Codes
	C System Programming Reason Codes
	System Programming C Messages

	Chapter 18. Return Codes to CICS
	Language Environment Return Codes
	C Return Codes
	COBOL Return Codes
	PL/I Return Codes

	Part 4. Appendixes
	Appendix A. Diagnosing Problems with Language Environment
	Diagnosis Checklist
	Locating the Name of the Failing Routine in a System Dump on VM
	Searching the IBM Software Support Database
	Preparing Documentation for an Authorized Program Analysis Report (APAR)

	Appendix B. Notices
	Programming Interface Information
	Trademarks

	Bibliography
	Language Products Publications
	Related Publications
	Softcopy Publications

	Index

